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Abney (1997) proposes a Markov RandomField or log linear model for SUBGs, and themodels described here are instances of Ab-ney's general framework. However, the Monte-Carlo parameter estimation procedure that Ab-ney proposes seems to be computationally im-practical for reasonable-sized grammars. Sec-tions 3 and 4 describe two new estimation proce-dures which are computationally tractable. Sec-tion 5 describes an experiment with a small LFGcorpus provided to us by Xerox Parc. The loglinear framework and the estimation proceduresare extremely general, and they apply directlyto stochastic versions of HPSG and other theo-ries of grammar.2 Features in SUBGsWe follow the statistical literature in using theterm feature to refer to the properties that pa-rameters are associated with (we use the word�attribute� to refer to the attributes or featuresof a UBG's feature structure). Let 
 be theset of all possible grammatical or well-formedanalyses. Each feature f maps a syntactic anal-ysis ! 2 
 to a real value f(!). The form ofa syntactic analysis depends on the underlyinglinguistic theory. For example, for a PCFG !would be parse tree, for a LFG ! would be atuple consisting of (at least) a c-structure, an f-structure and a mapping from c-structure nodesto f-structure elements, and for a Chomskyiantransformational grammar ! would be a deriva-tion.Log-linear models are models in which thelog probability is a linear combination of fea-ture values (plus a constant). PCFGs, Gibbsdistributions, Maximum-Entropy distributionsand Markov Random Fields are all examples oflog-linear models. A log-linear model associateseach feature fj with a real-valued parameter �j.



A log-linear model with m features is one inwhich the likelihood P(!) of an analysis ! is:P�(!) = 1Z� ePj=1;:::;m �jfj(!)Z� = X!02
 ePj=1;:::;m �jfj(!0)While the estimators described below makeno assumptions about the range of the fi, in themodels considered here the value of each fea-ture fi(!) is the number of times a particularstructural arrangement or con�guration occursin the analysis !, so fi(!) ranges over the nat-ural numbers.For example, the features of a PCFG areindexed by productions, i.e., the value fi(!)of feature fi is the number of times the ithproduction is used in the derivation !. Thisset of features induces a tree-structured de-pendency graph on the productions which ischaracteristic of Markov Branching Processes(Pearl, 1988; Frey, 1998). This tree struc-ture has the important consequence that simple�relative-frequencies� yield maximum-likelihoodestimates for the �i.Extending a PCFG model by adding addi-tional features not associated with productionswill in general add additional dependencies, de-stroy the tree structure, and substantially com-plicate maximum likelihood estimation.This is the situation for a SUBG, even if thefeatures are production occurences. The uni-�cation constraints create non-local dependen-cies among the productions and the dependencygraph of a SUBG is usually not a tree. Con-sequently, maximum likelihood estimation is nolonger a simple matter of computing relative fre-quencies. But the resulting estimation proce-dures (discussed in detail, shortly), albeit morecomplicated, have the virtue of applying to es-sentially arbitrary features�of the productionor non-production type. That is, since estima-tors capable of �nding maximum-likelihood pa-rameter estimates for production features in aSUBG will also �nd maximum-likelihood esti-mates for non-production features, there is nomotivation for restricting features to be of theproduction type.Linguistically there is no particular reasonfor assuming that productions are the best fea-tures to use in a stochastic language model.

For example, the adjunct attachment ambigu-ity in (1) results in alternative syntactic struc-tures which use the same productions the samenumber of times in each derivation, so a modelwith only production features would necessarilyassign them the same likelihood. Thus modelsthat use production features alone predict thatthere should not be a systematic preference forone of these analyses over the other, contrary tostandard psycholinguistic results.1.a Bill thought Hillary [VP[VP left ] yesterday ]1.b Bill [VP[VP thought Hillary left ] yesterday ]There are many di�erent ways of choosing fea-tures for a SUBG, and each of these choicesmakes an empirical claim about possible distri-butions of sentences. Specifying the features of aSUBG is as much an empirical matter as speci-fying the grammar itself. For any given UBGthere are a large (usually in�nite) number ofSUBGs that can be constructed from it, di�er-ing only in the features that each SUBG uses.In addition to production features, thestochastic LFG models evaluated below used thefollowing kinds of features, guided by the prin-ciples proposed by Hobbs and Bear (1995). Ad-junct and argument features indicate adjunctand argument attachment respectively, and per-mit the model to capture a general argumentattachment preference. In addition, there arespecialized adjunct and argument features cor-responding to each grammatical function usedin LFG (e.g., SUBJ, OBJ, COMP, XCOMP,ADJUNCT, etc.). There are features indi-cating both high and low attachment (deter-mined by the complexity of the phrase beingattached to). Another feature indicates non-right-branching nonterminal nodes. There isa feature for non-parallel coordinate structures(where parallelism is measured in constituentstructure terms). Each f-structure attribute-atomic value pair which appears in any featurestructure is also used as a feature. We also usea number of features identifying syntactic struc-tures that seem particularly important in thesecorpora, such as a feature identifying NPs thatare dates (it seems that date interpretations ofNPs are preferred). We would have liked tohave included features concerning speci�c lex-ical items (to capture head-to-head dependen-cies), but we felt that our corpora were so small



that the associated parameters could not be ac-curately estimated.3 A pseudo-likelihood estimator forlog linear modelsSuppose e! = !1; : : : ; !n is a training cor-pus of n syntactic analyses. Letting fj(e!) =Pi=1;:::;n fj(!i), the log likelihood of the corpuse! and its derivatives are:log L�(e!) = Xj=1;:::;m �jfj(e!)� n logZ� (2)@ log L�(e!)@�j = fj(e!)� nE�(fj) (3)where E�(fj) is the expected value of fj underthe distribution determined by the parameters�. The maximum-likelihood estimates are the �which maximize log L�(e!). The chief di�cultyin �nding the maximum-likelihood estimates iscalculating E�(fj), which involves summing overthe space of well-formed syntactic structures 
.There seems to be no analytic or e�cient nu-merical way of doing this for a realistic SUBG.Abney (1997) proposes a gradient ascent,based upon a Monte Carlo procedure for esti-mating E�(fj). The idea is to generate randomsamples of feature structures from the distribu-tion P�̂(!), where �̂ is the current parameterestimate, and to use these to estimate E�̂(fj),and hence the gradient of the likelihood. Sam-ples are generated as follows: Given a SUBG,Abney constructs a covering PCFG based uponthe SUBG and �̂, the current estimate of �. Thederivation trees of the PCFG can be mappedonto a set containing all of the SUBG's syn-tactic analyses. Monte Carlo samples from thePCFG are comparatively easy to generate, andsample syntactic analyses that do not map towell-formed SUBG syntactic structures are thensimply discarded. This generates a stream ofsyntactic structures, but not distributed accord-ing to P�̂(!) (distributed instead according tothe restriction of the PCFG to the SUBG). Ab-ney proposes using a Metropolis acceptance-rejection method to adjust the distribution ofthis stream of feature structures to achieve de-tailed balance, which then produces a streamof feature structures distributed according toP�̂(!).While this scheme is theoretically sound, itwould appear to be computationally impracti-

cal for realistic SUBGs. Every step of the pro-posed procedure (corresponding to a single stepof gradient ascent) requires a very large numberof PCFG samples: samples must be found thatcorrespond to well-formed SUBGs; many suchsamples are required to bring the Metropolisalgorithm to (near) equilibrium; many samplesare needed at equilibrium to properly estimateE�̂(fj).The idea of a gradient ascent of the likelihood(2) is appealing�a simple calculation revealsthat the likelihood is concave and therefore freeof local maxima. But the gradient (in partic-ular, E�(fj)) is intractable. This motivates analternative strategy involving a data-based esti-mate of E�(fj):E�(fj) = E�(E�(fj(!)jy(!))) (4)� 1n Xi=1;:::;nE�(fj(!)jy(!) = yi)(5)where y(!) is the yield belonging to the syn-tactic analysis !, and yi = y(!i) is the yieldbelonging to the i'th sample in the training cor-pus.The point is that E�(fj(!)jy(!) = yi) is gen-erally computable. In fact, if 
(y) is the set ofwell-formed syntactic structures that have yieldy (i.e., the set of possible parses of the string y),then E�(fj(!)jy(!) = yi) =P!02
(yi) fj(!0)ePk=1;:::;m �kfk(!0)P!02
(yi) ePk=1;:::;m �kfk(!0)Hence the calculation of the conditional expec-tations only involves summing over the possiblesyntactic analyses or parses 
(yi) of the stringsin the training corpus. While it is possible toconstruct UBGs for which the number of pos-sible parses is unmanageably high, for manygrammars it is quite manageable to enumeratethe set of possible parses and thereby directlyevaluate E�(fj(!)jy(!) = yi).Therefore, we propose replacing the gradient,(3), byfj(e!)� Xi=1;:::;nE�(fj(!)jy(!) = yi) (6)and performing a gradient ascent. Of course (6)is no longer the gradient of the likelihood func-



tion, but fortunately it is (exactly) the gradientof (the log of) another criterion:PL�(e!) = Yi=1;:::;nP�(! = !ijy(!) = yi) (7)Instead of maximizing the likelihood of the syn-tactic analyses over the training corpus, we max-imize the conditional likelihood of these anal-yses given the observed yields. In our experi-ments, we have used a conjugate-gradient op-timization program adapted from the one pre-sented in Press et al. (1992).Regardless of the pragmatic (computational)motivation, one could perhaps argue that theconditional probabilities P�(!jy) are as useful (ifnot more useful) as the full probabilities P�(!),at least in those cases for which the ultimategoal is syntactic analysis. Berger et al. (1996)and Jelinek (1997) make this same point andarrive at the same estimator, albeit through amaximum entropy argument.The problem of estimating parameters for log-linear models is not new. It is especially di�-cult in cases, such as ours, where a large sam-ple space makes the direct computation of ex-pectations infeasible. Many applications in spa-tial statistics, involving Markov random �elds(MRF), are of this nature as well. In hisseminal development of the MRF approach tospatial statistics, Besag introduced a �pseudo-likelihood� estimator to address these di�cul-ties (Besag, 1974; Besag, 1975), and in fact ourproposal here is an instance of his method. Ingeneral, the likelihood function is replaced by amore manageable product of conditional likeli-hoods (a pseudo-likelihood�hence the designa-tion PL�), which is then optimized over the pa-rameter vector, instead of the likelihood itself.In many cases, as in our case here, this sub-stitution side steps much of the computationalburden without sacri�cing consistency (more onthis shortly).What are the asymptotics of optimizing apseudo-likelihood function? Look �rst at thelikelihood itself. For large n:1n log L�(e!) = 1n log Yi=1;:::;nP�(!i)= 1n Xi=1;:::;n log P�(!i)

� Z P�o(!) log P�(!)d! (8)where �o is the true (and unknown) parame-ter vector. Up to a constant, (8) is the nega-tive of the Kullback-Leibler divergence betweenthe true and estimated distributions of syntac-tic analyses. As sample size grows, maximizinglikelihood amounts to minimizing divergence.As for pseudo-likelihood:1n log PL�(e!) = 1n log Yi=1;:::;nP�(! = !ijy(!) = yi)= 1n Xi=1;:::;n log P�(! = !ijy(!) = yi)� E�o [Z P�o(!jy) log P�(!jy)d!]So that maximizing pseudo-likelihood (at largesamples) amounts to minimizing the average(over yields) divergence between the true andestimated conditional distributions of analysesgiven yields.Maximum likelihood estimation is consistent:under broad conditions the sequence of dis-tributions P�̂n , associated with the maximumlikelihood estimator for �o given the samples!1; : : : !n, converges to P�o. Pseudo-likelihood isalso consistent, but in the present implementa-tion it is consistent for the conditional distribu-tions P�o(!jy(!)) and not necessarily for the fulldistribution P�o (see Chi (1998)). It is not hardto see that pseudo-likelihood will not always cor-rectly estimate P�o . Suppose there is a feature fiwhich depends only on yields: fi(!) = fi(y(!)).(Later we will refer to such features as pseudo-constant.) In this case, the derivative of PL�(e!)with respect to �i is zero; PL�(e!) contains noinformation about �i. In fact, in this case anyvalue of �i gives the same conditional distribu-tion P�(!jy(!)); �i is irrelevant to the problemof choosing good parses.Despite the assurance of consistency, pseudo-likelihood estimation is prone to over �ttingwhen a large number of features is matchedagainst a modest-sized training corpus. Oneparticularly troublesome manifestation of over�tting results from the existence of featureswhich, relative to the training set, we mightterm �pseudo-maximal�: Let us say that a fea-ture f is pseudo-maximal for a yield y i� 8!0 2
(y) f(!) � f(!0) where ! is any correct parse



of y, i.e., the feature's value on every correctparse ! of y is greater than or equal to its valueon any other parse of y. Pseudo-minimal fea-tures are de�ned similarly. It is easy to see thatif fj is pseudo-maximal on each sentence of thetraining corpus then the parameter assignment�j =1maximizes the corpus pseudo-likelihood.(Similarly, the assignment �j = �1 maximizespseudo-likelihood if fj is pseudo-minimal overthe training corpus). Such in�nite parametervalues indicate that the model treats pseudo-maximal features categorically; i.e., any parsewith a non-maximal feature value is assigned azero conditional probability.Of course, a feature which is pseudo-maximalover the training corpus is not necessarilypseudo-maximal for all yields. This is an in-stance of over �tting, and it can be addressed,as is customary, by adding a regularization termthat promotes small values of � to the objectivefunction. A common choice is to add a quadraticto the log-likelihood, which corresponds to mul-tiplying the likelihood itself by a normal dis-tribution. In our experiments, we multipliedthe pseudo-likelihood by a zero-mean normal in�1; : : : �m, with diagonal covariance, and withstandard deviation �j for �j equal to 7 times themaximum value of fj found in any parse in thetraining corpus. (We experimented with othervalues for �j , but the choice seems to have lit-tle e�ect). Thus instead of maximizing the logpseudo-likelihood, we choose �̂ to maximizelog PL�(e!)� Xj=1;:::;m �2j2�2j (9)4 A maximum correct estimator forlog linear modelsThe pseudo-likelihood estimator described inthe last section �nds parameter values whichmaximize the conditional probabilities of the ob-served parses (syntactic analyses) given the ob-served sentences (yields) in the training corpus.One of the empirical evaluation measures we usein the next section measures the number of cor-rect parses selected from the set of all possibleparses. This suggests another possible objec-tive function: choose �̂ to maximize the numberC�(e!) of times the maximum likelihood parse(under �) is in fact the correct parse, in thetraining corpus.

C�(e!) is a highly discontinuous function of �,and most conventional optimization algorithmsperform poorly on it. We had the most suc-cess with a slightly modi�ed version of the sim-ulated annealing optimizer described in Presset al. (1992). This procedure is much more com-putationally intensive than the gradient-basedpseudo-likelihood procedure. Its computationaldi�culty grows (and the quality of solutions de-grade) rapidly with the number of features.5 Empirical evaluationRon Kaplan and Hadar Shemtov at XeroxParc provided us with two LFG parsed cor-pora. The Verbmobil corpus contains appoint-ment planning dialogs, while the Homecentrecorpus is drawn from Xerox printer documen-tation. Table 1 summarizes the basic propertiesof these corpora. These corpora contain packedc/f-structure representations (Maxwell III andKaplan, 1995) of the grammatical parses ofeach sentence with respect to Lexical-Functionalgrammars. The corpora also indicate which ofthese parses is in fact the correct parse (thisinformation was manually entered). Becauseslightly di�erent grammars were used for eachcorpus we chose not to combine the two corpora,although we used the set of features described insection 2 for both in the experiments describedbelow. Table 2 describes the properties of thefeatures used for each corpus.In addition to the two estimators describedabove we also present results from a baseline es-timator in which all parses are treated as equallylikely (this corresponds to setting all the param-eters �j to zero).We evaluated our estimators using held-outtest corpus e!test. We used two evaluationmeasures. In an actual parsing application aSUBG might be used to identify the correctparse from the set of grammatical parses, soour �rst evaluation measure counts the numberC�̂(e!test) of sentences in the test corpus e!testwhose maximum likelihood parse under the es-timated model �̂ is actually the correct parse.If a sentence has l most likely parses (i.e., alll parses have the same conditional probability)and one of these parses is the correct parse, thenwe score 1=l for this sentence.The second evaluation measure is the pseudo-likelihood itself, PL�̂(e!test). The pseudo-



Verbmobil corpus Homecentre corpusNumber of sentences 540 980Number of ambiguous sentences 314 481Number of parses of ambiguous sentences 3245 3169Table 1: Properties of the two corpora used to evaluate the estimators.Verbmobil corpus Homecentre corpusNumber of features 191 227Number of rule features 59 57Number of pseudo-constant features 19 41Number of pseudo-maximal features 12 4Number of pseudo-minimal features 8 5Table 2: Properties of the features used in the stochastic LFG models. The numbers of pseudo-maximal and pseudo-minimal features do not include pseudo-constant features.likelihood of the test corpus is the likelihood ofthe correct parses given their yields, so pseudo-likelihood measures how much of the probabil-ity mass the model puts onto the correct anal-yses. This metric seems more relevant to ap-plications where the system needs to estimatehow likely it is that the correct analysis lies ina certain set of possible parses; e.g., ambiguity-preserving translation and human-assisted dis-ambiguation. To make the numbers more man-ageable, we actually present the negative loga-rithm of the pseudo-likelihood rather than thepseudo-likelihood itself�so smaller is better.Because of the small size of our corpora weevaluated our estimators using a 10-way cross-validation paradigm. We randomly assignedsentences of each corpus into 10 approximatelyequal-sized subcorpora, each of which was usedin turn as the test corpus. We evaluated on eachsubcorpus the parameters that were estimatedfrom the 9 remaining subcorpora that served asthe training corpus for this run. The evalua-tion scores from each subcorpus were summedin order to provide the scores presented here.Table 3 presents the results of the empiri-cal evaluation. The superior performance ofboth estimators on the Verbmobil corpus prob-ably re�ects the fact that the non-rule fea-tures were designed to match both the gram-mar and content of that corpus. The pseudo-likelihood estimator performed better than thecorrect-parses estimator on both corpora un-der both evaluation metrics. There seems to

be substantial over learning in all these mod-els; we routinely improved performance by dis-carding features. With a small number offeatures the correct-parses estimator typicallyscores better than the pseudo-likelihood estima-tor on the correct-parses evaluation metric, butthe pseudo-likelihood estimator always scoresbetter on the pseudo-likelihood evaluation met-ric.6 ConclusionThis paper described a log-linear model forSUBGs and evaluated two estimators for suchmodels. Because estimators that can estimaterule features for SUBGs can also estimate otherkinds of features, there is no particular reason tolimit attention to rule features in a SUBG. In-deed, the number and choice of features stronglyin�uences the performance of the model. Theestimated models are able to identify the correctparse from the set of all possible parses approx-imately 50% of the time.We would have liked to introduce featurescorresponding to dependencies between lexicalitems. Log-linear models are well-suited for lex-ical dependencies, but because of the large num-ber of such dependencies substantially largercorpora will probably be needed to estimatesuch models.11Alternatively, it may be possible to use a simplernon-SUBG model of lexical dependencies estimated froma much larger corpus as the reference distribution withrespect to which the SUBGmodel is de�ned, as described



Verbmobil corpus Homecentre corpusC(e!test) � log PL(e!test) C(e!test) � log PL(e!test)Baseline estimator 9.7% 533 15.2% 655Pseudo-likelihood estimator 58.7% 396 58.8% 583Correct-parses estimator 53.7% 469 53.2% 604Table 3: An empirical evaluation of the estimators. C(e!test) is the number of maximum likelihoodparses of the test corpus that were the correct parses, and � log PL(e!test) is the negative logarithmof the pseudo-likelihood of the test corpus.However, there may be applications which canbene�t from a model that performs even at thislevel. For example, in a machine-assisted trans-lation system a model like ours could be used toorder possible translations so that more likely al-ternatives are presented before less likely ones.In the ambiguity-preserving translation frame-work, a model like this one could be used tochoose between sets of analyses whose ambigui-ties cannot be preserved in translation.ReferencesSteven P. Abney. 1997. Stochastic Attribute-Value Grammars. Computational Linguistics,23(4):597�617.Adam L. Berger, Vincent J. Della Pietra, andStephen A. Della Pietra. 1996. A maximumentropy approach to natural language pro-cessing. Computational Linguistics, 22(1):39�71.J. Besag. 1974. Spatial interaction and the sta-tistical analysis of lattice systems (with dis-cussion). Journal of the Royal Statistical So-ciety, Series D, 36:192�236.J. Besag. 1975. Statistical analysis of non-lattice data. The Statistician, 24:179�195.Zhiyi Chi. 1998. Probability Models for ComplexSystems. Ph.D. thesis, Brown University.Brendan J. Frey. 1998. Graphical Models forMachine Learning and Digital Communica-tion. The MIT Press, Cambridge, Mas-sachusetts.Jerry R. Hobbs and John Bear. 1995. Two prin-ciples of parse preference. In Antonio Zam-polli, Nicoletta Calzolari, and Martha Palmer,editors, Linguistica Computazionale: CurrentIssues in Computational Linguistics: In Hon-our of Don Walker, pages 503�512. Kluwer.in Jelinek (1997).
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