
In Proceedings of the 37th Annual Meeting of the ACL, 1999, College Park, MD.Inside-Outside Estimation of a Lexicalized PCFG for GermanFranz Beil, Glenn Carroll, Detlef Prescher, Stefan Riezler and Mats RoothInstitut für Maschinelle Sprachverarbeitung, University of StuttgartAbstractThe paper describes an extensive experiment ininside-outside estimation of a lexicalized proba-bilistic context free grammar for German verb-�nal clauses. Grammar and formalism featureswhich make the experiment feasible are de-scribed. Successive models are evaluated on pre-cision and recall of phrase markup.1 IntroductionCharniak (1995) and Carroll and Rooth (1998)present head-lexicalized probabilistic contextfree grammar formalisms, and show that theycan e�ectively be applied in inside-outside es-timation of syntactic language models for En-glish, the parameterization of which encodeslexicalized rule probabilities and syntacticallyconditioned word-word bigram collocates. Thepresent paper describes an experiment where aslightly modi�ed version of Carroll and Rooth'smodel was applied in a systematic experimenton German, which is a language with rich in-�ectional morphology and free word order (orrather, compared to English, free-er phrase or-der). We emphasize techniques which made itpractical to apply inside-outside estimation ofa lexicalized context free grammar to such alanguage. These techniques relate to the treat-ment of argument cancellation and scrambledphrase order; to the treatment of case features incategory labels; to the category vocabulary fornouns, articles, adjectives and their projections;to lexicalization based on unin�ected lemmatarather than word forms; and to exploitation ofa parameter-tying feature.2 Corpus and morphologyThe data for the experiment is a corpus of Ger-man subordinate clauses extracted by regularexpression matching from a 200 million tokennewspaper corpus. The clause length ranges be-tween four and 12 words. Apart from in�niti-val VPs as verbal arguments, there are no fur-ther clausal embeddings, and the clauses do

analyze> Deutsche1. deutsch^ADJ.Pos+NN.Fem.Akk.Sg2. deutsch^ADJ.Pos+NN.Fem.Nom.Sg3. deutsch^ADJ.Pos+NN.Masc.Nom.Sg.Sw4. deutsch^ADJ.Pos+NN.Neut.Akk.Sg.Sw5. deutsch^ADJ.Pos+NN.Neut.Nom.Sg.Sw6. deutsch^ADJ.Pos+NN.NoGend.Akk.Pl.St7. deutsch^ADJ.Pos+NN.NoGend.Nom.Pl.St8. *deutsch+ADJ.Pos.Fem.Akk.Sg9. *deutsch+ADJ.Pos.Fem.Nom.Sg10. *deutsch+ADJ.Pos.Masc.Nom.Sg.Sw11. *deutsch+ADJ.Pos.Neut.Akk.Sg.Sw12. *deutsch+ADJ.Pos.Neut.Nom.Sg.Sw13. *deutsch+ADJ.Pos.NoGend.Akk.Pl.St14. *deutsch+ADJ.Pos.NoGend.Nom.Pl.St==> Deutsche { ADJ.E, NNADJ.E }Figure 1: Collapsing In�ectional Featuresnot contain any punctuation except for a ter-minal period. The corpus contains 4128873 to-kens and 450526 clauses which yields an averageof 9.16456 tokens per clause. Tokens are auto-matically annotated with a list of part-of-speech(PoS) tags using a computational morpholog-ical analyser based on �nite-state technology(Karttunen et al. (1994), Schiller and Stöckert(1995)).A problem for practical inside-outside esti-mation of an in�ectional language like Germanarises with the large number of terminal andlow-level non-terminal categories in the gram-mar resulting from the morpho-syntactic fea-tures of words. Apart from major class (noun,adjective, and so forth) the analyser provides anambiguous word with a list of possible combina-tions of in�ectional features like gender, person,number (cf. the top part of Fig. 1 for an exam-ple ambiguous between nominal and adjectivalPoS; the PoS is indicated following the '+' sign).In order to reduce the number of parametersto be estimated, and to reduce the size of the



während { ADJ.Adv, ADJ.Pred, KOUS,APPR.Dat, APPR.Gen }sich { PRF.Z }das { DEMS.Z, ART.Def.Z }Preisniveau { NN.Neut.NotGen.Sg }dem { DEMS.M, ART.Def.M }westdeutschen { ADJ.N }annähere { VVFIN }. { PER }Figure 2: Corpus Clipparse forest used in inside-outside estimation,we collapsed the in�ectional readings of adjec-tives, adjective derived nouns, article words, andpronouns to a single morphological feature (seeof Fig. 1 for an example). This reduced the num-ber of low-level categories, as exempli�ed in Fig.2: das has one reading as an article and one asa demonstrative; westdeutschen has one readingas an adjective, with its morphological featureN indicating the in�ectional su�x.We use the special tag UNTAGGED indicatingthat the analyser fails to provide a tag for theword. The vast majority of UNTAGGED words areproper names not recognized as such. Thesegaps in the morphology have little e�ect on ourexperiment.3 GrammarThe grammar is a manually developed headedcontext-free phrase structure grammar for Ger-man subordinate clauses with 5508 rules and562 categories, 209 of which are terminal cat-egories. The formalism is that of Carroll andRooth (1998), henceforth C+R:mother -> non-heads head' non-heads (freq)The rules are head marked with a prime. Thenon-head sequences may be empty. freq is arule frequency, which is initialized randomly andsubsequently estimated by the inside outside-algorithm. To handle systematic patterns re-lated to features, rules were generated by Lispfunctions, rather than being written directly inthe above form. With very few exceptions (rulesfor coordination, S-rule), the rules do not havemore than two daughters.Grammar development is facilitated by achart browser that permits a quick and e�cientdiscovery of grammar bugs (Carroll, 1997a). Fig.3 shows that the ambiguity in the chart is quite

considerable even though grammar and corpusare restricted. For the entire corpus, we com-puted an average 9202 trees per clause. In thechart browser, the categories �lling the cells in-dicate the most probable category for that spanwith their estimated frequencies. The pop-upwindow under IP presents the ranked list of allpossible categories for the covered span. Rules(chart edges) with frequencies can be viewedwith a further menu. In the chart browser, colorsare used to display frequencies (between 0 and 1)estimated by the inside-outside algorithm. Thisallows properties shared across tree analyses tobe checked at a glance; often grammar and es-timation bugs can be detected without mouseoperations.The grammar covers 88.5% of the clauses and87.9% of the tokens contained in the corpus.Parsing failures are mainly due to UNTAGGEDwords contained in 6.6% of the failed clauses,the pollution of the corpus by in�nitival con-structions (�1.3%), and a number of coordina-tions not covered by the grammar (�1.6%).3.1 Case features and agreementOn nominal categories, in addition to the fourcases Nom, Gen, Dat, and Akk, case featureswith a disjunctive interpretation (such as Dirfor Nom or Akk) are used. The grammar is writ-ten in such a way that non-disjunctive featuresare introduced high up in the tree. This resultsin some reduction in the size of the parse forest,and some parameter pooling. Essentially the fullrange of agreement inside the noun phrase is en-forced. Agreement between the nominative NPand the tensed verb (e.g. in number) is not en-forced by the grammar, in order to control thenumber of parameters and rules.For noun phrases we employ Abney's chunkgrammar organization (Abney, 1996). The nounchunk (NC) is an approximately non-recursiveprojection that excludes post-head complementsand (adverbial) adjuncts introduced higher thanpre-head modi�ers and determiners but in-cludes participial pre-modi�ers with their com-plements. Since we perform complete contextfree parsing, parse forest construction, andinside-outside estimation, chunks are not moti-vated by deterministic parsing. Rather, they fa-cilitate evaluation and graphical debugging, bytending to increase the span of constituents withhigh estimated frequency.



Figure 3: Chart browserWord-by-word gloss of the clause:'that Sarajevo over the airport with the essentials supplied will can'class # frame typesVPA 15 n, na, nad, nai, nap, nar, nd, ndi,ndp, ndr, ni, nir, np, npr, nrVPP 13 d, di, dp, dr, i, ir, n, nd, ni, np, p,pr, rVPI 10 a, ad, ap, ar, d, dp, dr, p, pr, rVPK 2 i, nFigure 4: Number and types of verb frames3.2 Subcategorisation frames of verbsThe grammar distinguishes four subcategorisa-tion frame classes: active (VPA), passive (VPP),in�nitival (VPI) frames, and copula construc-tions (VPK). A frame may have maximally threearguments. Possible arguments in the frames arenominative (n), dative (d) and accusative (a)NPs, re�exive pronouns (r), PPs (p), and in�ni-tival VPs (i). The grammar does not distinguishplain in�nitival VPs from zu-in�nitival VPs. Thegrammar is designed to partially distinguish dif-ferent PP frames relative to the prepositionalhead of the PP. A distinct category for the spe-ci�c preposition becomes visible only when asubcategorized preposition is cancelled from thesubcat list. This means that speci�c prepositionsdo not �gure in the evaluation discussed below.The number and the types of frames in the dif-ferent frame classes are given in �gure 4.German, being a language with comparativelyfree phrase order, allows for scrambling of ar-guments. Scrambling is re�ected in the particu-

VPA.na.naNP.Nom VPA.na.aNP.Akk VPA.na VPA.na.naNP.Akk VPA.na.nNP.Nom VPA.naFigure 5: Coding of canonical and scrambled ar-gument orderlar sequence in which the arguments of the verbframe are saturated. Compare �gure 5 for an ex-ample of a canonical subject-object order in anactive transitive frame and its scrambled object-subject order. The possibility of scrambling verbarguments yields a substantial increase in thenumber of rules in the grammar (e.g. 102 com-binatorically possible argument rules for all inVPA frames). Adverbs and non-subcategorizedPPs are introduced as adjuncts to VP categorieswhich do not saturate positions in the subcatframe.In earlier experiments, we employed a �atclausal structure, with rules for all permutationsof complements. As the number of frames in-creased, this produced prohibitively many rules,particularly with the inclusion of adjuncts.4 ParametersThe parameterization is as in C+R, with onesigni�cant modi�cation. Parameters consist of(i) rule parameters, corresponding to right hand



sides conditioned by parent category and par-ent head; (ii) lexical choice parameters for non-head children, corresponding to child lemmaconditioned by child category, parent category,and parent head lemma. See C+R or Charniak(1995) for an explanation of how such parame-ters de�ne a probabilistic weighting of trees. Thechange relative to C+R is that lexicalization isby unin�ected lemma rather than word form.This reduces the number of lexical parameters,giving more acceptable model sizes and elimi-nating splitting of estimated frequencies amongin�ectional forms. In�ected forms are generatedat the leaves of the tree, conditioned on termi-nal category and lemma. This results in a thirdfamily of parameters, though usually the choiceof in�ected form is deterministic.A parameter pooling feature is used for argu-ment �lling where all parent categories of theform VP.x.y are mapped to a category VP.x inde�ning lexical choice parameters. The conse-quence is e.g. that an accusative daughter of anominative-accusative verb uses the same lexicalchoice parameter, whether a default or scram-bled word order is used. (This feature was usedby C+R for their phrase trigram grammar, notin the linguistic part of their grammar.) Not alldesirable parameter pooling can be expressed inthis way, though; for instance rule parametersare not pooled, and so get split when the parentcategory bears an in�ectional feature.5 EstimationThe training of our probabilistic CFG proceedsin three steps: (i) unlexicalized training withthe supar parser, (ii) bootstrapping a lexical-ized model from the trained unlexicalized onewith the ultra parser, and �nally (iii) lexical-ized training with the hypar parser (Carroll,1997b). Each of the three parsers uses the inside-outside algorithm. supar and ultra use an un-lexicalized weighting of trees, while hypar uses alexicalized weighting of trees. ultra and hyparboth collect frequencies for lexicalized rule andlexical choice events, while supar collects onlyunlexicalized rule frequencies.Our experiments have shown that training anunlexicalized model �rst is worth the e�ort. De-spite our use of a manually developed grammarthat does not have to be pruned of super�uousrules like an automatically generated grammar,

A1: 52.01992: 25.36523: 24.5905... ...13: 24.287214: 24.286315: 24.286116: 24.286117: 24.2867
B1: 53.76542: 26.31843: 25.5035... ...55: 25.054856: 25.054957: 25.054958: 25.054959: 25.055

C1: 49.81652: 23.10083: 22.4479... ...70: 22.144580: 22.144390: 22.144395: 22.144396: 22.1444Figure 6: Overtraining (iteration: cross-entropyon heldout data)the lexicalized model is notably better whenpreceded by unlexicalized training (see also Er-san and Charniak (1995) for related observa-tions). A comparison of immediate lexicalizedtraining (without prior training of an unlexical-ized model) and our standard training regimethat involves preliminary unlexicalized trainingspeaks in favor of our strategy (cf. the di�er-ent 'lex 0' and 'lex 2' curves in �gures 8 and 9).However, the amount of unlexicalized traininghas to be controlled in some way.A standard criterion to measure overtrainingis to compare log-likelihood values on held-outdata of subsequent iterations. While the log-likelihood value of the training data is theo-retically guaranteed to converge through sub-sequent iterations, a decreasing log-likelihoodvalue of the held-out data indicates over-training. Instead of log-likelihood, we use theinversely proportional cross-entropy measure.Fig. 6 shows comparisons of di�erent sizes oftraining and heldout data (training/heldout):(A) 50k/50k, (B) 500k/500k, (C) 4.1M/500k.The overtraining e�ect is indicated by the in-crease in cross-entropy from the penultimate tothe ultimate iteration in the tables. Overtrainingresults for lexicalized models are not yet avail-able.However, a comparison of precision/recallmeasures on categories of di�erent complexitythrough iterative unlexicalized training showsthat the mathematical criterion for overtrainingmay lead to bad results from a linguistic pointof view. While we observed more or less con-verging precision/recall measures for lower levelstructures such as noun chunks, iterative unlexi-calized training up to the overtraining thresholdturned out to be disastrous for the evaluation ofcomplex categories that depend on almost the



Figure 7: Chart browser for manual NC labellingentire span of the clause. The recognition of sub-categorization frames through 60 iterations ofunlexicalized training shows a massive decreasein precision/recall from the best to the last iter-ation, even dropping below the results with therandomly initialized grammar (see Fig. 9).5.1 Training regimeWe compared lexicalized training with respectto di�erent starting points: a random unlexi-calized model, the trained unlexicalized modelwith the best precision/recall results, and an un-lexicalized model that comes close to the cross-entropy overtraining threshold. The details ofthe training steps are as follows:(1) 0, 2 and 60 iterations of unlexicalized pars-ing with supar;(2) lexicalization with ultra using the entirecorpus;(3) 23 iterations of lexicalized parsing withhypar.The training was done on four machines (two167 MHz UltraSPARC and two 296 MHz SUNWUltraSPARC-II). Using the grammar describedhere, one iteration of supar on the entire corpustakes about 2.5 hours, lexicalization and gen-erating an initial lexicalized model takes morethan six hours, and an iteration of lexicalizedparsing can be done in 5.5 hours.6 EvaluationFor the evaluation, a total of 600 randomly se-lected clauses were manually annotated by two

labellers. Using a chart browser, the labellers�lled the appropriate cells with category namesof NCs and those of maximal VP projections(cf. Figure 7 for an example of NC-labelling).Subsequent alignment of the labellers decisionsresulted in a total of 1353 labelled NC categories(with four di�erent cases). The total of 584 la-belled VP categories subdivides into 21 di�er-ent verb frames with 340 di�erent lemma heads.The dominant frames are active transitive (164occurrences) and active intransitive (117 occur-rences). They represent almost half of the an-notated frames. Thirteen frames occur less thanten times, �ve of which just once.6.1 MethodologyTo evaluate iterative training, we extractedmaximum probability (Viterbi) trees for the 600clause test set in each iteration of parsing. Forextraction of a maximal probability parse inunlexicalized training, we used Schmid's loparparser (Schmid, 1999). Trees were mapped toa database of parser generated markup guesses,and we measured precision and recall againstthe manually annotated category names andspans. Precision gives the ratio of correct guessesover all guesses, and recall the ratio of correctguesses over the number of phrases identi�ed byhuman annotators. Here, we render only the pre-cision/recall results on pairs of category namesand spans, neglecting less interesting measureson spans alone. For the �gures of adjusted re-call, the number of unparsed misses has beensubtracted from the number of possibilities.
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recall lex 60Figure 8: Precision/recall measures on NC casesIn the following, we focus on the combinationof the best unlexicalized model and the lexical-ized model that is grounded on the former.6.2 NC EvaluationFigure 8 plots precision/recall for the trainingruns described in section 5.1, with lexicalizedparsing starting after 0, 2, or 60 unlexicalized it-erations. The best results are achieved by start-ing with lexicalized training after two iterationsof unlexicalized training. Of a total of 1353 an-notated NCs with case, 1103 are correctly recog-nized in the best unlexicalized model and 1112in the last lexicalized model. With a numberof 1295 guesses in the unlexicalized and 1288guesses in the �nal lexicalized model, we gain1.2% in precision (85.1% vs. 86.3%) and 0.6%in recall (81.5% vs. 82.1%) through lexicalizedtraining. Adjustment to parsed clauses yields88% vs. 89.2% in recall. As shown in Figure 8,the gain is achieved already within the �rst it-eration; it is equally distributed between correc-tions of category boundaries and labels.The comparatively small gain with lexical-ized training could be viewed as evidence thatthe chunking task is too simple for lexical infor-mation to make a di�erence. However, we �ndabout 7% revised guesses from the unlexicalizedto the �rst lexicalized model. Currently, we donot have a clear picture of the newly introducederrors.The plots labeled �00� are results for lexi-calized training starting from a random initialgrammar. The precision measure of the �rst lex-icalized model falls below that of the unlexi-calized random model (74%), only recoveringthrough lexicalized training to equalize the pre-cision measure of the random model (75.6%).
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Figure 9: Precision measures on all verb framesThis indicates that some degree of unlexicalizedinitialization is necessary, if a good lexicalizedmodel is to be obtained.(Skut and Brants, 1998) report 84.4% recalland 84.2% for NP and PP chunking without caselabels. While these are numbers for a simplerproblem and are slightly below ours, they are�gures for an experiment on unrestricted sen-tences. A genuine comparison has to await ex-tension of our model to free text.6.3 Verb Frame EvaluationFigure 9 gives results for verb frame recogni-tion under the same training conditions. Again,we achieve best results by lexicalising the sec-ond unlexicalized model. Of a total of 584 anno-tated verb frames, 384 are correctly recognizedin the best unlexicalized model and 397 throughsubsequent lexicalized training. Precision for thebest unlexicalized model is 68.4%. This is raisedby 2% to 70.4% through lexicalized training; re-call is 65.7%/68%; adjustment by 41 unparsedmisses makes for 70.4%/72.8% in recall. Therather small improvements are in contrast to88 di�erences in parser markup, i.e. 15.7%, be-tween the unlexicalized and second lexicalizedmodel. The main gain is observed within the�rst two iterations (cf. Figure 9; for readability,we dropped the recall curves when more or lessparallel to the precision curves).Results for lexicalized training without priorunlexicalized training are better than in the NCevaluation, but fall short of our best results bymore than 2%.The most notable observation in verb frameevaluation is the decrease of precision of framerecognition in unlexicalized training from thesecond iteration onward. After several dozen it-
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Figure 10: Precision measures on non-PP frameserations, results are 5% below a random modeland 14% below the best model. The primaryreason for the decrease is the mistaken revi-sion of adjoined PPs to argument PPs. E.g.the required number of 164 transitive framesis missed by 76, while the parser guesses 64VPA.nap frames in the �nal iteration againstthe annotator's baseline of 12. In contrast, lexi-calized training generally stabilizes w.r.t. framerecognition results after only few iterations.The plot labeled �lex 60� gives precision for alexicalized training starting from the unlexical-ized model obtained with 60 iterations, whichmeasured by linguistic criteria is a very poorstate. As far as we know, lexicalized EM esti-mation never recovers from this bad state.6.4 Evaluation of non-PP FramesBecause examination of individual cases showedthat PP attachments are responsible for manyerrors, we did a separate evaluation of non-PPframes. We �ltered out all frames labelled witha PP argument from both the maximal proba-bility parses and the manually annotated frames(91 �ltered frames), measuring precision and re-call against the remaining 493 labeller anno-tated non-PP frames.For the best lexicalized model, we �nd some-what but not excessively better results thanthose of the evaluation of the entire set offrames. Of 527 guessed frames in parser markup,382 are correct, i.e. a precision of 72.5%. Therecall �gure of 77.5% is considerably bettersince overgeneration of 34 guesses is neglected.The di�erences with respect to di�erent start-ing points for lexicalization emulate those in theevaluation of all frames.The rather spectacular looking precision andrecall di�erences in unlexicalized training con-

�rm what was observed for the full frameset. From the �rst trained unlexicalized modelthroughout unlexicalized training, we �nd asteady increase in precision (70% �rst trainedmodel to 78% �nal model) against a sharp dropin recall (78% peek in the second model vs.50% in the �nal). Considering our above re-marks on the di�culties of frame recognitionin unlexicalized training, the sharp drop in re-call is to be expected: Since recall measures thecorrect parser guesses against the annotator'sbaseline, the tendency to favor PP argumentsover PP-adjuncts leads to a loss in guesses whenPP-frames are abandoned. Similarly, the rise inprecision is mainly explained by the decreas-ing number of guesses when cutting out non-PPframes. For further discussion of what happenswith individual frames, we refer the reader to(Beil et al., 1998).One systematic result in these plots is thatperformance of lexicalized training stabilizes af-ter a few iterations. This is consistent withwhat happens with rule parameters for individ-ual verbs, which are close to their �nal valueswithin �ve iterations.7 ConclusionOur principal result is that scrambling-stylefree-er phrase order, case morphology and sub-categorization, and NP-internal gender, num-ber and case agreement can be dealt with ina head-lexicalized PFCG formalism by meansof carefully designed categories and rules whichlimit the size of the packed parse forest and givedesirable pooling of parameters. Hedging this,we point out that we made compromises in thegrammar (notably, in not enforcing nominative-verb agreement) in order to control the numberof categories, rules, and parameters.A second result is that iterative lexicalizedinside-outside estimation appears to be bene-�cial, although the precision/recall incrementsare small. We believe this is the �rst substan-tial investigation of the utility of iterative lexi-calized inside-outside estimation of a lexicalizedprobabilistic grammar involving a carefully builtgrammar where parses can be evaluated by lin-guistic criteria.A third result is that using too many unlexi-calized iterations (more than two) is detrimen-tal. A criterion using cross-entropy overtraining



on held-out data dictates many more unlexical-ized iterations, and this criterion is therefore in-appropriate.Finally, we have clear cases of lexicalizedEM estimation being stuck in linguistically badstates. As far as we know, the model which gavethe best results could also be stuck in a compar-atively bad state. We plan to experiment withother lexicalized training regimes, such as oneswhich alternate between di�erent training cor-pora.The experiments are made possible by im-provements in parser and hardware speeds, thecarefully built grammar, and evaluation tools.In combination, these provide a unique environ-ment for investigating training regimes for lexi-calized PCFGs. Much work remains to be donein this area, and we feel that we are just begin-ning to develop understanding of the time courseof parameter estimation, and of the general e�-cacy of EM estimation of lexicalized PCFGs asevaluated by linguistic criteria.We believe our current grammar of Ger-man could be extended to a robust free-textchunk/phrase grammar in the style of the En-glish grammar of Carroll and Rooth (1998)with about a month's work, and to a free-textgrammar treating verb-second clauses and addi-tional complementation structures (notably ex-traposed clausal complements) with about oneyear of additional grammar development andexperiment. These increments in the grammarcould easily double the number of rules. How-ever this would probably not pose a problem forthe parsing and estimation software.ReferencesSteven Abney. 1996. Chunk stylebook. Techni-cal report, SfS, Universität Tübingen.Franz Beil, Glenn Carroll, Detlef Prescher, Ste-fan Riezler, and Mats Rooth. 1998. Inside-outside estimation of a lexicalized PDFG forGerman. �Gold�. In Inducing Lexicons withthe EM Algorithm, AIMS Report 4(3). IMS,Universität Stuttgart.Glenn Carroll and Mats Rooth. 1998. Valenceinduction with a head-lexicalized PCFG. InProceedings of EMNLP-3, Granada.Glenn Carroll, 1997a. Manual pages for charge,hyparCharge, and tau. IMS, UniversitätStuttgart.
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