
In Proceedings of the 37th Annual Meeting of the ACL, 1999, College Park, MD.Inducing a Semantically Annotated Lexiconvia EM-Based ClusteringMats RoothStefan RiezlerDetlef PrescherGlenn CarrollFranz BeilInstitut für Maschinelle SprachverarbeitungUniversity of Stuttgart, GermanyAbstractWe present a technique for automatic inductionof slot annotations for subcategorization frames,based on induction of hidden classes in the EMframework of statistical estimation. The modelsare empirically evalutated by a general decisiontest. Induction of slot labeling for subcategoriza-tion frames is accomplished by a further applica-tion of EM, and applied experimentally on frameobservations derived from parsing large corpora.We outline an interpretation of the learned rep-resentations as theoretical-linguistic decomposi-tional lexical entries.1 IntroductionAn important challenge in computational lin-guistics concerns the construction of large-scalecomputational lexicons for the numerous natu-ral languages where very large samples of lan-guage use are now available. Resnik (1993) ini-tiated research into the automatic acquisitionof semantic selectional restrictions. Ribas (1994)presented an approach which takes into accountthe syntactic position of the elements whose se-mantic relation is to be acquired. However, thoseand most of the following approaches require asa prerequisite a �xed taxonomy of semantic rela-tions. This is a problem because (i) entailmenthierarchies are presently available for few lan-guages, and (ii) we regard it as an open ques-tion whether and to what degree existing designsfor lexical hierarchies are appropriate for repre-senting lexical meaning. Both of these consid-erations suggest the relevance of inductive andexperimental approaches to the construction oflexicons with semantic information.This paper presents a method for automaticinduction of semantically annotated subcatego-rization frames from unannotated corpora. Weuse a statistical subcat-induction system which

estimates probability distributions and corpusfrequencies for pairs of a head and a subcatframe (Carroll and Rooth, 1998). The statisticalparser can also collect frequencies for the nomi-nal �llers of slots in a subcat frame. The induc-tion of labels for slots in a frame is based uponestimation of a probability distribution over tu-ples consisting of a class label, a selecting head,a grammatical relation, and a �ller head. Theclass label is treated as hidden data in the EM-framework for statistical estimation.2 EM-Based ClusteringIn our clustering approach, classes are deriveddirectly from distributional data�a sample ofpairs of verbs and nouns, gathered by pars-ing an unannotated corpus and extracting the�llers of grammatical relations. Semantic classescorresponding to such pairs are viewed as hid-den variables or unobserved data in the contextof maximum likelihood estimation from incom-plete data via the EM algorithm. This approachallows us to work in a mathematically well-de�ned framework of statistical inference, i.e.,standard monotonicity and convergence resultsfor the EM algorithm extend to our method.The two main tasks of EM-based clustering arei) the induction of a smooth probability modelon the data, and ii) the automatic discovery ofclass-structure in the data. Both of these aspectsare respected in our application of lexicon in-duction. The basic ideas of our EM-based clus-tering approach were presented in Rooth (Ms).Our approach contrasts with the merely heuris-tic and empirical justi�cation of similarity-basedapproaches to clustering (Dagan et al., 1998) forwhich so far no clear probabilistic interpreta-tion has been given. The probability model weuse can be found earlier in Pereira et al. (1993).However, in contrast to this approach, our sta-



Class 17PROB 0.0265 0.0379 0.0315 0.0313 0.0249 0.0164 0.0143 0.0110 0.0109 0.0105 0.0103 0.0099 0.0091 0.0089 0.0088 0.0082 0.0077 0.0073 0.0071 0.0071 0.0070 0.0068 0.0067 0.0065 0.0065 0.0058 0.0057 0.0057 0.0054 0.0051 0.0050number rate price cost level amount sale value interest demand chance standard share risk pro�t pressure income performance bene�t size population proportion temperature tax fee time power quality supplely money0.0437 increase.as:s � � � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0392 increase.aso:o � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0344 fall.as:s � � � � � � � � � � � � � � � � � � � � � � �0.0337 pay.aso:o � � � � � � � � � � � � � � � �0.0329 reduce.aso:o � � � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0257 rise.as:s � � � � � � � � � � � � � � � � � � � � � � � � �0.0196 exceed.aso:o � � � � � � � � � � � � � � � � � � � � � � �0.0177 exceed.aso:s � � � � � � � � � � � � � � � � � � � � � � � � �0.0169 a�ect.aso:o � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0156 grow.as:s � � � � � � � � � � � � � � � �0.0134 include.aso:s � � � � � � � � � � � � � � � � � � � � � � � � � �0.0129 reach.aso:s � � � � � � � � � � � � � � � � � � � � � �0.0120 decline.as:s � � � � � � � � � � � � � � � � � � �0.0102 lose.aso:o � � � � � � � � � � � � � � � � � � � � � � �0.0099 act.aso:s � � � � � � � �0.0099 improve.aso:o � � � � � � � � � � � �0.0088 include.aso:o � � � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0088 cut.aso:o � � � � � � � � � � � � � � � � �0.0080 show.aso:o � � � � � � � � � � � � � � � � � � � � � � �0.0078 vary.as:s � � � � � � � � � � � � � � � �Figure 1: Class 17: scalar changetistical inference method for clustering is formal-ized clearly as an EM-algorithm. Approaches toprobabilistic clustering similar to ours were pre-sented recently in Saul and Pereira (1997) andHofmann and Puzicha (1998). There also EM-algorithms for similar probability models havebeen derived, but applied only to simpler tasksnot involving a combination of EM-based clus-tering models as in our lexicon induction exper-iment. For further applications of our clusteringmodel see Rooth et al. (1998).We seek to derive a joint distribution of verb-noun pairs from a large sample of pairs of verbsv 2 V and nouns n 2 N . The key idea is to viewv and n as conditioned on a hidden class c 2 C,where the classes are given no prior interpreta-tion. The semantically smoothed probability ofa pair (v; n) is de�ned to be:p(v; n) =Xc2C p(c; v; n) =Xc2C p(c)p(vjc)p(njc)The joint distribution p(c; v; n) is de�ned byp(c; v; n) = p(c)p(vjc)p(njc). Note that by con-struction, conditioning of v and n on each otheris solely made through the classes c.In the framework of the EM algorithm(Dempster et al., 1977), we can formalize clus-tering as an estimation problem for a latent class(LC) model as follows. We are given: (i) a sam-ple space Y of observed, incomplete data, corre-

sponding to pairs from V�N , (ii) a sample spaceX of unobserved, complete data, correspondingto triples from C�V �N , (iii) a setX(y) = fx 2X j x = (c; y); c 2 Cg of complete data relatedto the observation y, (iv) a complete-data speci-�cation p�(x), corresponding to the joint proba-bility p(c; v; n) over C�V �N , with parameter-vector � = h�c; �vc; �ncjc 2 C; v 2 V; n 2 Ni, (v)an incomplete data speci�cation p�(y) which isrelated to the complete-data speci�cation as themarginal probability p�(y) =PX(y) p�(x):The EM algorithm is directed at �nding avalue �̂ of � that maximizes the incomplete-data log-likelihood function L as a func-tion of � for a given sample Y, i.e., �̂ =argmax� L(�) where L(�) = lnQy p�(y):As prescribed by the EM algorithm, the pa-rameters of L(�) are estimated indirectly by pro-ceeding iteratively in terms of complete-data es-timation for the auxiliary function Q(�; �(t)),which is the conditional expectation of thecomplete-data log-likelihood ln p�(x) given theobserved data y and the current �t of the pa-rameter values �(t) (E-step). This auxiliary func-tion is iteratively maximized as a function of� (M-step), where each iteration is de�ned bythe map �(t+1) = M(�(t)) = argmax� Q(�; �(t))Note that our application is an instance of theEM-algorithm for context-free models (Baum et



Class 5PROB 0.0412 0.0148 0.0084 0.0082 0.0078 0.0074 0.0071 0.0054 0.0049 0.0048 0.0047 0.0046 0.0041 0.0040 0.0040 0.0039 0.0039 0.0039 0.0039 0.0038 0.0038 0.0038 0.0037 0.0035 0.0035 0.0035 0.0034 0.0033 0.0033 0.0033 0.0033man ruth corbett doctor woman athelstan cranston benjamin stephen adam girl laura maggie voice john harry emily one people boy rachel ashley jane caroline jack burun juliet blanche helen edward0.0542 ask.as:s � � � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0340 nod.as:s � � � � � � � � � � � � � � � � � � � � � � � � �0.0299 think.as:s � � � � � � � � � � � � � � � � � � � � � � � � � �0.0287 shake.aso:s � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0264 smile.as:s � � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0213 laugh.as:s � � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0207 reply.as:s � � � � � � � � � � � � � � � � � � � � � � � � �0.0167 shrug.as:s � � � � � � � � � � � � � � � � � � � � � � � �0.0148 wonder.as:s � � � � � � � � � � � � � � � � � � � � � � � �0.0141 feel.aso:s � � � � � � � � � � � � � � � � � � � � � � � �0.0133 take.aso:s � � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0121 sigh.as:s � � � � � � � � � � � � � � � � � � � � � � �0.0110 watch.aso:s � � � � � � � � � � � � � � � � � � � � � � �0.0106 ask.aso:s � � � � � � � � � � � � � � � � � � � � � � � �0.0104 tell.aso:s � � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0094 look.as:s � � � � � � � � � � � � � � � � � � � � �0.0092 give.aso:s � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0089 hear.aso:s � � � � � � � � � � � � � � � � � � � � �0.0083 grin.as:s � � � � � � � � � � � � � � � � � � � � � � � �0.0083 answer.as:s � � � � � � � � � � � � � � � � � � � � � �Figure 2: Class 5: communicative actional., 1970), from which the following particularlysimple reestimation formulae can be derived. Letx = (c; y), and f(y) the sample-frequency of y.ThenM(�vc) = Py2fvg�N f(y)p�(xjy)Py f(y)p�(xjy) ;M(�nc) = Py2V�fng f(y)p�(xjy)Py f(y)p�(xjy) ;M(�c) = Py f(y)p�(xjy)jYj :Intuitively, the conditional expectation of thenumber of times a particular v, n, or c choiceis made during the derivation is prorated by theconditionally expected total number of times achoice of the same kind is made. As shown byBaum et al. (1970), these expectations can becalculated e�ciently using dynamic program-ming techniques. Every such maximization stepincreases the log-likelihood function L, and a se-quence of re-estimates eventually converges to a(local) maximum of L.In the following, we will present some exam-ples of induced clusters. Input to the clusteringalgorithm was a training corpus of 1280715 to-kens (608850 types) of verb-noun pairs partici-pating in the grammatical relations of intransi-tive and transitive verbs and their subject- andobject-�llers. The data were gathered from themaximal-probability parses the head-lexicalized

probabilistic context-free grammar of (Carrolland Rooth, 1998) gave for the British NationalCorpus (117 million words).
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Figure 3: Evaluation of pseudo-disambiguationFig. 2 shows an induced semantic class out ofa model with 35 classes. At the top are listed the20 most probable nouns in the p(nj5) distribu-tion and their probabilities, and at left are the 30most probable verbs in the p(vj5) distribution. 5is the class index. Those verb-noun pairs whichwere seen in the training data appear with a dotin the class matrix. Verbs with su�x :as : s in-dicate the subject slot of an active intransitive.Similarily :aso : s denotes the subject slot of anactive transitive, and :aso : o denotes the objectslot of an active transitive. Thus v in the abovediscussion actually consists of a combination ofa verb with a subcat frame slot as : s, aso : s,or aso : o. Induced classes often have a basisin lexical semantics; class 5 can be interpreted



as clustering agents, denoted by proper names,�man�, and �woman�, together with verbs denot-ing communicative action. Fig. 1 shows a clus-ter involving verbs of scalar change and thingswhich can move along scales. Fig. 5 can be in-terpreted as involving di�erent dispositions andmodes of their execution.3 Evaluation of Clustering Models3.1 Pseudo-DisambiguationWe evaluated our clustering models on a pseudo-disambiguation task similar to that performedin Pereira et al. (1993), but di�ering in detail.The task is to judge which of two verbs v andv0 is more likely to take a given noun n as itsargument where the pair (v; n) has been cut outof the original corpus and the pair (v0; n) is con-structed by pairing n with a randomly chosenverb v0 such that the combination (v0; n) is com-pletely unseen. Thus this test evaluates how wellthe models generalize over unseen verbs.The data for this test were built as follows.We constructed an evaluation corpus of (v; n; v0)triples by randomly cutting a test corpus of 3000(v; n) pairs out of the original corpus of 1280712tokens, leaving a training corpus of 1178698 to-kens. Each noun n in the test corpus was com-bined with a verb v0 which was randomly cho-sen according to its frequency such that the pair(v0; n) did appear neither in the training nor inthe test corpus. However, the elements v, v0, andn were required to be part of the training corpus.Furthermore, we restricted the verbs and nounsin the evaluation corpus to the ones which oc-curred at least 30 times and at most 3000 timeswith some verb-functor v in the training cor-pus. The resulting 1337 evaluation triples wereused to evaluate a sequence of clustering modelstrained from the training corpus.The clustering models we evaluated were pa-rameterized in starting values of the training al-gorithm, in the number of classes of the model,and in the number of iteration steps, resultingin a sequence of 3 � 10 � 6 models. Startingfrom a lower bound of 50 % random choice, ac-curacy was calculated as the number of timesthe model decided for p(njv) � p(njv0) out of allchoices made. Fig. 3 shows the evaluation resultsfor models trained with 50 iterations, averagedover starting values, and plotted against classcardinality. Di�erent starting values had an ef-
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Figure 4: Evaluation on smoothing taskfect of +� 2 % on the performance of the test.We obtained a value of about 80 % accuracy formodels between 25 and 100 classes. Models withmore than 100 classes show a small but stableover�tting e�ect.3.2 Smoothing PowerA second experiment addressed the smoothingpower of the model by counting the number of(v; n) pairs in the set V �N of all possible combi-nations of verbs and nouns which received a pos-itive joint probability by the model. The V �N -space for the above clustering models includedabout 425 million (v; n) combinations; we ap-proximated the smoothing size of a model byrandomly sampling 1000 pairs from V �N andreturning the percentage of positively assignedpairs in the random sample. Fig. 4 plots thesmoothing results for the above models againstthe number of classes. Starting values had an in-�uence of +� 1 % on performance. Given the pro-portion of the number of types in the trainingcorpus to the V � N -space, without clusteringwe have a smoothing power of 0.14 % whereasfor example a model with 50 classes and 50 it-erations has a smoothing power of about 93 %.Corresponding to the maximum likelihoodparadigm, the number of training iterations hada decreasing e�ect on the smoothing perfor-mance whereas the accuracy of the pseudo-disambiguation was increasing in the number ofiterations. We found a number of 50 iterationsto be a good compromise in this trade-o�.4 Lexicon Induction Based onLatent ClassesThe goal of the following experiment was to de-rive a lexicon of several hundred intransitive andtransitive verbs with subcat slots labeled withlatent classes.



4.1 Probabilistic Labeling with LatentClasses using EM-estimationTo induce latent classes for the subject slot ofa �xed intransitive verb the following statisti-cal inference step was performed. Given a la-tent class model pLC(�) for verb-noun pairs, anda sample n1; : : : ; nM of subjects for a �xed in-transitive verb, we calculate the probability ofan arbitrary subject n 2 N by:p(n) =Xc2C p(c; n) =Xc2C p(c)pLC(njc):The estimation of the parameter-vector � =h�cjc 2 Ci can be formalized in the EM frame-work by viewing p(n) or p(c; n) as a function of� for �xed pLC(:). The re-estimation formulaeresulting from the incomplete data estimationfor these probability functions have the follow-ing form (f(n) is the frequency of n in the sam-ple of subjects of the �xed verb):M(�c) = Pn2N f(n)p�(cjn)Pn2N f(n)A similar EM induction process can be appliedalso to pairs of nouns, thus enabling induction oflatent semantic annotations for transitive verbframes. Given a LC model pLC(�) for verb-nounpairs, and a sample (n1; n2)1; : : : ; (n1; n2)M ofnoun arguments (n1 subjects, and n2 direct ob-jects) for a �xed transitive verb, we calculate theprobability of its noun argument pairs by:p(n1; n2) =Pc1;c22C p(c1; c2; n1; n2)=Pc1;c22C p(c1; c2)pLC(n1jc1)pLC(n2jc2)Again, estimation of the parameter-vector� = h�c1c2 jc1; c2 2 Ci can be formalizedin an EM framework by viewing p(n1; n2) orp(c1; c2; n1; n2) as a function of � for �xedpLC(:). The re-estimation formulae resultingfrom this incomplete data estimation problemhave the following simple form (f(n1; n2) is thefrequency of (n1; n2) in the sample of noun ar-gument pairs of the �xed verb):M(�c1c2) = Pn1;n22N f(n1; n2)p�(c1; c2jn1; n2)Pn1;n22N f(n1; n2)Note that the class distributions p(c) andp(c1; c2) for intransitive and transitive modelscan be computed also for verbs unseen in theLC model.

blush 5 0.982975 snarl 5 0.962094constance 3 mandeville 2christina 3 jinkwa 2willie 2.99737 man 1.99859ronni 2 scott 1.99761claudia 2 omalley 1.99755gabriel 2 shamlou 1maggie 2 angalo 1bathsheba 2 corbett 1sarah 2 southgate 1girl 1.9977 ace 1Figure 6: Lexicon entries: blush, snarlincrease 17 0.923698number 134.147 proportion 23.8699demand 30.7322 size 22.8108pressure 30.5844 rate 20.9593temperature 25.9691 level 20.7651cost 23.9431 price 17.9996Figure 7: Scalar motion increase.4.2 Lexicon Induction ExperimentExperiments used a model with 35 classes. Frommaximal probability parses for the British Na-tional Corpus derived with a statistical parser(Carroll and Rooth, 1998), we extracted fre-quency tables for intransitive verb/subject pairsand transitive verb/subject/object triples. The500 most frequent verbs were selected for slotlabeling. Fig. 6 shows two verbs v for whichthe most probable class label is 5, a classwhich we earlier described as communicative ac-tion, together with the estimated frequencies off(n)p�(cjn) for those ten nouns n for which thisestimated frequency is highest.Fig. 7 shows corresponding data for an intran-sitive scalar motion sense of increase.Fig. 8 shows the intransitive verbs which take17 as the most probable label. Intuitively, theverbs are semantically coherent. When com-pared to Levin (1993)'s 48 top-level verb classes,we found an agreement of our classi�cation withher class of �verbs of changes of state� except forthe last three verbs in the list in Fig. 8 which issorted by probability of the class label.Similar results for German intransitive scalarmotion verbs are shown in Fig. 9. The datafor these experiments were extracted from themaximal-probability parses of a 4.1 million word



Class 8PROB 0.0369 0.0385 0.0162 0.0157 0.0101 0.0073 0.0071 0.0063 0.0060 0.0060 0.0057 0.0055 0.0052 0.0052 0.0051 0.0050 0.0050 0.0048 0.0047 0.0047 0.0046 0.0041 0.0041 0.0040 0.0040 0.0039 0.0038 0.0037 0.0037 0.0036 0.0036change use increase development growth e�ect result degree response approach reduction forme condition understanding improvement treatment skill action process activity knowledge factor level type reaction kind di�erence movement loss amount0.0539 require.aso:o � � � � � � � � � � � � � � � � � � � � � � � � � �0.0469 show.aso:o � � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0439 need.aso:o � � � � � � � � � � � � � � � � � � � � � � � � � �0.0383 involve.aso:o � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0270 produce.aso:o � � � � � � � � � � � � � � � � � � � � � � � � � �0.0255 occur.as:s � � � � � � � � � � � � � � � � � � � � � � � � �0.0192 cause.aso:s � � � � � � � � � � � � � � � � � � � � � � � � �0.0189 cause.aso:o � � � � � � � � � � � � � � � � � � � �0.0179 a�ect.aso:s � � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0162 require.aso:s � � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0150 mean.aso:o � � � � � � � � � � � � � � � � � � � � � � � � �0.0140 suggest.aso:o � � � � � � � � � � � � � � � � � � � � � � � � � �0.0138 produce.aso:s � � � � � � � � � � � � � � � � � � � � � � � � � �0.0109 demand.aso:o � � � � � � � � � � � � � � � � � � �0.0109 reduce.aso:s � � � � � � � � � � � � � � � � � � � � �0.0097 re�ect.aso:o � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0092 involve.aso:s � � � � � � � � � � � � � � � � � � � � � � � � �0.0091 undergo.aso:o � � � � � � � � � � � � � �Figure 5: Class 8: dispositions0.977992 decrease 0.560727 drop0.948099 double 0.476524 grow0.923698 increase 0.42842 vary0.908378 decline 0.365586 improve0.877338 rise 0.365374 climb0.876083 soar 0.292716 �ow0.803479 fall 0.280183 cut0.672409 slow 0.238182 mount0.583314 diminishFigure 8: Scalar motion verbscorpus of German subordinate clauses, yielding418290 tokens (318086 types) of pairs of verbsor adjectives and nouns. The lexicalized proba-bilistic grammar for German used is describedin Beil et al. (1999). We compared the Ger-man example of scalar motion verbs to the lin-guistic classi�cation of verbs given by Schuh-macher (1986) and found an agreement of ourclassi�cation with the class of �einfache Än-derungsverben� (simple verbs of change) exceptfor the verbs anwachsen (increase) and stag-nieren(stagnate) which were not classi�ed thereat all.Fig. 10 shows the most probable pair of classesfor increase as a transitive verb, together withestimated frequencies for the head �ller pair.Note that the object label 17 is the class foundwith intransitive scalar motion verbs; this cor-respondence is exploited in the next section.

0.741467 ansteigen (go up)0.720221 steigen (rise)0.693922 absinken (sink)0.656021 sinken (go down)0.438486 schrumpfen (shrink)0.375039 zurückgehen (decrease)0.316081 anwachsen (increase)0.215156 stagnieren (stagnate)0.160317 wachsen (grow)0.154633 hinzukommen (be added)Figure 9: German intransitive scalar motionverbsincrease (8; 17) 0.3097650development - pressure 2.3055fat - risk 2.11807communication - awareness 2.04227supplementation - concentration 1.98918increase - number 1.80559Figure 10: Transitive increase with estimatedfrequencies for �ller pairs.5 Linguistic InterpretationIn some linguistic accounts, multi-place verbsare decomposed into representations involv-ing (at least) one predicate or relationper argument. For instance, the transitivecausative/inchoative verb increase, is composedof an actor/causative verb combining with a



vp vp vp vpnp v1 np v1 np v1 np vR17 ^ increase17vp v vp v vp vact R8 R8np v np v np vincrease R17 R17 ^ increase17Figure 11: First tree: linguistic lexical entry fortransitive verb increase. Second: correspondinglexical entry with induced classes as relationalconstants. Third: indexed open class root addedas conjunct in transitive scalar motion increase.Fourth: induced entry for related intransitive in-crease.one-place predicate in the structure on the left inFig. 11. Linguistically, such representations aremotivated by argument alternations (diathesis),case linking and deep word order, language ac-quistion, scope ambiguity, by the desire to repre-sent aspects of lexical meaning, and by the factthat in some languages, the postulated decom-posed representations are overt, with each primi-tive predicate corresponding to a morpheme. Forreferences and recent discussion of this kind oftheory see Hale and Keyser (1993) and Kural(1996).We will sketch an understanding of the lexi-cal representations induced by latent-class label-ing in terms of the linguistic theories mentionedabove, aiming at an interpretation which com-bines computational learnability, linguistic mo-tivation, and denotational-semantic adequacy.The basic idea is that latent classes are compu-tational models of the atomic relation symbolsoccurring in lexical-semantic representations. Asa �rst implementation, consider replacing the re-lation symbols in the �rst tree in Fig. 11 withrelation symbols derived from the latent class la-beling. In the second tree in Fig 11, R17 and R8are relation symbols with indices derived fromthe labeling procedure of Sect. 4. Such represen-tations can be semantically interpreted in stan-dard ways, for instance by interpreting relationsymbols as denoting relations between eventsand individuals.Such representations are semantically inad-equate for reasons given in philosophical cri-tiques of decomposed linguistic representations;see Fodor (1998) for recent discussion. A lex-icon estimated in the above way has as many

primitive relations as there are latent classes. Weguess there should be a few hundred classes in anapproximately complete lexicon (which wouldhave to be estimated from a corpus of hun-dreds of millions of words or more). Fodor's ar-guments, which are based on the very limited de-gree of genuine interde�nability of lexical itemsand on Putnam's arguments for contextual de-termination of lexical meaning, indicate that thenumber of basic concepts has the order of mag-nitude of the lexicon itself. More concretely, alexicon constructed along the above principleswould identify verbs which are labelled with thesame latent classes; for instance it might identifythe representations of grab and touch.For these reasons, a semantically adequatelexicon must include additional relational con-stants. We meet this requirement in a simpleway, by including as a conjunct a unique con-stant derived from the open-class root, as inthe third tree in Fig. 11. We introduce index-ing of the open class root (copied from the classindex) in order that homophony of open classroots not result in common conjuncts in seman-tic representations�for instance, we don't wantthe two senses of decline exempli�ed in declinethe proposal and decline �ve percent to have acommon entailment represented by a commonconjunct. This indexing method works as longas the labeling process produces di�erent latentclass labels for the di�erent senses.The last tree in Fig. 11 is the learned represen-tation for the scalar motion sense of the intran-sitive verb increase. In our approach, learningthe argument alternation (diathesis) relating thetransitive increase (in its scalar motion sense)to the intransitive increase (in its scalar motionsense) amounts to learning representations witha common component R17 ^ increase17. In thiscase, this is achieved.6 ConclusionWe have proposed a procedure which mapsobservations of subcategorization frames withtheir complement �llers to structured lexicalentries. We believe the method is scienti�callyinteresting, practically useful, and �exible be-cause:1. The algorithms and implementation are ef-�cient enough to map a corpus of a hundredmillion words to a lexicon.



2. The model and induction algorithm havefoundations in the theory of parameter-ized families of probability distributionsand statistical estimation. As exempli�edin the paper, learning, disambiguation, andevaluation can be given simple, motivatedformulations.3. The derived lexical representations are lin-guistically interpretable. This suggests thepossibility of large-scale modeling and ob-servational experiments bearing on ques-tions arising in linguistic theories of the lex-icon.4. Because a simple probabilistic model isused, the induced lexical entries could beincorporated in lexicalized syntax-basedprobabilistic language models, in particularin head-lexicalized models. This providesfor potential application in many areas.5. The method is applicable to any naturallanguage where text samples of su�cientsize, computational morphology, and a ro-bust parser capable of extracting subcate-gorization frames with their �llers are avail-able.ReferencesLeonard E. Baum, Ted Petrie, George Soules,and Norman Weiss. 1970. A maximiza-tion technique occurring in the statisticalanalysis of probabilistic functions of Markovchains. The Annals of Mathematical Statis-tics, 41(1):164�171.Franz Beil, Glenn Carroll, Detlef Prescher, Ste-fan Riezler, and Mats Rooth. 1999. Inside-outside estimation of a lexicalized PCFG forGerman. In Proceedings of the 37th AnnualMeeting of the Association for ComputationalLinguistics (ACL'99), College Park, MD.Glenn Carroll and Mats Rooth. 1998. Valenceinduction with a head-lexicalized PCFG. InProceedings of EMNLP-3, Granada.Ido Dagan, Lillian Lee, and Fernando Pereira.1998. Similarity-based models of word cooc-currence probabilities. To appear in MachineLearning.A. P. Dempster, N. M. Laird, and D. B. Rubin.1977. Maximum likelihood from incompletedata via the EM algorithm. Journal of theRoyal Statistical Society, 39(B):1�38.
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