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Abstract

With a few exceptions, discriminative train-
ing in statistical machine translation (SMT)
has been content with tuning weights for large
feature sets on small development data. Ev-
idence from machine learning indicates that
increasing the training sample size results in
better prediction. The goal of this paper is to
show that this common wisdom can also be
brought to bear upon SMT. We deploy local
features for SCFG-based SMT that can be read
off from rules at runtime, and present a learn-
ing algorithm that applies `1/`2 regulariza-
tion for joint feature selection over distributed
stochastic learning processes. We present ex-
periments on learning on 1.5 million training
sentences, and show significant improvements
over tuning discriminative models on small
development sets.

1 Introduction

The standard SMT training pipeline combines
scores from large count-based translation models
and language models with a few other features and
tunes these using the well-understood line-search
technique for error minimization of Och (2003). If
only a handful of dense features need to be tuned,
minimum error rate training can be done on small
tuning sets and is hard to beat in terms of accuracy
and efficiency. In contrast, the promise of large-
scale discriminative training for SMT is to scale to
arbitrary types and numbers of features and to pro-
vide sufficient statistical support by parameter esti-
mation on large sample sizes. Features may be lex-
icalized and sparse, non-local and overlapping, or

be designed to generalize beyond surface statistics
by incorporating part-of-speech or syntactic labels.
The modeler’s goals might be to identify complex
properties of translations, or to counter errors of pre-
trained translation models and language models by
explicitly down-weighting translations that exhibit
certain undesired properties. Various approaches to
feature engineering for discriminative models have
been presented (see Section 2), however, with a few
exceptions, discriminative learning in SMT has been
confined to training on small tuning sets of a few
thousand examples. This contradicts theoretical and
practical evidence from machine learning that sug-
gests that larger training samples should be benefi-
cial to improve prediction also in SMT. Why is this?

One possible reason why discriminative SMT has
mostly been content with small tuning sets lies in
the particular design of the features themselves. For
example, the features introduced by Chiang et al.
(2008) and Chiang et al. (2009) for an SCFG model
for Chinese/English translation are of two types:
The first type explicitly counters overestimates of
rule counts, or rules with bad overlap points, bad
rewrites, or with undesired insertions of target-side
terminals. These features are specified in hand-
crafted lists based on a thorough analysis of a tuning
set. Such finely hand-crafted features will find suf-
ficient statistical support on a few thousand exam-
ples and thus do not benefit from larger training sets.
The second type of features deploys external infor-
mation such as syntactic parses or word alignments
to penalize bad reorderings or undesired translations
of phrases that cross syntactic constraints. At large
scale, extraction of such features quickly becomes



(1) X → X1 hat X2 versprochen, X1 promised X2

(2) X → X1 hat mir X2 versprochen,
X1 promised me X2

(3) X → X1 versprach X2, X1 promised X2

Figure 1: SCFG rules for translation.

infeasible because of costly generation and storage
of linguistic annotations. Another possible reason
why large training data did not yet show the ex-
pected improvements in discriminative SMT is a
special overfitting problem of current popular online
learning techniques. This is due to stochastic learn-
ing on a per-example basis where a weight update on
a misclassified example may apply only to a small
fraction of data that have been seen before. Thus
many features will not generalize well beyond the
training examples on which they were introduced.

The goal of this paper is to investigate if and
how it is possible to benefit from scaling discrimi-
native training for SMT to large training sets. We
deploy generic features for SCFG-based SMT that
can efficiently be read off from rules at runtime.
Such features include rule ids, rule-local n-grams,
or types of rule shapes. Another crucial ingredi-
ent of our approach is a combination of parallelized
stochastic learning with feature selection inspired
by multi-task learning. The simple but effective
idea is to randomly divide training data into evenly
sized shards, use stochastic learning on each shard
in parallel, while performing `1/`2 regularization
for joint feature selection on the shards after each
epoch, before starting a new epoch with a reduced
feature vector averaged across shards. Iterative fea-
ture selection procedure is the key to both efficiency
and improved prediction: Without interleaving par-
allelized stochastic learning with feature selection
our largest experiments would not be feasible. Se-
lecting features jointly across shards and averaging
does counter the overfitting effect that is inherent
to stochastic updating. Our resulting models are
learned on large data sets, but they are small and
outperform models that tune feature sets of various
sizes on small development sets. Our software is
freely available as a part of the cdec1 framework.

1https://github.com/redpony/cdec

2 Related Work

The great promise of discriminative training for
SMT is the possibility to design arbitrarily expres-
sive, complex, or overlapping features in great num-
bers. The focus of many approaches thus has been
on feature engineering and on adaptations of ma-
chine learning algorithms to the special case of SMT
(where gold standard rankings have to be created
automatically). Examples for adapted algorithms
include Maximum-Entropy Models (Och and Ney,
2002; Blunsom et al., 2008), Pairwise Ranking Per-
ceptrons (Shen et al., 2004; Watanabe et al., 2006;
Hopkins and May, 2011), Structured Perceptrons
(Liang et al., 2006a), Boosting (Duh and Kirchhoff,
2008; Wellington et al., 2009), Structured SVMs
(Tillmann and Zhang, 2006; Hayashi et al., 2009),
MIRA (Watanabe et al., 2007; Chiang et al., 2008;
Chiang et al., 2009), and others. Adaptations of the
loss functions underlying such algorithms to SMT
have recently been described as particular forms
of ramp loss optimization (McAllester and Keshet,
2011; Gimpel and Smith, 2012).

All approaches have been shown to scale to large
feature sets and all include some kind of regulariza-
tion method. However, most approaches have been
confined to training on small tuning sets. Exceptions
where discriminative SMT has been used on large
training data are Liang et al. (2006a) who trained 1.5
million features on 67,000 sentences, Blunsom et
al. (2008) who trained 7.8 million rules on 100,000
sentences, or Tillmann and Zhang (2006) who used
230,000 sentences for training.

Our approach is inspired by Duh et al. (2010)
who applied multi-task learning for improved gen-
eralization in n-best reranking. In contrast to our
work, Duh et al. (2010) did not incorporate multi-
task learning into distributed learning, but defined
tasks as n-best lists, nor did they develop new algo-
rithms, but used off-the-shelf multi-task tools.

3 Local Features for Synchronous CFGs

The work described in this paper is based on the
SMT framework of hierarchical phrase-based trans-
lation (Chiang, 2005; Chiang, 2007). Transla-
tion rules are extracted from word-aligned paral-
lel sentences and can be seen as productions of a
synchronous CFG. Examples are rules like (1)-(3)



shown in Figure 1. Local features are designed to be
readable directly off the rule at decoding time. We
use three rule templates in our work:

Rule identifiers: These features identify each rule
by a unique identifier. Such features corre-
spond to the relative frequencies of rewrites
rules used in standard models.

Rule n-grams: These features identify n-grams of
consecutive items in a rule. We use bigrams
on source-sides of rules. Such features identify
possible source side phrases and thus can give
preference to rules including them.2

Rule shape: These features are indicators that ab-
stract away from lexical items to templates that
identify the location of sequences of terminal
symbols in relation to non-terminal symbols,
on both the source- and target-sides of each
rule used. For example, both rules (1) and (2)
map to the same indicator, namely that a rule
is being used that consists of a (NT, term*, NT,
term*) pattern on its source side, and an (NT,
term*, NT) pattern on its target side. Rule (3)
maps to a different template, that of (NT, term*,
NT) on source and target sides.

4 Joint Feature Selection in Distributed
Stochastic Learning

The following discussion of learning methods is
based on pairwise ranking in a Stochastic Gradi-
ent Descent (SGD) framework. The resulting al-
gorithms can be seen as variants of the perceptron
algorithm. Let each translation candidate be repre-
sented by a feature vector x ∈ IRD where preference
pairs for training are prepared by sorting translations
according to smoothed sentence-wise BLEU score
(Liang et al., 2006a) against the reference. For a
preference pair xj = (x

(1)
j ,x

(2)
j ) where x

(1)
j is pre-

ferred over x
(2)
j , and x̄j = x

(1)
j − x

(2)
j , we consider

the following hinge loss-type objective function:

lj(w) = (−〈w, x̄j 〉)+
where (a)+ = max(0, a) , w ∈ IRD is a weight vec-
tor, and 〈·, ·〉 denotes the standard vector dot prod-
uct. Instantiating SGD to the following stochastic

2Similar “monolingual parse features” have been used in
Dyer et al. (2011).

subgradient leads to the perceptron algorithm for
pairwise ranking3 (Shen and Joshi, 2005):

∇lj(w) =

{
−x̄j if 〈w, x̄j〉 ≤ 0,

0 else.

Our baseline algorithm 1 (SDG) scales pairwise
ranking to large scale scenarios. The algorithm takes
an average over the final weight updates of each
epoch instead of keeping a record of all weight up-
dates for final averaging (Collins, 2002) or for voting
(Freund and Schapire, 1999).

Algorithm 1 SGD: int I, T , float η
Initialize w0,0,0 ← 0.
for epochs t← 0 . . . T − 1: do

for all i ∈ {0 . . . I − 1}: do
Decode ith input with wt,i,0.
for all pairs xj , j ∈ {0 . . . P − 1}: do

wt,i,j+1 ← wt,i,j − η∇lj(wt,i,j)
end for
wt,i+1,0 ← wt,i,P

end for
wt+1,0,0 ← wt,I,0

end for

return 1
T

T∑
t=1

wt,0,0

While stochastic learning exhibits a runtime be-
havior that is linear in sample size (Bottou, 2004),
very large datasets can make sequential process-
ing infeasible. Algorithm 2 (MixSGD) addresses
this problem by parallelization in the framework of
MapReduce (Dean and Ghemawat, 2004).

Algorithm 2 MixSGD: int I, T, Z, float η
Partition data into Z shards, each of size S ← I/Z;
distribute to machines.
for all shards z ∈ {1 . . . Z}: parallel do

Initialize wz,0,0,0 ← 0.
for epochs t← 0 . . . T − 1: do

for all i ∈ {0 . . . S − 1}: do
Decode ith input with wz,t,i,0.
for all pairs xj , j ∈ {0 . . . P − 1}: do

wz,t,i,j+1 ← wz,t,i,j − η∇lj(wz,t,i,j)
end for
wz,t,i+1,0 ← wz,t,i,P

end for
wz,t+1,0,0 ← wz,t,S,0

end for
end for
Collect final weights from each machine,

return 1
Z

Z∑
z=1

(
1
T

T∑
t=1

wz,t,0,0

)
.

3Other loss functions lead to stochastic versions of SVMs
(Collobert and Bengio, 2004; Shalev-Shwartz et al., 2007;
Chapelle and Keerthi, 2010).



Algorithm 2 is a variant of the SimuParallelSGD
algorithm of Zinkevich et al. (2010) or equivalently
of the parameter mixing algorithm of McDonald et
al. (2010). The key idea of algorithm 2 is to parti-
tion the data into disjoint shards, then train SGD on
each shard in parallel, and after training mix the final
parameters from each shard by averaging. The algo-
rithm requires no communication between machines
until the end.

McDonald et al. (2010) also present an iterative
mixing algorithm where weights are mixed from
each shard after training a single epoch of the per-
ceptron in parallel on each shard. The mixed weight
vector is re-sent to each shard to start another epoch
of training in parallel on each shard. This algorithm
corresponds to our algorithm 3 (IterMixSGD).

Algorithm 3 IterMixSGD: int I, T, Z, float η
Partition data into Z shards, each of size S ← I/Z;
distribute to machines.
Initialize v← 0.
for epochs t← 0 . . . T − 1: do

for all shards z ∈ {1 . . . Z}: parallel do
wz,t,0,0 ← v
for all i ∈ {0 . . . S − 1}: do

Decode ith input with wz,t,i,0.
for all pairs xj , j ∈ {0 . . . P − 1}: do

wz,t,i,j+1 ← wz,t,i,j − η∇lj(wz,t,i,j)
end for
wz,t,i+1,0 ← wz,t,i,P

end for
end for

Collect weights v← 1
Z

Z∑
z=1

wz,t,S,0.

end for
return v

Parameter mixing by averaging will help to ease
the feature sparsity problem, however, keeping fea-
ture vectors on the scale of several million features
in memory can be prohibitive. If network latency
is a bottleneck, the increased amount of information
sent across the network after each epoch may be a
further problem.

Our algorithm 4 (IterSelSGD) introduces feature
selection into distributed learning for increased effi-
ciency and as a more radical measure against over-
fitting. The key idea is to view shards as tasks, and
to apply methods for joint feature selection from
multi-task learning to achieve small sets of features
that are useful across all tasks or shards. Our algo-
rithm represents weights in a Z-by-D matrix W =
[wz1 | . . . |wzZ ]T of stacked D-dimensional weight

vectors across Z shards. We compute the `2 norm of
the weights in each feature column, sort features by
this value, and keep K features in the model. This
feature selection procedure is done after each epoch.
Reduced weight vectors are mixed and the result is
re-sent to each shard to start another epoch of paral-
lel training on each shard.

Algorithm 4 IterSelSGD: int I, T, Z,K, float η
Partition data into Z shards, each of size S = I/Z;
distribute to machines.
Initialize v← 0.
for epochs t← 0 . . . T − 1: do

for all shards z ∈ {1 . . . Z}: parallel do
wz,t,0,0 ← v
for all i ∈ {0 . . . S − 1}: do

Decode ith input with wz,t,i,0.
for all pairs xj , j ∈ {0 . . . P − 1}: do

wz,t,i,j+1 ← wz,t,i,j − η∇lj(wz,t,i,j)
end for
wz,t,i+1,0 ← wz,t,i,P

end for
end for
Collect/stack weights W← [w1,t,S,0| . . . |wZ,t,S,0]

T

Select top K feature columns of W by `2 norm and
for k ← 1 . . .K do

v[k] = 1
Z

Z∑
z=1

W[z][k].

end for
end for
return v

This algorithm can be seen as an instance of `1/`2
regularization as follows: Let wd be the dth column
vector of W, representing the weights for the dth
feature across tasks/shards. `1/`2 regularization pe-
nalizes weights W by the weighted `1/`2 norm

λ||W||1,2 = λ
D∑

d=1

||wd||2.

Each `2 norm of a weight column represents
the relevance of the corresponding feature across
tasks/shards. The `1 sum of the `2 norms en-
forces a selection among features based on these
norms. Consider for example the two 5-feature, 3-
task weight matrices in Figure 2. Assuming the
same loss for both matrices, the right-hand side ma-
trix is preferred because of a smaller `1/`2 norm
(12 instead of 18). This matrix shares features
across tasks which leads to larger `2 norms for some
columns (here ||w1||2 and ||w2||2) and forces other
columns to zero. This results in shrinking the ma-
trix to those features that are useful across all tasks.



w1 w2 w3 w4 w5 w1 w2 w3 w4 w5

wz1 [ 6 4 0 0 0 ] [ 6 4 0 0 0 ]
wz2 [ 0 0 3 0 0 ] [ 3 0 0 0 0 ]
wz3 [ 0 0 0 2 3 ] [ 2 3 0 0 0 ]

column `2 norm: 6 4 3 2 3 7 5 0 0 0
`1 sum: ⇒ 18 ⇒ 12

Figure 2: `1/`2 regularization enforcing feature selection.

Our algorithm is related to Obozinski et al.
(2010)’s approach to `1/`2 regularization where fea-
ture columns are incrementally selected based on the
`2 norms of the gradient vectors corresponding to
feature columns. Their algorithm is itself an exten-
sion of gradient-based feature selection based on the
`1 norm, e.g., Perkins et al. (2003).4 In contrast to
these approaches we approximate the gradient by us-
ing the weights given by the ranking algorithm itself.
This relates our work to weight-based recursive fea-
ture elimination (RFE) (Lal et al., 2006). Further-
more, algorithm 4 performs feature selection based
on a choice of meta-parameter of K features instead
of by thresholding a regularization meta-parameter
λ, however, these techniques are equivalent and can
be transformed into each other.

5 Experiments

5.1 Data, Systems, Experiment Settings

The datasets used in our experiments are versions
of the News Commentary (nc), News Crawl (crawl)
and Europarl (ep) corpora described in Table 1. The
translation direction is German-to-English.

The SMT framework used in our experiments
is hierarchical phrase-based translation (Chiang,
2007). We use the cdec decoder5 (Dyer et al.,
2010) and induce SCFG grammars from two sets of
symmetrized alignments using the method described
by Chiang (2007). All data was tokenized and
lowercased; German compounds were split (Dyer,
2009). For word alignment of the news-commentary
data, we used GIZA++ (Och and Ney, 2000); for
aligning the Europarl data, we used the Berke-
ley aligner (Liang et al., 2006b). Before train-
ing, we collect all the grammar rules necessary to

4Note that by definition of ||W||1,2, standard `1 regulariza-
tion is a special case of `1/`2 regularization for a single task.

5cdecmetaparameters were set to a non-terminal span limit
of 15 and standard cube pruning with a pop limit of 200.

translate each individual sentence into separate files
(so-called per-sentence grammars) (Lopez, 2007).
When decoding, cdec loads the appropriate file im-
mediately prior to translation of the sentence. The
computational overhead is minimal compared to the
expense of decoding. Also, deploying disk space
instead of memory fits perfectly into the MapRe-
duce framework we are working in. Furthermore,
the extraction of grammars for training is done in
a leave-one-out fashion (Zollmann and Sima’an,
2005) where rules are extracted for a parallel sen-
tence pair only if the same rules are found in other
sentences of the corpus as well.

3-gram (news-commentary) and 5-gram (Eu-
roparl) language models are trained on the data de-
scribed in Table 1, using the SRILM toolkit (Stol-
cke, 2002) and binarized for efficient querying using
kenlm (Heafield, 2011). For the 5-gram language
models, we replaced every word in the lm training
data with <unk> that did not appear in the English
part of the parallel training data to build an open vo-
cabulary language model.

HI

MID

LOW

Figure 3: Multipartite pairwise ranking.

Training data for discriminative learning are pre-
pared by comparing a 100-best list of transla-
tions against a single reference using smoothed per-
sentence BLEU (Liang et al., 2006a). From the
BLEU-reordered n-best list, translations were put
into sets for the top 10% level (HI), the middle
80% level (MID), and the bottom 10% level (LOW).
These level sets are used for multipartite ranking



News Commentary(nc)
train-nc lm-train-nc dev-nc devtest-nc test-nc

Sentences 132,753 180,657 1057 1064 2007
Tokens de 3,530,907 – 27,782 28,415 53,989
Tokens en 3,293,363 4,394,428 26,098 26,219 50,443

Rule Count 14,350,552 (1G) – 2,322,912 2,320,264 3,274,771

Europarl(ep)
train-ep lm-train-ep dev-ep devtest-ep test-ep

Sentences 1,655,238 2,015,440 2000 2000 2000
Tokens de 45,293,925 – 57,723 56,783 59,297
Tokens en 45,374,649 54,728,786 58,825 58,100 60,240

Rule Count 203,552,525 (31.5G) – 17,738,763 17,682,176 18,273,078

News Crawl(crawl)
dev-crawl test-crawl10 test-crawl11

Sentences 2051 2489 3003
Tokens de 49,848 64,301 76,193
Tokens en 49,767 61,925 74,753

Rule Count 9,404,339 11,307,304 12,561,636

Table 1: Overview of data used for train/dev/test. News Commentary (nc) and Europarl (ep) training data and
also News Crawl (crawl) dev/test data were taken from the WMT11 translation task (http://statmt.org/
wmt11/translation-task.html). The dev/test data of nc are the sets provided with the WMT07 shared
task (http://statmt.org/wmt07/shared-task.html). Ep dev/test data is from WMT08 shared task
(http://statmt.org/wmt08/shared-task.html). The numbers in brackets for the rule counts of ep/nc
training data are total counts of rules in the per-sentence grammars.

where translation pairs are built between the ele-
ments in HI-MID, HI-LOW, and MID-LOW, but not
between translations inside sets on the same level.
This idea is depicted graphically in Figure 3. The
intuition is to ensure that good translations are pre-
ferred over bad translations without teasing apart
small differences.

For evaluation, we used the mteval-v11b.pl
script to compute lowercased BLEU-4 scores (Pa-
pineni et al., 2001). Statistical significance was
measured using an Approximate Randomization test
(Noreen, 1989; Riezler and Maxwell, 2005).

All experiments for training on dev sets were car-
ried out on a single computer. For grammar extrac-
tion and training of the full data set we used a 30
node hadoop Map/Reduce cluster that can handle
300 jobs at once. We split the data into 2290 shards
for the ep runs and 141 shards for the nc runs, each
shard holding about 1,000 sentences, which corre-
sponds to the dev set size of the nc data set.

5.2 Experimental Results

The baseline learner in our experiments is a pairwise
ranking perceptron that is used on various features
and training data and plugged into various meta-

M

x̄

BLEU[%] 23.0 25.0 27.0 29.0

Figure 4: Boxplot of BLEU-4 results for 100 runs of
MIRA on news commentary data, depicting median (M),
mean (x̄), interquartile range (box), standard deviation
(whiskers), outliers (end points).

algorithms for distributed processing. The percep-
tron algorithm itself compares favorably to related
learning techniques such as the MIRA adaptation of
Chiang et al. (2008). Figure 4 gives a boxplot depict-
ing BLEU-4 results for 100 runs of the MIRA imple-
mentation of the cdec package, tuned on dev-nc,
and evaluated on the respective test set test-nc.6 We
see a high variance (whiskers denote standard devi-
ations) around a median of 27.2 BLEU and a mean
of 27.1 BLEU. The fluctuation of results is due to
sampling training examples from the translation hy-

6MIRA was used with default meta parameters: 250 hypoth-
esis list to search for oracles, regularization strength C = 0.01
and using 15 passes over the input. It optimized IBM BLEU-4.
The initial weight vector was 0.



Algorithm Tuning set Features #Features devtest-nc test-nc
MIRA dev-nc default 12 – 27.10

1

dev-nc default 12 25.88 28.0

dev-nc +id 137k 25.53 27.6†23

dev-nc +ng 29k 25.82 27.42†234

dev-nc +shape 51 25.91 28.1

dev-nc +id,ng,shape 180k 25.71 28.1534

2

train-nc default 12 25.73 27.86

train-nc +id 4.1M 25.13 27.19†134

train-nc +ng 354k 26.09 28.03134

train-nc +shape 51 26.07 27.913

train-nc +id,ng,shape 4.7M 26.08 27.8634

3

train-nc default 12 26.09 @2 27.94†

train-nc +id 3.4M 26.1 @4 27.97†12

train-nc +ng 330k 26.33 @4 28.3412

train-nc +shape 51 26.39 @9 28.312

train-nc +id,ng,shape 4.7M 26.42 @9 28.55124

4
train-nc +id 100k 25.91 @7 27.82†2

train-nc +ng 100k 26.42 @4 28.37†12

train-nc +id,ng,shape 100k 26.8 @8 28.81123

Table 2: BLEU-4 results for algorithms 1 (SGD), 2 (MixSGD), 3 (IterMixSDG), and 4 (IterSelSGD) on news-
commentary (nc) data. Feature groups are 12 dense features (default), rule identifiers (id), rule n-gram (ng), and
rule shape (shape). Statistical significance at p-level < 0.05 of a result difference on the test set to a different algo-
rithm applied to the same feature group is indicated by raised algorithm number. † indicates statistically significant
differences to best result across features groups for same algorithm, indicated in bold face. @ indicates the optimal
number of epochs chosen on the devtest set.

pergraph as is done in the cdec implementation of
MIRA. We found similar fluctuations for the cdec
implementations of PRO (Hopkins and May, 2011)
or hypergraph-MERT (Kumar et al., 2009) both of
which depend on hypergraph sampling. In contrast,
the perceptron is deterministic when started from a
zero-vector of weights and achieves favorable 28.0
BLEU on the news-commentary test set. Since we
are interested in relative improvements over a stable
baseline, we restrict our attention in all following ex-
periments to the perceptron.7

Table 2 shows the results of the experimental
comparison of the 4 algorithms of Section 4. The

7Absolute improvements would be possible, e.g., by using
larger language models or by adding news data to the ep train-
ing set when evaluating on crawl test sets (see, e.g., Dyer et al.
(2011)), however, this is not the focus of this paper.

default features include 12 dense models defined on
SCFG rules;8 The sparse features are the 3 templates
described in Section 3. All feature weights were
tuned together using algorithms 1-4. If not indicated
otherwise, the perceptron was run for 10 epochs with
learning rate η = 0.0001, started at zero weight vec-
tor, using deduplicated 100-best lists.

The results on the news-commentary (nc) data
show that training on the development set does not
benefit from adding large feature sets – BLEU re-
sult differences between tuning 12 default features

8negative log relative frequency p(e|f); log count(f ); log
count(e, f ); lexical translation probability p(f |e) and p(e|f)
(Koehn et al., 2003); indicator variable on singleton phrase e;
indicator variable on singleton phrase pair f, e; word penalty;
language model weight; OOV count of language model; num-
ber of untranslated words; Hiero glue rules (Chiang, 2007).



Alg. Tuning set Features #Feats devtest-ep test-ep Tuning set test-crawl10 test-crawl11

1 dev-ep default 12 25.62 26.42† dev-crawl 15.39† 14.43†

dev-ep +id,ng,shape 300k 27.84 28.37 dev-crawl 17.84 16.834

4 train-ep +id,ng,shape 100k 28.0 @9 28.62 train-ep 19.121 17.331

Table 3: BLEU-4 results for algorithms 1 (SGD) and 4 (IterSelSGD) on Europarl (ep) and news crawl (crawl) test
data. Feature groups are 12 dense features (default), rule identifiers (id), rule n-gram (ng), and rule shape (shape).
Statistical significance at p-level < 0.05 of a result difference on the test set to a different algorithm applied to the
same feature group is indicated by raised algorithm number. † indicates statistically significant differences to best
result across features groups for same algorithm, indicated in bold face. @ indicates the optimal number of epochs
chosen on the devtest set.

and tuning the full set of 180,000 features are not
significant. However, scaling all features to the full
training set shows significant improvements for al-
gorithm 3, and especially for algorithm 4, which
gains 0.8 BLEU points over tuning 12 features on
the development set. The number of features rises
to 4.7 million without feature selection, which iter-
atively selects 100,000 features with best `2 norm
values across shards. Feature templates such as rule
n-grams and rule shapes only work if iterative mix-
ing (algorithm 3) or feature selection (algorithm 4)
are used. Adding rule id features works in combina-
tion with other sparse features.

Table 3 shows results for algorithms 1 and 4 on
the Europarl data (ep) for different devtest and test
sets. Europarl data were used in all runs for train-
ing and for setting the meta-parameter of number
of epochs. Testing was done on the Europarl test
set and news crawl test data from the years 2010
and 2011. Here tuning large feature sets on the
respective dev sets yields significant improvements
of around 2 BLEU points over tuning the 12 de-
fault features on the dev sets. Another 0.5 BLEU
points (test-crawl11) or even 1.3 BLEU points (test-
crawl10) are gained when scaling to the full training
set using iterative features selection. Result differ-
ences on the Europarl test set were not significant
for moving from dev to full train set. Algorithms 2
and 3 were infeasible to run on Europarl data beyond
one epoch because features vectors grew too large to
be kept in memory.

6 Discussion

We presented an approach to scaling discrimina-
tive learning for SMT not only to large feature

sets but also to large sets of parallel training data.
Since inference for SMT (unlike many other learn-
ing problems) is very expensive, especially on large
training sets, good parallelization is key. Our ap-
proach is made feasible and effective by applying
joint feature selection across distributed stochastic
learning processes. Furthermore, our local features
are efficiently computable at runtime. Our algo-
rithms and features are generic and can easily be re-
implemented and make our results relevant across
datasets and language pairs.

In future work, we would like to investigate more
sophisticated features, better learners, and in gen-
eral improve the components of our system that have
been neglected in the current investigation of rela-
tive improvements by scaling the size of data and
feature sets. Ultimately, since our algorithms are in-
spired by multi-task learning, we would like to apply
them to scenarios where a natural definition of tasks
is given. For example, patent data can be charac-
terized along the dimensions of patent classes and
patent text fields (Wäschle and Riezler, 2012) and
thus are well suited for multi-task translation.
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