
Probabilistic
Constraint Logic
Programming

1999 • VOL. 5 • NO. 1

AIMS
Arbeitspapiere des Instituts für Maschinelle Sprachverarbeitung

Lehrstuhl für Theoretische Computerlinguistik Universität Stuttgart

Stefan Riezler

AIMS 1999 • VOL. 5 • NO. 1 Riezler Probabilistic Constraint Logic Programming

Probabilistic Constraint LogicProgramming

Previous Issues of AIMS:Vol.1 (1) 1994: Wigner Distribution in Speech Research. Master thesis by Wolfgang Wokurek (inGerman), papers by Grzegorz Dogil, Wolfgang Wokurek, and Krysztof Marasek (in English), and abibliography.Vol.2 (1) 1995: Sprachentstörung. Doctoral Dissertation. University of Vienna, 1994 by WolfgangWokurek (in German with abstract in English). Full title: Sprachentstörung unter Verwendung einesLautklassendetektors (Speech enhancement using a sound class detector).Vol.2 (2) 1995:Word Stress. Master thesis by Stefan Rapp (in German) and papers mostly by GrzegorzDogil, Michael Jessen, and Gabriele Scharf (in English).Vol.2 (3) 1995: Language and Speech Pathology. Master theses by Gabriele Scharf and by Jörg Mayer(in German) and papers by Hermann Ackermann, Ingo Hertrich, Jürgen Konczak, and Jörg Mayer(mostly in German).Vol.3 (1) 1997: Tense versus Lax Obstruents in German. Revised and expanded version of Ph.D. Dis-sertation, Cornell University, 1996 by Michael Jessen (in English). Full title: Phonetics and phonologyof the tense and lax obstruents in German.Vol.3 (2) 1997: Electroglottographic Description of Voice Quality. Habilitationsschrift, University ofStuttgart, 1997 by Krysztof Marasek (in English).Vol.3 (3) 1997: Aphasie und Kernbereiche der Grammatiktheorie (Aphasia and core domains in thetheory of grammar). Doctoral Dissertation, University of Stuttgart, 1997 by Annegret Bender (inGerman with abstract in English).Vol.3 (4) 1997: Intonation and Bedeutung (Intonation and meaning). Doctoral Dissertation, Universityof Stuttgart, 1997 by Jörg Mayer (in German with abstract in English).Vol.3 (5) 1997:Koartikulation und glottale Transparenz (Coarticulation and glottal transparency). Doc-toral Dissertation, University of Bielefeld, 1997 by Kerstin Vollmer (in German with abstract in En-glish).Vol.3 (6) 1997: Der TFS-Repräsentationsformalismus und seine Anwendung in der maschinellenSprachverarbeitung (The TFS Representation Formalism and its Application to Natural Language Pro-cessing). Doctoral Dissertation, University of Stuttgart, 1997 by Martin C. Emele (in German).Vol.4 (1) 1998: Automatisierte Erstellung von Korpora für die Prosodieforschung (Automated genera-tion of corpora for prosody research). Doctoral Dissertation, University of Stuttgart, 1998 by StefanRapp (in German with abstract in English).Vol.4 (2) 1998: Theoriebasierte Modellierung der deutschen Intonation für die Sprachsynthese (Theory-based modelling of German intonation for speech synthesis). Doctoral Dissertation, University ofStuttgart, 1998 by Gregor Möhler (in German with abstract in English).Vol.4 (3) 1998: Inducing Lexicons with the EM Algorithm. Papers by Mats Rooth, Stefan Riezler, DetlefPrescher, Sabine Schulte imWalde, Glenn Carroll, and Franz Beil. Chair for Theoretical ComputationalLinguistics, Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart.

Probabilistic Constraint LogicProgrammingFormal Foundations of Quantitative and Statistical Inference inConstraint-Based Natural Language Processing
Stefan Riezler

CIP-Kurztitelaufnahme der Deutschen BibliothekStefan Riezler:Probabilistic Constraint Logic Programming. Formal Foundations of Quantitativeand Statistical Inference in Constraint-Based Natural Language Processing / StefanRiezler - Stuttgart, 1999.AIMS - Arbeitspapiere des Instituts für Maschinelle Sprachverarbeitung, Vol. 5, No.1, 1999, Stuttgart, Germany.ISSN 1434-0763

Copyright c
 by the authorLehrstuhl für Theoretische ComputerlinguistikInstitut für Maschinelle SprachverarbeitungUniversität StuttgartAzenbergstraÿe 1270174 Stuttgartwww: http://www.ims.uni-stuttgart.de/projekte/gramotron/email: gramotron@ims.uni-stuttgart.de

Probabilistic Constraint Logic ProgrammingFormal Foundations of Quantitative and Statistical Inference in Constraint-BasedNatural Language ProcessingvonStefan Riezler
Philosophische Dissertationangenommen von der Neuphilologischen Fakultätder Universität Tübingenam 17. Dezember 1998

Stuttgart1999

Gedruckt mit Genehmigung der Neuphilologischen Fakultätder Universtität Tübingen
Hauptberichterstatter: Prof. Dr. Erhard Hinrichs, Universität TübingenMitberichterstatter: PhD Steven Abney, AT&T Labs, Florham Park, NJMitberichterstatter: Prof. Dr. Uwe Mönnich, Universität TübingenMitberichterstatter: Prof. Dr. Mats Rooth, Universität StuttgartDekan: Prof. Dr. Hartmut Engler, Universität Tübingen

vAcknowledgementsSince the time when I graduated on the metatheoretical foundations of linguistics I havewanted to learn more about the solid mathematical basis I assumed to underly computationallinguistics. Even if I did not �nd a de�nite answer to my naive questions, miraculously, mysearch for these foundations has led to this thesis. The miracle clearly is due to the peoplewho accompanied me on this way.First of all, this thesis is dedicated to Sabine, whom I want to thank for making theseyears in Tübingen the best ones of my life.Next, I want to thank my supervisors. Steve Abney initiated me with incredible patienceinto the area of probabilistic modeling and statistical inference. Being an autodidact in mathe-matics himself, he was the only one to know how to spoon-feed me these topics. He always hadtime and, more importantly, also always an answer to my many questions. Erhard Hinrichsmade my research possible by taking me on the Graduiertenkolleg in Tübingen and acceptingme as doctoral student in spite of the naive thesis proposal I handed in then. Furthermore,I would like to thank him for letting me step into these theoretical spheres and yet takingme down to earth when necessary. Uwe Mönnich was so kind to take on the time-consumingjob of a third supervisor and was very helpful in making the formulation of the �nal draftclearer. Special thanks go to my new boss, Mats Rooth, who took on the job of the fourthsupervisor. I would like to thank him for giving me all the time and support I needed to makeup a �nal version of the thesis. Moreover, I am very glad that he took a theoretician like meon his team and gave me the possibility to move on the practical side of statistical modellingand experimenting in my new job.Furthermore, I am grateful to my new colleagues at the Institut für maschinelle Sprachver-arbeitung in Stuttgart whom I got to know during a two-year reading group mostly on papersrelevant to my thesis. They are Glenn Carroll, Marc Light, Detlef Prescher, and HelmutSchmid. Similar thanks go to my colleagues at the Seminar für Sprachwissenschaft and theGraduiertenkolleg in Tübingen, Thilo Götz, Graham Katz, Paul King, Frank Morawietz, andAndreas Wagner. Thank you all for all these endless discussions and for reading all thesedrafts of my papers and thesis chapters. Special thanks to Detlef Prescher for proof-readingmy thesis several times, and above all, for his never-ending patience which makes him the verybest colleague one can wish to work with.Exceptional thanks go to Mark Johnson who made it possible for me to discuss my ideaswith the computational linguists and applied mathematicians at Brown University, and more-over, who initiated a group working on estimation of probabilistic constraint-based grammarsand did most of the work himself.Moreover, I would like to thank all the people who accompanied me on my way to proba-bilistic modeling of natural language, i.e., Karel Oliva and Hans Uszkoreit, who helped me to

viget into the black art of computational linguistics in Saarbrücken; Hanspeter Ortner and Lore-lies Ortner, who supported my break with classical linguistics as my supervisors and teachersat the German linguistics department in Innsbruck; and �nally my parents, who supportedmy extended studies in Innsbruck and Vienna.Last, I would like to thank the Deutsche Forschungsgemeinschaft for supporting mywork with a three-year scholarship at the Graduiertenkolleg Integriertes Linguistikstudiumin Tübingen.

viiAbstractStructural ambiguity in linguistic analyses is a severe problem for natural language pro-cessing. For grammars describing a nontrivial fragment of natural language, every input ofreasonable length may receive a large number of analyses, many of which are implausible orspurious. This problem is even harder for highly complex constraint-based grammars. Whereasthe mathematical foundation of such grammars as instances of constraint logic programmingis clear enough, there is so far no mathematically well-de�ned method for extending constraintlogic programs by using weights to introduce graded distictions between analyses. Previousapproaches to ambiguity resolution for context-dependent natural language processing modelseither are tailored to speci�c applications and based on uncertain mathematical grounds, orthey are su�ciently well-de�ned and expressive but infeasible in practice.In this thesis, we present two approaches to a rigorous mathematical and algorithmic foun-dation of quantitative and statistical inference in constraint-based natural language processing.The �rst approach, called quantitative constraint logic programming, is conceptualized in aclear logical framework, and presents a sound and complete system of quantitative inference forde�nite clauses annotated with subjective weights. This approach combines a rigorous formalsemantics for quantitative inference based on subjective weights with e�cient weight-basedpruning for constraint-based systems. The second approach, called probabilistic constraintlogic programming, introduces a log-linear probability distribution on the proof trees of aconstraint logic program and an algorithm for statistical inference of the parameters andproperties of such probability models from incomplete, i.e., unparsed data. The possibility ofde�ning arbitrary properties of proof trees as properties of the log-linear probability model ande�ciently estimating appropriate parameter values for them permits the probabilistic mod-eling of arbitrary context-dependencies in constraint logic programs. The usefulness of theseideas is evaluated empirically in a small-scale experiment on �nding the correct parses of aconstraint-based grammar. In addition, we address the problem of computational intractabil-ity of the calculation of expectations in the inference task and present various techniques toapproximately solve this task. Moreover, we present an approximate heuristic technique forsearching for the most probable analysis in probabilistic constraint logic programs.

Contents
1 Introduction 11.1 Overview . 11.2 A Practical Problem: Structural Ambiguity . 21.3 A Practical Solution: Weighted Grammars . 41.4 Towards a Mathematical Foundation of Weighted Constraint-Based Grammars 51.5 Bibliographical Note . 62 Foundations: Basic Concepts of CLP and CLGs 72.1 Introduction and Overview . 72.2 Constraint Logic Programming . 92.2.1 Constraint Languages . 102.2.2 Relationally Extended Constraint Languages 112.2.3 Syntax and Declarative Semantics of De�nite Clause Speci�cations . . . 122.2.4 Operational Semantics of De�nite Clause Speci�cations 142.3 Constraint Logic Grammars . 192.3.1 A Feature-Based Constraint Language 192.3.2 Feature-Based Constraint Logic Grammars 232.4 Summary . 263 Quantitative CLP: Quantitative Inference with Subjective Weights and itsFormal Semantics 313.1 Introduction and Overview . 313.2 Previous Work . 333.3 Syntax of Quantitative CLP . 34ix

x 3.4 Declarative Semantics of Quantitative CLP . 353.4.1 Fuzzy Set Algebra and Model-Theoretic Semantics 353.4.2 Minimal Model Semantics . 373.5 Operational Semantics for Quantitative CLP 413.5.1 Min/Max Trees and Quantitative Proof Trees 413.5.2 Soundness and Completeness . 443.6 Parsing and Searching in Quantitative CLGs 483.6.1 Quantitative Feature-Based CLGs . 493.6.2 Alpha-Beta Searching in Quantitative CLGs 523.7 Summary and Discussion . 554 Probabilistic CLP: Probabilistic Modeling and Statistical Inference fromIncomplete Data 574.1 Introduction and Overview . 574.2 Previous Work . 614.3 Maximum Likelihood Estimation from Incomplete Data via the EM Algorithm 624.3.1 General Theory of the EM Algorithm 624.3.2 Partial M-Steps: The GEM Algorithm 654.3.3 Partial E-steps and Maximum Pseudo-Likelihood Estimation 664.4 An EM Example: Baum's Maximization Technique 674.4.1 Basic Concepts . 674.4.2 Baum's Maximization Technique and Context-Dependence in CLP . . . 694.5 A Log-Linear Probability Model for CLP . 714.5.1 Motivation . 724.5.2 The Form of Log-Linear Models . 774.6 Statistical Inference for Log-Linear Models from Incomplete Data 784.6.1 Motivation . 794.6.2 Parameter Estimation . 814.6.2.1 General Theory . 814.6.2.2 Relation to Generalized EM Estimation 884.6.2.3 Relation to Maximum-Entropy Estimation 89

xi4.6.3 Property Selection . 894.6.4 Combined Statistical Inference . 924.7 An Experiment . 954.7.1 Incomplete-Data Estimation as Maximum Pseudo-Likelihood Estima-tion for Complete Data . 954.7.2 Property Design for Feature-Based CLGs 964.7.3 Empirical Evaluation . 974.8 Approximation Methods . 994.8.1 Enforcing a Closed-Form Solution . 994.8.2 Numerical Approximation via Newton's Method 1004.8.3 Approximating Expectations via Monte Carlo Methods 1024.8.4 Approximating Expectations via Maximum Pseudo-Likelihood Estima-tion . 1074.9 Parsing and Searching . 1104.9.1 Earley Deduction for Feature-Based CLGs 1104.9.2 Probabilistic CLGs and the Viterbi Algorithm 1174.9.3 Heuristic Searching for Most Probable Parses 1224.10 Summary and Discussion . 1265 Conclusion 1275.1 Summary . 1275.2 Future Work . 128List of Figures 130List of Tables 133Bibliography 134

xii

Chapter 1
Introduction
This thesis presents a novel mathematical treatment of the problem of structural ambiguity inconstraint-based natural language processing (NLP). This problem will be attacked from twodi�erent angles. On the one side we will present a novel formalism for quantitative constraint-based inference with subjective weights. On the other side we will approach this problem bynovel methods for statistical inference and probabilistic modeling for constraint-based NLP.In this chapter we introduce the general problem of structural ambiguity and a generalsolution to this problem, namely weighted grammars. Furthermore, we will specify the notion ofconstraint-based NLP and sketch the general idea of the two di�erent approaches to ambiguityresolution for weighted constraint-based grammars which constitute the main contribution ofthis thesis.1.1 OverviewFollowing this introduction, Chap. 2 discusses the formal framework in which the informalnotion of constraint-based NLP will be dealt with in the course of this thesis. To this end,we discuss the formal basics of Constraint Logic Programming (CLP), which is used hereto provide an operational treatment of various declarative constraint-based grammars. Thisis done by an embedding of the logical description languages of such grammars into a CLPscheme, yielding Constraint Logic Grammars (CLGs).Chap. 3 presents a quantitative extension of CLP which allows us to assign subjectivenumerical weights to the structural components of a constraint logic program. We present asound and complete system for quantitative inference with such subjective weights based onconcepts of fuzzy set algebra. Furthermore, the general concepts of quantitative CLP will beexempli�ed with a simple quantitative CLG and we will show how the search technique ofalpha-beta pruning can be adapted to e�ciently �nding the best parse in quantitative CLGs.1

2 Chapter 1. IntroductionA completely di�erent approach to weighted CLP is presented in Chap. 4. Here, insteadof concentrating on a formal speci�cation of the handling of subjective weights, the aim isto use methods of probabilistic modeling and statistical inference to automatically induceweights from empirical data. We introduce a powerful log-linear probability model for CLPand present a novel technique for statistical inference of the parameters and properties of suchmodels from incomplete training data. We show monotonicity and convergence of the algorithmto the desired maximum likelihood estimates and discuss various methods for approximatecomputation for the inference task. We present an instantiation of probabilistic CLP to asimple probabilistic CLG and show how the structure of the probabilistic model can be usedto guide the search for the most probable analysis. Furthermore, the main concepts of thisstatistical approach are evaluated empircally in a small experiment on �nding the correctparses of a constraint-based grammar.Chaps. 3 and 4, presenting the two di�erent approaches to weighted CLP and CLGs, areconceptualized completely independent of each other. Whereas Chap. 3 is based upon thegeneral concepts of Chap. 2, namely classical CLP with CLGs as a special instance, the workof Chap. 4 is entirely self-contained and even more general. That is, the presented methodsof probabilistic modeling, statistical inference and approximate computation can easily beabstracted away from the CLP application to more general data structures.Chap. 5 presents a summary of the work of this thesis, and compares the advantages andshortcomings of the two presented approaches relative to each other and relative to otherapproaches. Furthermore, directions of future work are sketched.The rest of this chapter presents a motivation of the why and how of the work of thisthesis.1.2 A Practical Problem: Structural AmbiguityStructural ambiguity is a practical problem for every grammar describing a nontrivial frag-ment of natural language. That is, for such grammars every input of reasonable length mayreceive a large number of di�erent analyses, many of which are not in accord with humanperceptions. The problem to be addressed is how to di�erentiate between these analysis andhow to e�ciently �nd the correct analysis out of the set of all possible ones.A simple example illustrating the ubiquity and severity of the problem of structural am-biguity has been presented by Church and Patil (1982). Consider the following sentence withtwo PPs. It has the following two analyses in terms of PP-attachment:(1) a. Put the block [in the box on the table].b. Put [the block in the box] on the table.

1.2 A Practical Problem: Structural Ambiguity 3If we have three PPs, the number of analyses is �ve.(2) a. Put the block [[in the box on the table] in the kitchen].b. Put the block [in the box [on the table in the kitchen]].c. Put [[the block in the box] on the table] in the kitchen.d. Put [the block [in the box on the table]] in the kitchen.e. Put [the block in the box] [on the table in the kitchen].Continuing this list further, a number of more than thousand analyses is achieved quicklywith only eight PPs. The pattern behind this list can be explained as a combinatorial growthof ambiguity in the number of PPs. This growth pattern follows the combinatorial principleof the the Catalan numbers, where Cat(n) describes the number of ways to parenthesize asentence of length n, or equivalently the set of binary trees that can be constructed over nterminal elements1. Clearly, this pattern can be found also in other linguistic combinationssuch as conjuncts, nominal modi�cations, or relative clauses.Whereas ambiguities of this kind are only problematic if the number of linguistic elementsto be combined is large, there is another source of ambiguity depending simply on the numberof analyses the grammar can produce at all. Let us consider the standard linguistic examplesentence John saw Mary and the two analyses given below.(3) a. [JohnN [sawV MaryN]V P]S .b. [[JohnN sawN]NP MaryN]NP .Even if the �rst analysis is perfectly plausible and might be considered as the unique analysisof this sentence, the second analysis has to be accepted if the grammar also licenses othernominal modi�cations such as(4) [[schoolN committeeN]NP meetingN]NP .Following Abney (1996), the second analysis furthermore can be given a perfectly plausibleinterpretation as the reference to a person named Mary who is associated with a kind of sawcalled John saw. Clearly, such spurious ambiguities may be characterized as resulting fromrare usages of words and constructions, but they will appear in every grammar which covers areasonable fragment of natural language and thus produces a large number of analyses. Fur-thermore, in most cases such spurious ambiguities cannot be given a plausible interpretation,but just have to be accepted as a side-e�ect of high coverage.1The Catalan numbers are generated by the following formula: Cat(n) = 2nn !� 2nn� 1 !.

4 Chapter 1. IntroductionTogether combinatorial and spurious ambiguity can confront NLP systems with severeproblems. Clearly, there is a need to distinguish more plausible analyses of an input form lessplausible or even totally spurious ones. A practical and general approach to this problem isthe use of weighted grammars for resolving structural ambiguities.
1.3 A Practical Solution: Weighted GrammarsWe will approach the problem of structural ambiguity by using weighted grammars for am-biguity resolution. Weighted grammars can be characterized very generally as follows. Theyassign numerical values, called weights, to the structure-building components of a grammarand calculate the weight of an analysis from the weights of the structural components thatmake it up. The simple but e�ective assumption is to connect the plausibility of an analysiswith its weight. That is, a ranking of analyses is de�ned by the weighted grammar, and moreplausible analyses are di�erentiated from less plausible analyses in terms of their weights. Themost plausible or correct analysis then is chosen from among the in-principle possible analysesby assuming the analysis with the greatest weight to be the correct one. Furthermore, whenwe are interested only in the highest weighted parse, the weight calculation scheme can beused to guide the search for the highest weighted parse e�ciently instead of simply listing allpossible parses and choosing the highest weighted one.There are three basic problems to be solved for every weighted grammar to be a use-ful device in real-world NLP applicatons. These problems can be described by the followingquestions.1. How can the values of the weights be obtained?2. How should the weights be applied to the components of the grammar and how shouldthe weight of an analysis be calculated from the weights of the components?3. How can the structure of the weight calculation scheme be used to guide the search forthe highest weighted analysis e�ciently?Clearly, the answers to these questions depend on each other and on the non-weightedframework to be extended. In the following we will sketch the basic ideas of two di�erentapproaches to answer these questions consistently for a framework of constraint-based systems.

1.4 Weighted Constraint-Based Grammars 51.4 Towards a Mathematical Foundation of WeightedConstraint-Based GrammarsThe NLP systems of choice in this thesis are constraint-based grammars. The term constraint-based is a collective name for highly expressive frameworks for declarative description ofnatural language in terms of logical description languages. Throughout this thesis, the informalconcept of constraint-based grammars will be replaced by the formal concept of constraint logicgrammars. That is, constraint-based grammars are formalized here by an embedding of thelogical description languages of such grammars into a CLP scheme, yielding CLGs as specialapplications of CLP. The advantages of this approach are on the one hand the (Turing-)powerof the underlying logic, which is conceived as a welcome property to overcome the inadequacyof regular and context-free grammars for the description of natural language. On the otherhand this approach permits an operational treatment of, e.g., the parsing problem for arbitraryconstraint-based grammars in a consistent and unique way. Since CLGs can be seen as specialapplications of CLP, the mathematical work of this thesis will be based upon CLP in general,and CLGs will serve as running example illustrating the applicability of the general work toNLP. The reference to the general framework of CLP will generalize the results of this thesisin a welcome manner.However, most CLP applications require some form of graded distinctions which are notprovided by a classical CLP scheme. A very important example for this demand for gradednessis the task of structural ambiguity resolution in CLGs. A crucial assumption in this thesis isthe claim that a framework of weighted CLP is the solution of choice for the ambiguityresolution problem for CLGs. In the following chapters we will present a rigorous mathematicalformulation of two di�erent approaches to weighted CLP and weighted CLGs.The �rst approach we will present is motivated by the aim to give the grammar de-signer and implementer maximal freedom in choosing appropriate values for the weights ofthe weighted grammar. That is, the values of the weights are only restricted to be some quan-tities lying in a certain interval of real numbers. Such weights can be restricted to meet theaxioms of probability theory, but there is no need to do so. Besides subjective probabilities,such quantities could be subjective preference values, or values obtained from experiments onpreferences in human language processing, or values describing human judgements on degreesof grammticality, or others. In order to stress the generality of this approach to weighted CLPand weighted CLGs, we will henceforth refer to it as quantitative CLP and quantitative CLGs,respectively. The main task of this approach is to specify the questions of how to establish aproper weight calculation scheme for given values and of how to use such a scheme for e�cientdisambiguation. Since it is the grammar designer and implementer who has to specify thegrammar and the weights, it makes sense to tie these two tasks together as closely as possible.That means, in the same way as the inference system of classical CLP is coupled with a clear

6 Chapter 1. Introductionformal semantics, one would like to relate a quantitative inference system to a quantitativeformal semantics, instead of adding an extralogical calculation scheme to the well-de�ned logicof CLP. Thus the task to be addressed is to provide a precise, but yet simple formal semanticsfor quantitative inference in CLP. To this end, we present a formal semantics for quantitativeCLP based upon the simple and intuitive concepts of fuzzy set algebra. This semantics andthe corresponding sound and complete quantitative inference system furthermore are designedin a way which enables the search technique of alpha-beta pruning to be used quite directlyfor e�cient disambiguation. Quantitative CLP then provides an e�cient, well-de�ned quanti-tative deduction system, which can be adapted for speci�c applications by embedding speci�cconstraint languages into CLP and attaching appropriate weights to them.A completely di�erent approach to weighted CLP and weighted CLGs is presented by ourmodels of probabilistic CLP and probabilistic CLGs. The aim of this approach is to specifya probability distribution over the set of proof trees of CLP or the parses of CLGs, and toprovide statistical methods to infer the values of the parameters of such probabilitic modelsfrom empirical data. For a given sample of training data and a parametric probability model,both the parameters of the probabilistic model and the properties of the model associated withthese parameters can be induced automatically by methods of statistical inference. We presenta highly expressive log-linear probability model for CLP, and a novel algorithm to infer the pa-rameters and properties of log-linear models from incomplete data. We show monotonicity andconvergence of the new algorithm and discuss methods for e�cient approximate computationof the formulae involved in the algorithm. This algorithm is applicable to log-linear modelsin general, and especially provides the means for automatic and reusable training of arbitraryprobabilistic constraint-based grammars from unparsed data. The usefulness of these conceptsis shown empirically in a small-scale experiment on �nding preferences in parse-data from aconstraint-based grammar. Furthermore, we discuss the possibilities of using the structure ofthe probabilistic model to guide the search for the most probable proof tree or analysis, andpresent a heuristic search algorithm for this task. Clearly, in this setting a model-theoreticsemantics for probabilistic inference is super�uous since the values of the probabilistic param-eters are obtained by automatic statistical methods which are not manipulable by the user.Rather, we are interested in a stochastic semantics for CLP inference which is determined bythe log-linear probability model together with the statistical methods for parameter estimationand property selection from given input data.1.5 Bibliographical NoteVarious parts of this thesis are based upon previously published work of the author. Chap. 3 isan extended version of Riezler (1996). Chap. 4 is based upon work presented in Riezler (1997),Riezler (1998a), Riezler (1998b), and Johnson, Geman, Canon, Chi, and Riezler (1999).

Chapter 2
Foundations: Basic Concepts of CLPand CLGs
In this chapter we report the central formal concepts of the CLP scheme of Höhfeld and Smolka(1988). In preparation for the following work we give some proofs missing in the original paperand present the CLP scheme in a slightly modi�ed fashion. Furthermore, in order to preparethe running example of the next chapters, we report the main concepts of a feature-basedconstraint language for HPSG and show how to embed this constraint language into the CLPscheme, yielding feature-based CLGs.2.1 Introduction and OverviewConstraint logic programming is a powerful extension of conventional logic programming (Lloyd1987), and involves the incorporation of constraint languages and constraint solving methodsinto logic programming languages. The name CLP was �rst introduced by Ja�ar and Lassez(1986) for a general framework of a logic programming language that is parametrized withrespect to constraint language and a domain of computation, and yields soundness and com-pleteness results for an operational semantics relying on a constraint solver for the employedconstraint language. For example, conventional logic programming or Prolog is obtained fromCLP by employing equations between �rst order terms as constraint language and by inter-preting these equations in the Herbrand universe. In this case the operational semantics ofSLD-resolution can be seen to rely on a constraint solver which solves term equations in theHerbrand universe by term uni�cation. Recent extensions, re�nements, and various applica-tions of CLP are discussed in Ja�ar and Maher (1994). In the following we will rely on thegeneral CLP scheme of Höhfeld and Smolka (1988), which has been shown to be a usefultool for our intended application of linguistic knowledge representation (see Dörre and Dorna7

8 Chapter 2. Foundations(1993), Götz (1995), Götz and Meurers (1995)).The term constraint logic grammars expresses the connection between CLP and constraint-based grammars. That is, CLGs are understood as grammars formulated by means of a suitablelogical language which can be used as a constraint language in the CLP scheme of Höhfeldand Smolka (1988). The idea behind this connection is to provide an operational treatmentof purely declaratively speci�ed grammars. This needs further explanation: Constraint-basedgrammars enable a clear model-theoretic characterization of linguistic objects by specifyinggrammars as sets of descriptions from a suitable logical description language, called the con-straint language. The descriptions, called constraints, are stated as axioms required to be trueof every object in the domain to be described, i.e., they constrain the admissible models ofthe grammar. The parsing problem (and similarly the generation problem) can be de�ned asfollows: Given a set of axioms (encoding the grammar) and some constraint � (encoding thestring/logical form we want to parse/generate from), we ask if there is some model of ouraxioms which satis�es �. Following Götz (to appear), we will call this the prediction problem.A well-known subclass of these grammars widely used in computational linguistics aregrammars based upon feature description languages such as simple PATR grammars (Shieber1986) or more expressive grammars such as LFG (Bresnan and Kaplan 1982) or HPSG (Pollardand Sag 1994). Formalizations of the more or less informal notions of these grammars in termsof �rst-order languages were �rstly presented by Smolka (1988) for PATR and by Johnson(1988) and King (1989), King (1994) for LFG and HPSG, respectively.However, such model-theoretic approaches do not necessarily provide an operational inter-pretation of their declarative speci�cations. This may lead to problems with an operationaltreatment of model-theoretically well-de�ned problems such as parsing or generation. CLPprovides one possible approach to an operational treatment of various such frameworks byembedding arbitrary logical languages into constraint logic programs. De�nite clause speci-�cations over such constraint languages then de�ne grammars as constraint logic programs,i.e., as sets of axiomatic interpreted de�nite clauses. The prediction problem is in this settingas follows: Given a program P (encoding a grammar) and a de�nite goal G (encoding thestring/logical form we want to parse/generate from), we ask if we can infer an answer ' of G(which is a satis�able constraint encoding an analysis) proving the implication ' ! G to bea logical consequence of P.For feature-based grammars an embedding of a logical language close to that of Smolka(1988) into the CLP scheme of Höhfeld and Smolka (1988) is done in the formalism CUF(Dörre and Eisele 1991; Dörre and Dorna 1993). This approach quite directly o�ers the op-erational properties of the CLP scheme, but unfortunately gives up the connection to themodel-theoretic speci�cations of the underlying feature-based grammars. A di�erent approachis given by Götz (1995), Götz and Meurers (1995), who de�nes an explicit translation froma logical language close to that of King (1994) into constraint logic programs. This trans-

2.2 Constraint Logic Programming 9lation procedure preserves the prediction problem by generating a constraint logic programP(G) from a feature-based grammar G in an explicit way. Other approaches to an operationalsemantics for the prediction problem of feature-based languages have been presented, e.g.,by Carpenter (1992), Aït-Kaci, Podelski, and Goldstein (1993) or Götz (to appear). Theseapproaches are tailored especially for speci�c feature-based languages and clearly suit the par-ticular frameworks better than an embedding of the speci�c languages into a CLP scheme.However, under the CLP approach, arbitrary constraint-based grammars can receive an uniqueoperational semantics by an embedding into de�nite clause speci�cations1.We see the main advantage of the CLP approach in the possibility to rely on the well-understood paradigm of logic programming. This allows the resulting programs to run onexisting architectures and to use well-known optimization techniques worked out in this area.The possibility to embed arbitrary constraint languages into the CLP scheme and the broadapplicability of CLP itself should generalize the work of the following chapters in a welcomemanner.This chapter is organized as follows. In Sect. 2.2 we will report the main concepts of con-straint logic programming following the CLP scheme of Höhfeld and Smolka (1988). As thework in the next chapters will build upon this scheme, we will reformulate the main de�ni-tions and propositions of Höhfeld and Smolka (1988) in a form convenient for the followingdiscussions, and give some missing proofs which will be helpful to make this work parallel tothe work of the next chapters.In order to provide a concrete instantiation of this CLP scheme to constraint logic gram-mars, we will report in Sect. 2.3 a feature-based constraint language and show how this lan-guage can be embedded into the CLP scheme to yield feature-based CLGs.2.2 Constraint Logic ProgrammingThe scheme presented by Höhfeld and Smolka (1988) generalizes conventional logic program-ming (Lloyd 1987) and also the constraint logic programming scheme of Ja�ar and Lassez(1986) to a scheme of de�nite clause speci�cations over arbitrary constraint languages. Re-lying on terminology well-known for conventional logic programming, Höhfeld and Smolka'sgeneralization of the key result of conventional logic programming can be stated as follows:First, for every de�nite clause speci�cation P in the extension of an arbitrary constraint lan-guage L , every interpretation of L can be extended to a minimal model of P . Second, theSLD-resolution method for conventional logic programming can be generalized to a sound andcomplete operational semantics for de�nite clause speci�cations, which are not restricted to1For example, an embedding of a the logical language for tree-description grammars of Rogers (1994) intothe CLP scheme of Höhfeld and Smolka (1988) is given in Morawietz (1997).

10 Chapter 2. FoundationsHorn theories. In contrast to Ja�ar and Lassez (1986), in this scheme constraint languages arenot required to be sublanguages of �rst order predicate logic and do not have to be interpretedin a single �xed domain. Instead, a constraint is satis�able if there is at least one interpretationin which it has a solution. This makes this scheme usable for a wider range of applications.Furthermore, such interpretations do not have to be solution compact2. This was necessaryin Ja�ar and Lassez (1986) to provide a sound and complete treatment of negation as failure.Höhfeld and Smolka (1988) do not include negation as failure but rather let the embeddedconstraint language provide for logical negation.2.2.1 Constraint LanguagesA very general characterization of the concept of constraint language can be given as follows.De�nition 2.1 (L). A constraint language L consists of� an L -signature, specifying the non-logical elements of the alphabet of the language,� a decidable in�nite set VAR whose elements are called variables,� a decidable set CON of L -constraints which are pieces of syntax built from the L -signature, the variables in VAR, and the logical elements of the alphabet of the language,� a computable function V assigning to every constraint � 2 CON a �nite set V(�) ofvariables, the variables constrained by �,� a nonempty set of L -interpretations INT, where each L -interpretation I 2 INT is de-�ned w.r.t. a nonempty set D, the domain of I , and a set ASS of variable assignments� : VAR! D,� a function [[�]]I mapping every constraint � 2 CON to a set [[�]]I of variable assignments,the solutions of � in I .� Furthermore, a constraint � constrains only the variables in V(�), i.e., if � 2 [[�]]I and� is a variable assignment that agrees with � on V(�), then � 2 [[�]]I .In order to state certain closure conditions on constraint languages, further de�nitions arenecessary. The following de�nitions are made with respect to some given constraint language.De�nition 2.2.� A renaming is a bijection VAR ! VAR that is the identity except for �nitely manyexceptions.2That is, it is not necessary that every element of an interpretation must be obtainable as the uniquesolution of a possibly in�nite set of constraints. See Ja�ar and Lassez (1986).

2.2 Constraint Logic Programming 11� A constraint �0 is a �-variant of a constraint � under a renaming � i� �0 = ��, i.e., �0is the constraint obtained from � by simultaneously replacing each occurence of a variableX in � by �(X) for all variables X in V(�), and so [[�]]I = [[�0]]I��� := f���j � 2 [[�0]]Ig,i.e., the function compositions of the solutions of �0 and a renaming � yield the solutionsof �, for all interpretations I .� A constraint �0 is a variant of a constraint � if there exists a renaming � s.t. �0 is a�-variant of �.The following closure conditions on constraint languages will be convenient in the furtherdiscussion.De�nition 2.3. A constraint language is� closed under renaming i� every constraint has a �-variant for every renaming �,� closed under intersection i� for every two constraints � and �0 there exists a con-straint s.t. [[�]]I \ [[�0]]I = [[]]I for every interpretation I ,� decidable i� the satis�ability of its constraints is decidable. A constraint � is satis�ablei� there exists at least one interpretation in which � has a solution.2.2.2 Relationally Extended Constraint LanguagesTo obtain constraint logic programs, a given constraint language L has to be extended toa constraint language R(L) providing for the necessary relational atoms and propositionalconnectives.De�nition 2.4 (R(L)). A constraint language R(L) extending a constraintlanguage L is de�ned as follows:� The signature of R(L) is an extension of the signature of L with a decidable set R ofrelation symbols and an arity function Ar : R! IN.� The variables of R(L) are the variables of L .� The set of R(L)-constraints is the smallest set s.t.1. � is an R(L)-constraint if � is an L-constraint,2. r(~x) is an R(L)-constraint, called an atom, if r 2 R is a relation symbol with arityn and ~x is an n-tuple of pairwise distinct variables,3. ;, F &G, F ! G are R(L)-constraints, if F and G are R(L)-constraints,

12 Chapter 2. Foundations4. � & B1 & : : : & Bn ! A is an R(L)-constraint, called a de�nite clause, if A,B1; : : : ; Bn are atoms and � is an L-constraint. We may write a de�nite clause alsoas A � & B1 & : : : & Bn.� The variables constrained by an R(L) -constraint are de�ned as follows: If � is an L -constraint, then V(�) is de�ned as in L ; V(r(x1; : : : ; xn)) := fx1; : : : ; xng; V(;) := ;;V(F & G) := V(F) [V(G); V(F ! G) := V(F) [V(G).� For each L -interpretation I , an R(L)-interpretation A is an extension of an L-inter-pretation I with relations rA on the domain D of A with appropriate arity for everyr 2 R, and the domain of A is the domain of I.� For each R(L) -interpretation A , for each L -interpretation I , [[�]]A is a function map-ping every R(L) -constraint to a set of variable assignments s.t.1. [[�]]A = [[�]]I if � is an L-constraint,2. [[r(~x)]]A = f� 2 ASSj �(~x) 2 rAg,3. [[;]]A = ASS,4. [[F & G]]A = [[F]]A \ [[G]]A,5. [[F ! G]]A = (ASS n [[F]]A) [[[G]]A.Note that we slightly abuse the notation �(~x) to abbreviate the notation(�(x1); �(x2); : : : ; �(xn)) for a n-tuple of objects assigned to a n-tuple ~x of variables by avariable assignment �.2.2.3 Syntax and Declarative Semantics of De�nite Clause Speci�cationsThe concept of a constraint logic program now can be de�ned as a de�nite clause speci�cationover a constraint language.De�nition 2.5 (De�nite clause speci�cation). A de�nite clause speci�cation P over aconstraint language L is a set of de�nite clauses from a constraint language R(L) extendingL. Models of de�nite clause speci�cations are determined by the de�nite clauses constitutingthese speci�cations, i.e., a de�nite clause speci�cation has its de�nite clauses as its axioms.For reasons of generality, the following two de�nitions are made with respect to general setsof R(L) -constraints.De�nition 2.6 (Model). An R(L)-interpretation A is a model of a set 	 of R(L) -con-straints i� for every � 2 ASS, for every 2 	: � 2 [[]]A.

2.2 Constraint Logic Programming 13For convenience we furthermore introduce the concept of logical consequence.De�nition 2.7 (Logical consequence). An R(L)-constraint is a logical consequence ofset 	 of R(L) -constraints i�, for every R(L)-interpretation A, A is a model of 	 implies thatA is a model of .A goal G is de�ned as a possibly empty conjunction of L-constraints and R(L)-atoms.Given a de�nite clause speci�cation P and a goal G, a P-answer of G is de�ned as asatis�able L-constraint � such that the implication �! G is a logical consequence of P .In order to show that the semantic properties of conventional logic programming ex-tend to CLP, Höhfeld and Smolka (1988) �rst de�ne a partial ordering on the set of R(L)-interpretations. R(L) -interpretations extending the same L-interpretation I are called baseequivalent, and I is called the base of these R(L) -interpretations. A partial ordering on suchR(L) -interpretations is de�ned via a partial ordering on the set of the denotations of therelation symbols in these interpretations. We get for all base equivalent R(L) -interpretationsA; A0:� A � A0 i� for each n-ary relation symbol r 2 R : rA � rA0 ,� A = SX i� for each n-ary relation symbol r 2 R : rA = SfrA0 j A0 2 Xg,� A = TX i� for each n-ary relation symbol r 2 R : rA = TfrA0 j A0 2 Xg.This set of base equivalent R(L)-interpretations is a complete lattice under the partial orderof set inclusion. That is, for every set of base-equivalent R(L) -interpretations we have asupremum, given by the union, and an in�mum, given by the intersection of the interpretationsin the set. The top element is the R(L) -interpretation A> such that for each n-ary relationsymbol r 2 R : rA> = DAr(r), and the bottom element is A? s.t for each n-ary relation symbolr 2 R : rA? = ;.Proposition 2.1, due to Höhfeld and Smolka (1988), generalizes the �xpoint- or lattice-theoretic semantics of conventional logic programming to CLP. It says that for each L -interpretation I , a de�nite clause speci�cation P in R(L) de�nes unique minimal denotationsfor the relation symbols of R . That is, every L -interpretation I can be used to constructa minimal model for P in R(L) . All questions concering the declarative semantics of CLPcan then be dealt with in terms of a minimal model semantics. Moreover, a minimal modelsemantics is crucial for the construction of a sound and complete deduction system for CLP.Proposition 2.1 (Höhfeld and Smolka (1988), Theorem 4.4.). Let I be an L-interpre-tation and P be a de�nite clause speci�cation in R(L). Then the equationsrA0 := ;,rAi+1 := f�(~x)j there is a clause (r(~x) G) 2 P and � 2 [[G]]Aig

14 Chapter 2. Foundations(i) de�ne a chain A0 � A1 � : : : of R(L)-interpretations extending I,(ii) the union A := Si�0Ai is a model of P extending I ,(iii) A is the minimal model of P extending I .Proposition 2.2 connects the concept of a P-answer with the minimal model semantics ofP (see Höhfeld and Smolka (1988), Proposition 4.5.). This proposition justi�es the restrictionof the declarative semantics of CLP to a minimal model semantics. We prove this propositionexplicitly with reference to the concept of logical consequence.Proposition 2.2. For each de�nite clause speci�cation P in R(L) , for each goal G, for eachL -constraint �: �! G is a logical consequence of P i� each minimal model A of P is a modelof �! G.Proof. If: For each minimal model A of P : A is a model of �! G=) for every model B of P base equivalent to some minimal model A of P : B is a model of�! G, since A � B by Proposition 2.1=) �! G is a logical consequence of P.Only if: �! G is a logical consequence of P=) every model of P is a model of �! G, by De�nition 2.7=) A is a model of �! G.2.2.4 Operational Semantics of De�nite Clause Speci�cationsThe following de�nitions are made with respect to some implicit L , R , P, and V, where Vdenotes the �nite set of variables in the query and the V-solutions of a constraint � in aninterpretation I are de�ned as [[�]]IV := f�jVj � 2 [[�]]Ig and �jV is the restriction of � to V.Höhfeld and Smolka (1988) de�ne the generalization of the SLD-resolution rule by a binaryrelation r�!, called goal reduction, on the set of goals. The rule selects the leftmost atom inthe goal, looks for a variant of a program clause with the selected atom as head, and replacesthe selected atom in the goal by the body of the variant clause. Furthermore, the rule ensuresthat no accidental variable sharing is introduced by the variant.A & G r�! F & G if A F is a variant of a clause in Ps.t. (V [V(G)) \ V(F) � V(A).A second rule takes care of constraint solving for the L-constraints appearing in subsequentgoals. The rule takes the conjunction of the L-constraints from the reduced goal and the

2.2 Constraint Logic Programming 15applied clause and gives, via the black box of a suitable L- constraint solver, a satis�able L-constraint in solved form if the conjunction of L-constraints is satis�able. If the conjunction ofL -constraints is not satis�able, an L -constraint ? denoting failure is returned. The constraintsolving rule can then be de�ned as a total function c�! on the set of goals.� & �0 & G c�! �00 & G if [[�& �0]]IV[V(G) = [[�00]]IV[V(G)for all L-interpretations I and for all L -constraints �; �0 and �00.Furthermore, a complexity measure that mirrors the construction steps of a minimal modelin the complexity of goal reduction is introduced. This measure will be crucial for provingcompleteness of goal reduction.� The complexity of a variable assignment � for an atom A in the minimal model A where� 2 [[A]]A is de�ned as comp(�;A;A) := minfij � 2 [[A]]Aig;� The complexity of � for goal G in A where � 2 [[G]]A iscomp(�;G;A) := fcomp(�;A;A)j A is an atom in Ggwhere f: : : g is a multiset;� The V�complexity of � for G in A where � 2 [[G]]AV iscompV(�;G;A) := minfcomp(�;G;A)j � 2 [[G]]A and � = �jVgwhere �jV is the restriction of � to the variables in V, and the minimum is taken withrespect to a total ordering on multisets such thatM �M 0 i� 8x 2M nM 0;9x0 2M 0nMs.t. x < x0.Höhfeld and Smolka (1988) prove the following propositions showing that goal reduction isa sound and complete rule for deducing P-answers from general de�nite clause speci�cations.We prove the main results explicitly in Propositions 2.4 (soundness) and 2.6 (completeness).Note that soundness and completeness can be proven without reference to constraint solving,Proposition 2.3 (Höhfeld and Smolka (1988), Proposition 5.1.). If G1 r�! G2, then[[G2]]A � [[G1]]A for every model A of P.Proposition 2.4. If G r�!��, then �! G is a logical consequence of P.Proof. G r�!��=) [[�]]A � [[G]]A for every model A of P , by Proposition 2.3 and transitivity of �

16 Chapter 2. Foundations=) for every model A of P: [[�! G]]A = ASS, since for every model A of P : [[�]]A � [[G]]A=) for every model A of P: A is a model of �! G, by De�nition 2.6=) �! G is a logical consequence of P.Proposition 2.5 (Höhfeld and Smolka (1988), Theorem 5.2.). Let L be closed underrenaming, A be a minimal model of P, G1 be a goal, A be an atom in G1, and � 2 [[G1]]AV .Then there exists a clause C in P and a goal G2 s.t. G1 r�! G2 using a variant of C on A ispossible, � 2 [[G2]]AV and compV(�;G2;A) < compV(�;G1;A).Proposition 2.6 (Höhfeld and Smolka (1988), Corollary 5.3.). Let L be closed underrenaming, A be a minimal model of P, G be a goal and � 2 [[G]]AV . Then there exists a P-answer� of G s.t. G r�!�� and � 2 [[�]]AV .Proof. The result is proven by induction on compV(�;G;A).Base: Goals with mulitset complexity ; have to be a satis�able L-constraint �. Then � r�!0�and � is a P-answer of itself.Hypothesis: Suppose the result holds for goals with multiset complexity less than some mul-tiset N .Step: compV(�0; G1;A) = N and �0 2 [[G1]]AV=) there exists a clause C of P and a goal G2 s.t. G1 r�! G2 and �0 2 [[G2]]AV andcompV(�0; G2;A) < compV(�0; G1;A), by Proposition 2.5=) there exists a P-answer � of G2 s.t. G2 r�!�� and �0 2 [[�]]AV , by the hypothesis=) there exists a P-answer � of G1 s.t. G1 r�! �� and �0 2 [[�]]AV , and by Proposition 2.4,�! G1 is a logical consequence of P .The result follows by arithmetic induction.In all following examples, we will use a standard Prolog resolution procedure for the CLPscheme of Höhfeld and Smolka (1988), i.e., we combine the left-right selection rule de�nedin goal reduction with a depth-�rst search rule. Furthermore, after each goal reduction step,constraint solving is applied, and another clause is tried immediately if constraint solving fails.Moreover, it will be convenient in the following discussion to view the search space determinedby the derivation rules r�! and c�! as a search of a tree. A derivation tree is de�ned as follows.De�nition 2.8 (Derivation tree). A derivation tree determined by a query G1 and a de�-nite clause speci�cation P has to satisfy the following conditions:1. Each node is either a relation node or a constraint node.

2.2 Constraint Logic Programming 172. The successors of every relation node are all constraint nodes s.t. for every r�! -resolventG0 obtainable by a clause C from goal G in a relation node, there is a successor constraintnode labeled by C and G0.3. The successors of every constraint node are all relation nodes s.t. for the unique c�! -resolvent G&�00 obtainable from goal G&�&�0 in a constraint node, there is a successorrelation node labeled by G& �00.4. The root node is a relation node labeled by G1.5. A success node is a terminal relation node labeled by a satis�able L -constraint.Successful derivations correspond to subtrees of derivation trees which are labeled by ter-minal success nodes. Such trees can be de�ned as proof trees as follows.De�nition 2.9 (Proof tree). A proof tree for a query G1 from P is a subtree of a derivationtree determined by G1 and P and is de�ned as follows:1. A relation node of the proof tree is a relation node of the supertree and takes one of thesuccessors of the relation node of the supertree as its successor node.2. A constraint node of the proof tree is a constraint node of the supertree and takes theunique successor of the constraint node of the supertree as its successor node.3. The root node of the proof tree is the root node of the supertree.4. The terminal node of the proof tree is a success node of the supertree, labeled by a satis-�able L -constraint, called answer constraint.Let us illustrate the basic concepts of CLP with an example. A simple program consistingof clauses 1 to 3 is depicted in Fig. 2.1.1 q(X) p(X):2 p(X) X = a:3 p(X) X = b:Figure 2.1: Constraint logic programThe L -constraints are considered to come from a language of hierarchical types, wherethe ordering on types is de�ned via the operation of set inclusion on their denotations. In ourexample, we have [[a]]I � [[e]]I ; [[b]]I � [[e]]I and [[a]]I \ [[b]]I = ;. This hierarchy is depictedgraphically in Fig. 2.2.

18 Chapter 2. Foundations
a beFigure 2.2: Type hierarchy

pA0 = ;; qA0 = ;;pA1 = f[[a]]I ; [[b]]Ig; qA1 = ;;pA2 = f[[a]]I ; [[b]]Ig; qA2 = f[[a]]I ; [[b]]Ig;...pA = f[[a]]I ; [[b]]Ig; qA = f[[a]]I ; [[b]]Ig; where A = Si�0Ai.Figure 2.3: Minimal model construction for constraint logic program

X = ac2, X = e&X = a X = bc3, X = e&X = br rp(X) &X = ec1, p(X) &X = erq(X) &X = e

Figure 2.4: Derivation tree for constraint logic program

2.3 Constraint Logic Grammars 19The construction of a minimal model for the program of Fig. 2.1 is shown in Fig. 2.3. Theunique minimal denotations of the relation symbols p and q are obtained in step 1 and 2 ofthe minimal model construction respectively.A derivation tree for the query q(X)&X = e from the program of Fig. 2.1 is given in Fig.2.4. We depict only the success branches of the derivation tree, yielding two distinct prooftrees for the query, with answer constraints X = a and X = b respectively.Soundness of the CLP scheme implies that corresponding to the derivation of X = a andX = b, we know that the implications X = a ! q(X) &X = e and X = b ! q(X) &X = eare logical consequences of the program of Fig. 2.1. This is easily veri�ed from the minimalmodel given in Fig. 2.3. Furthermore, completeness of the CLP scheme is easily veri�ed fromthe fact that for solutions � 2 [[q(X) &X = e]]AV and �0 2 [[q(X) &X = e]]AV , we can deriveP -answers with � 2 [[X = a]]AV and �0 2 [[X = b]]AV .2.3 Constraint Logic GrammarsIn this section, we will explicate the concept of constraint logic grammars. To this end, we willrestrict our attention to feature-based CLGs and discuss in particular the main properties ofan HPSG instance of such grammars.We will show how a feature-based constraint language can be obtained from a feature-based logical description language, and how such a constraint language can be embedded intothe CLP scheme of Höhfeld and Smolka (1988), yielding a feature-based CLG. The languageto be discussed is that of Götz (1995), Götz (to appear), which is close to that of King (1989),King (1994) (modulo the usage of variables) and Smolka (1988), Smolka (1992) (moduloappropriateness conditions). This language provides a description language FD specifying thelogical foundations of HPSG grammars and is extendable to a constraint language FL, in thesense of Höhfeld and Smolka (1988). The expressive power of the language is smaller than orequal to the expressive power of �rst-order predicate logic with equality.2.3.1 A Feature-Based Constraint LanguageThe language is based on a notion of signature, i.e., the non-logical elements of the alphabet,declaring the structures the linguist is interested in. A signature speci�es a set of featuresymbols, a lattice of sort symbols and appropriateness conditions restricting the functionalproperties of the feature symbols. All subsequent work should be understood with respect toan implicit signature �.De�nition 2.10 (Signature). A signature is a quadruple hT ;�;F ; appropi s.t.� hT ;�i is a �nite join-semilattice of types,

20 Chapter 2. Foundations� S = ft 2 T j if t0 � t then t0 = tg is a �nite set of minimal types,� F is a �nite set of feature symbols,� approp : S � F * T is a partial function from pairs of minimal types and features totypes.The well-formed formulae of the feature-based description language FD, called featuredescriptions, are built from the symbols in the signature, a countably in�nite set of variablesVAR, the symbol : assigning features to their values, and the standard boolean connectives.Expressions of this kind can be seen as the formal equivalent of the AVM notation used inPollard and Sag (1994). The set Desc of feature descriptions is de�ned as follows.De�nition 2.11 (Feature descriptions). The set Desc of feature descriptions is the small-est set s.t.� X is a description if X 2 VAR,� t is a description if t 2 T ,� f:D is a description if f 2 F , D 2 Desc,� D1 ^D2; D1 _D2; :D1; D1 ! D2 are descriptions if D1 2 Desc; D2 2 Desc:An interpretation of a signature is based on an arbitrary domain of objects, and assigns toevery object exactly one minimal type, and to every feature symbol a partial function on thedomain. The domains and ranges of these functions are determined by the approp function.This function speci�es that for each object u of a minimal type s, there is a connected objectF(f)(u) de�ned i� approp(s; f) is de�ned, and the type S(F(f)(u)) of this connected objecthas to be appropriate.De�nition 2.12 (Interpretation). An interpretation is a quadruple I = hU, S, Fi s.t.� U is a set of objects, the domain of I,� S: U ! S is a total function from the domain to the set of minimal types,� F: F ! UU is a is a total feature interpretation function s.t.1. for each u 2 U, for each f 2 F , if approp(S(u); f) is de�ned andapprop(S(u); f) = t, then F(f)(u) is de�ned and S(F(f)(u)) � t,2. for each u 2 U, for each f 2 F , if F(f)(u) is de�ned, thenapprop(S(u); f) is de�ned and S(F(f)(u)) � approp(S(u); f).

2.3 Constraint Logic Grammars 21The denotation of feature descriptions with respect to an interpretation I and a variableassignment � is de�ned to be a subset of the domain for every feature description. By ab-stracting away from the variable assignment, we arrive at a concept of abstract denotationcomprising the denotation of a feature description under every possible variable assignment.De�nition 2.13 (Variable assignment). A variable assignment � : VAR ! U is a totalfunction from the set of variables to the domain. Write ASS for the set of variable assignments.De�nition 2.14 (Feature description denotation).� [[X]]I� = f�(X)g if X 2 VAR,� [[t]]I� = fu 2 Uj S(u) � tg if t 2 T ,� [[f : D]]I� = fu 2 Uj F(f)(u) is de�ned, F(f)(u) 2 [[D]]I�g if f 2 F , D 2 Desc,� [[D1 ^D2]]I� = [[D1]]I� \ [[D2]]I� if D1; D2 2 Desc,� [[D1 _D2]]I� = [[D1]]I� [[[D2]]I� if D1; D2 2 Desc,� [[:D1]]I� = U n [[D1]]I� if D1 2 Desc,� [[D1 ! D2]]I� = (U n [[D1]]I�) [[[D2]]I� if D1; D2 2 Desc:De�nition 2.15 (Abstract denotation).[[D]]I = S�2ASS [[D]]I� if D 2 Desc:To obtain a feature-based constraint language FL ful�lling the closure requirements onconstraint languages stated by Höhfeld and Smolka (1988), �rst we simply have to attach everyfeature description D in FD with a new variable not occuring in the set V(D) of variables in D.This avoids accidental variable sharing and guarantees renaming closure of FL. Furthermore,an explicit de�nition of conjunction of feature constraints ensures intersection closure of FL.De�nition 2.16 (Feature constraints).� X = D is a constraint if X 2 VAR; X 62 V(D), D 2 Desc,� �& �0 is a constraint if �; �0 are constraints.The denotation of a constraint is de�ned by a function mapping every constraint to aset of variable assignments, called solutions. The solutions of a constraint X = D are thevariable assignments in ASSwhich constrain the value of the variable X to the objects inthe denotation of D. The denotation of a conjunction of constraints is the intersection of therespective denotations.De�nition 2.17 (Feature constraint solutions).

22 Chapter 2. Foundations� [[X = D]]I = f� 2 ASSj �(X) 2 [[D]]I�g if X 2 VAR, X 62 V(D), D 2 Desc,� [[�& �0]]I = [[�]]I \ [[�0]]I if �; �0 are constraints.Next we have to consider the problem of deciding satis�ability of feature descriptions andfeature constraints.De�nition 2.18 (Satis�ability of feature descriptions). A feature description D is sat-is�able i� there is an interpretation I s.t. [[D]]I 6= ;.This problem has been shown to be decidable for feature-based description languagesclosely related to the above reported one. For the description language reported above, adecision algorithm is given by Götz (to appear), for the variable-free notational variant ofKing (1994) by Kepser (1994), for a less expressive version of the language not employingappropriateness conditions by Smolka (1988), Smolka (1992), or for an even less expressiveversion employing conjunction as only boolean operator by Aït-Kaci, Podelski, and Goldstein(1993).Most of these approaches adapt for satis�ability checking a constraint solving method simi-lar to that of Smolka (1988), Smolka (1992). This method is a three-step transformation processfrom feature descriptions to a solved form of feature constraints displaying (un)satis�ability.Following Götz (to appear), constraint solving for the feature-based constraint language re-ported above can be illustrated as follows: Firstly, every feature description is transformedto disjunctive normal form; secondly, every feature description in disjunctive normal form istransformed into a (disjunctively interpreted) set of (conjunctively interpreted) sets of featureconstraints of the simple form X = Y , X = :Y , X = t or X = f : Y ; thirdly, every such setof sets of simple feature constraints is transformed into a set of sets of feature constraints insolved form.For reasons of readability, we will consider the constraint solver for the feature-basedconstraint language FL in the following as a black box. The interested reader is referred fordetails and proofs to Götz (to appear). In all subsequent examples, we will depict only theresult of constraint solving, re-translated from simple feature constraints in solved normalform to feature constraints in a more readable form according to De�nition 2.16.The notion of satis�ability de�ned for feature constraints is as follows.De�nition 2.19 (Satis�ability of feature constraints). A feature constraint � is satis�-able i� there exists an interpretation I s.t. [[�]]I 6= ;.Since every feature constraint is satis�able whenever the embedded feature description issatis�able, and since satis�ability of feature descriptions is decidable, we get immediately thedesired decidability result for the feature-based constraint language FL. To sum up, since

2.3 Constraint Logic Grammars 23FL is closed under renaming and intersection, and due to the decidability algorithm for FLconstraint solving of Götz (to appear), we can state the following proposition.Proposition 2.7. FL is a decidable constraint language closed under renaming and intersec-tion.2.3.2 Feature-Based Constraint Logic GrammarsFeature-based grammars can be built in a pure declarative way simply as sets of axiomaticinterpreted feature descriptions from the feature description language FD.De�nition 2.20 (Grammar). A feature-based grammar G is a �nite set of feature descrip-tions s.t. G � Desc.The feature descriptions comprising a grammar constrain the admissible models of thegrammar in that in every model of a grammar every feature description must be true of everyobject.De�nition 2.21 (Model). A model of a feature constraint grammar G is an interpretationI = hU, S, Fi s.t. for every u 2 U, for every D 2 G: u 2 [[D]]I .The central problem of prediction can then be de�ned model-theoretically as a relationbetween grammars and feature descriptions encoding the questioned input.De�nition 2.22 (Prediction). A feature description D is predicted by a grammar G i� thereis a model I of G s.t. [[D]]I 6= ;.In contrast to this de�nition, the linguistic problem of grammaticality is sometimes consid-ered as a relation between grammars and objects. As we will see below, the syntactic coding ofDef. 2.22 enables a connection of the model-theoretic concept of prediction with the implemen-tational parsing/generation problem. The problem of prediction has shown to be undecidablefor various feature-based description languages (see Aït-Kaci, Podelski, and Goldstein (1993),Smolka (1992), Götz (to appear)). As shown by Götz (to appear), decidable fragments of suchlanguages are obtainable, e.g., in the form of grammars ful�lling the �nite model property.De�nition 2.23. A grammar G has the �nite model property i� for all descriptions D,G predicts D i� G has a �nite model I s.t [[D]]I 6= ;.Note that even if for grammars having the �nite model property the prediction problem isdecidable, it is undecidable if a grammar has the �nite model property of not. Thus it has tobe kept in mind that decidability of the prediction problem for linguistically interesting CLGsis based on an assumption of �niteness of linguistic structures.

24 Chapter 2. FoundationsTo obtain feature-based CLGs from feature-based grammars, the feature descriptions fromFD have to be extended to feature constraints from FL, which then can be embedded as FL-constraints into a suitable de�nite clause specifcation in R(FL). An example for such anembedding of a feature-based grammar into the CLP scheme of Höhfeld and Smolka (1988)is given below. The resulting feature-based CLG can be seen as a notational variant of aCUF-grammar (Dörre and Eisele 1991; Dörre and Dorna 1993). Alternatively, when replacingthe predicates of this feature-based CLG by a single predicate gram in all clauses, we arriveat a program which would result from a direct application of the compilation algorithm ofGötz (1995), Götz and Meurers (1995) to a feature-based grammar3. This compilation schemeconnects the model-theoretic concept of prediction with the logic programming concept ofP-answer directly. This is done by an automatic generation of a R(FL)-program P for everyFD-grammar G, where the program de�nes an unary relation gram encoding prediction. Thisencoding is said to be correct under the following conditions.De�nition 2.24. Let P be a de�nite clause speci�cation in FL de�ning the relation gram,and let G a grammar from FD. Then P is a correct translation of G i�G predicts feature description D i� the goal gram(X) & X = D has a P-answer.The compilation scheme presented by Götz (1995) is sound and for a large class of gram-mars complete. A su�cient condition to receive correct translations in the sense of Def. 2.24is again the �nite model property. Thus under the assumption that linguistic structures are�nite, CLP can be seen as a useful parsing scheme for linguistically interesting feature-basedCLGs.Let us illustrate these concepts with an example. Suppose a simple grammar licensing,among others, analyses such as[Peter believes [ClintonN talksV]S]Sor [Peter believes [ClintonN talksN]NP]S :We will de�ne now a feature-based grammar presenting a FD-encoding of the part of thisgrammar which is relevant for the structural ambiguity. It is a modi�ed and extended versionof an example from Carpenter (1992).3Based on a di�erentiation of types in distinct sets according to whether and how they appear as antecedentsof grammar constraints, this compilaton procedure introduces a set of clauses de�ning the single predicate gramfor each such set of types. Actually, for the example given below, this compilation scheme would also producea clause gram(X) X = t for each minimal type t of the grammar signature which is not the antecedent ofa grammar description. For ease of readability, we will omit clauses introduced for (minimal or non-minimal)non-antecedent types in our example.

2.3 Constraint Logic Grammars 25The signature comes with a type hierarchy with top element >, feature symbols, and ap-propriateness conditions, and is depicted in the graph in Fig. 2.5. Feature symbols are depictedin small caps font, type symbols in lower case italics, and appropriateness conditions areexpressed in a matrix notation, reading, e.g., approp(phrase;DTR1) = sign.
26666664 phraseDTR1 signDTR2 signCAT catAGR agr

37777775
266664 wordPHON basexprCAT catAGR agr 377775

sign s np n vcat Clinton talksbasexpr sg plagr>
Figure 2.5: Signature for feature-based grammarThe relevant FD-descriptions are given in Fig. 2.6. The �rst implication encodes the rulesS ! N V and NP ! N N . Context-sensitivity is introduced by the agreement requirementon the �rst rule. The second implication encodes the rules N ! Clinton, V ! talks, andN ! talks.phrase! (CAT : s ^ DTR1:CAT : n ^ DTR2:CAT : v ^ DTR1:AGR : Y)^DTR2:AGR : Y)_ (CAT : np ^ DTR1:CAT : n ^ DTR2:CAT : n)word! (CAT : n ^ PHON : Clinton ^ AGR : sg)_ (CAT : v ^ PHON : talks ^ AGR : sg)_ (CAT : n ^ PHON : talks ^ AGR : pl)Figure 2.6: Feature-based grammarThe CLG obtained from a simpli�ed compilation of the grammar in Fig. 2.6 to a de�niteclause speci�cation in FL is given in Fig. 2.7. The embedded FL-constraints are depictedgraphically in the same way as FD-descriptions. R(FL)-atoms are depicted in typewriterfont.Given this program and a goalX = (sign ^ DTR1: PHON : Clinton ^ DTR2: PHON : talks) & sign(X)encoding the phrase Clinton talks, we can infer two answers

26 Chapter 2. Foundations1 phrase(X) X = (phrase^CAT : s^DTR1:CAT : n^DTR2:CAT : v^DTR1:AGR :Y ^ DTR2:AGR : Y ^ DTR1 : Z1 ^ DTR2 : Z2) & sign(Z1) & sign(Z2).2 phrase(X) X = (phrase ^ CAT : np ^ DTR1:CAT : n ^ DTR2:CAT : n ^ DTR1 :Z1 ^ DTR2 : Z2) & sign(Z1) & sign(Z2).3 word(X) X = (word ^ CAT : n ^ PHON : Clinton ^ AGR : sg).4 word(X) X = (word ^ CAT : v ^ PHON : talks ^ AGR : sg).5 word(X) X = (word ^ CAT : n ^ PHON : talks ^ AGR : pl).6 sign(X) phrase(X).7 sign(X) word(X).Figure 2.7: Feature-based constraint logic grammarX = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1: AGR : Y ^ DTR1: AGR : sg^DTR2 : word ^ DTR2: CAT : v ^ DTR2: PHON : talks^DTR1: AGR : Y ^ DTR1: AGR : sg)and X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1: AGR : sg ^ DTR2 : word^DTR2: CAT : n ^ DTR2: PHON : talks ^ DTR2: AGR : pl)encoding the parses [ClintonN talksV]S and [ClintonN talksN]NP respectively. The parsesare depicted in Figs. 2.8 and 2.9. Note that goal reduction and constraint solving are appliedin one step. Furthermore, only success branches are depicted and the the constraint solver isviewed as a black box.2.4 SummaryIn this chapter we discussed the basic formal concepts of the CLP scheme of Höhfeld andSmolka (1988). These concepts provide a formal speci�cation of the notions of constraintlanguage and of a constraint logic program embedding a constraint language. For convenience,we gave some missing proofs and introduced the notions of logical consequence, derivation treeand proof tree into the CLP scheme. These concepts will be useful in latter chapters.

2.4 Summary 27

4; X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1: AGR : Y ^ DTR1: AGR : sg ^ DTR2 : word^DTR2: CAT : v ^ DTR2: PHON : talks ^ DTR2: AGR : Y ^ DTR2: AGR : sg)r; c
7; X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1: AGR : Y ^ DTR1: AGR : sg ^ DTR2 : word^DTR2: CAT : v ^ DTR2: PHON : talks ^ DTR2: AGR : Y ^ DTR2: AGR : sg^DTR2 : Z2) & word(Z2)

r; c
3; X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1: AGR : Y ^ DTR1: AGR : sg ^ DTR2 : word^DTR2: CAT : v ^ DTR2: PHON : talks ^ DTR2: AGR : Y ^ DTR2: AGR : sg^DTR2 : Z2) & sign(Z2)

r; c
7; X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1: AGR : Y ^ DTR2 : word ^ DTR2: CAT : v^DTR2: PHON : talks ^ DTR2: AGR : Y ^ DTR1 : Z1 ^ DTR2 : Z2)& word(Z1) & sign(Z2)

r; c
1; X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1: AGR : Y ^ DTR2 : word ^ DTR2: CAT : v^DTR2: PHON : talks ^ DTR2: AGR : Y ^ DTR1 : Z1 ^ DTR2 : Z2)& sign(Z1) & sign(Z2)

r; c6; X = (sign ^ DTR1: PHON : Clinton ^ DTR2: PHON : talks)& phrase(X)r; cX = (sign ^ DTR1: PHON : Clinton ^ DTR2: PHON : talks)& sign(X)

Figure 2.8: A derivation of [ClintonN talksV]S

28 Chapter 2. Foundations

5; X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1: AGR : sg ^ DTR2 : word^DTR2: CAT : n ^ DTR2: PHON : talks ^ DTR2: AGR : pl)r; c
7; X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1: AGR : sg ^ DTR2 : word^DTR2: CAT : n ^ DTR2: PHON : talks ^ DTR2 : Z2)& word(Z2)

r; c
3; X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1: AGR : sg ^ DTR2 : word^DTR2: CAT : n ^ DTR2: PHON : talks ^ DTR2 : Z2)& sign(Z2)

r; c
7; X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR2 : word ^ DTR2: CAT : n^DTR2: PHON : talks ^ DTR1 : Z1 ^ DTR2 : Z2)& word(Z1) & sign(Z2)

r; c
2; X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR2 : word ^ DTR2: CAT : n^DTR2: PHON : talks ^ DTR1 : Z1 ^ DTR2 : Z2)& sign(Z1) & sign(Z2)

r; c6; X = (sign ^ DTR1:PHON : Clinton ^ DTR2: PHON : talks)& phrase(X)r; cX = (sign ^ DTR1: PHON : Clinton ^ DTR2: PHON : talks)& sign(X)

Figure 2.9: A derivation of [ClintonN talksN]NP

2.4 Summary 29Furthermore, we reported the central formal details of feature-based CLGs and presenteda simple linguistic grammar which will be used as a running example in the following chapters.Proof trees or parses in constraint-based NLP can be quite complex even if simple gram-mars are used to analyze two-word phrases as in the example given above. Clearly, for complexgrammars and phrases of reasonable length, structural ambiguity in constraint-based NLP isa severe problem. The task of the next two chapters is to provide a rigorous mathematicalfoundation of ambiguity resolution in constraint-based NLP.

30 Chapter 2. Foundations

Chapter 3
Quantitative CLP: QuantitativeInference with Subjective Weights andits Formal Semantics
In this chapter we present a novel framework for quantitative inference with subjective weightsfor CLP. We show soundness and completeness of the quantitative system with respect to asimple and intuitive formal semantics. We illustrate these concepts with a simple quantitativeCLG and show how pruning techniques can be used to guide the search for the highest weightedanalysis in such quantitative systems.This chapter is based upon work previously published in Riezler (1996).3.1 Introduction and OverviewQuantitative frameworks have been presented as extensions of both logic programming andconstraint-based grammars. For the area of logic programmming, a system of quantitativededuction which is sound and complete with respect to a related �xpoint semantics was intro-duced �rstly by van Emden (1986). Like this seminal approach, most of the subsequent workon quantitative extensions of logic programming has concentrated on theoretical issues suchas questions of the expressivity of systems for quantitative logic programming, or issues ofthe correctness of the connection of model-theory, �xpoint-theory, and proof-theory for suchsystems. However, none on these approaches seemed to have a speci�c application in mind.On the contrary, quantitative extensions of constraint-based grammars have mainly beenmotivated by practical considerations. Most approaches in this area come as numerical ex-tensions of the parsing strategy of existing constraint-based frameworks. However, even if forsuch systems the formal foundation of the underlying framework may be clear enough, none31

32 Chapter 3. Quantitative CLPof these approaches comes with a well-de�ned semantics for its quantitative extension. Thatis, such quantitative extensions have to be seen as extralogical extensions of, e.g., the deduc-tion scheme of the underlying CLP framework, and are not related to the model-theoreticcounterpart of this operational semantics.This is clearly an undesirable state of a�airs. Rather, in the same way as CLGs providea model-theoretic characterization of linguistic objects coupled with an operational parsingsystem, one would like to relate a quantitative deduction system to a quantitative model-theory in a sound and complete way. The aim of this chapter is to present a sound andcomplete system of quantitative CLP which satis�es the following conditions. It should� generally be applicable to CLP over arbitrary constraint languages,� provide a precise, but yet simple formal semantics for quantitative CLP deduction,� from the outset be designed with a speci�c application in mind, in our case, with respectto e�cient ambiguity resolution in CLGs.The �rst point means that in quantitative CLP one should not have to bother about thepeculiarities of the constraint languages embedded into the CLP scheme. Rather, the quanti-tative extension should work in the same way for every constraint logic program irrespectiveof the embedded constraint language. For the NLP application, this means that for arbi-trary constraint-based grammars a quantitative extension should be obtainable from the CLGresulting from an embedding of the grammar constraint language into a CLP scheme.The second point addresses the tradeo� between the expressive power of the quantitativesystem and the intuitivity and simplicity of its semantics. That is, since the aim of a formalsemantics is to provide a precise unambiguous way to specify the meaning of all aspects of anoperational system at the design and implementation stage, it is justi�ed only by its under-standability and applicability. Our approach respects these ideas of simplicity and elegance byusing the simple concepts of fuzzy set algebra as a basis for a formal semantics for quantitativeCLP.The third point, which refers to the intended application of ambiguity resolution and best-parse search in CLGs, is realized in quantitative CLP by stating the proof theory of quanti-tative CLP in terms of min/max trees, which in turn enables strategies such as alpha/beta-pruning to be used for e�cient searching for best parses in CLGs.Clearly, generalizations of this speci�c choice of design for quantitative CLP should bestraightforward. However, they will not made explicit in the following chapters.This chapter is organized as follows. Sect. 3.2 discusses previous work on quantitative logicprogramming and quantitative extensions of constraint-based grammars.

3.2 Previous Work 33Sect. 3.3 introduces the concept of a quantitative de�nite clause speci�cation, i.e., a quan-titative constraint logic program.Sect. 3.4 introduces the declarative semantics of quantitative de�nite clause speci�cations,i.e., a model-theoretic semantics based on concepts of fuzzy set algebra and a �xpoint semanticsobtained by a minimal models in this model-theory.Sect. 3.5 presents the operational semantics of quantitative CLP. That is, based on the con-cepts of quantitative derivation trees and quantitative proof trees, soundness and completenessof quantitative deduction in CLP is proven.Sect. 3.6 exempli�es these concepts with a quantitative feature-based CLG, and shows howthe search technique of alpha/beta-pruning can be applied to quantitative CLGs.3.2 Previous WorkFor the area of logic programming, van Emden (1986) presented in a seminal paper a quan-titative deduction scheme and a �xpoint semantics for sets of numerically annotated Hornclauses. The aim of this paper was to enable the expression of a continuum of uncertain-ties between the usual two truth values in quantitative logic programs. The semantics ofsuch quantitative logic programs is based upon concepts of fuzzy set algebra, and cruciallydeals with the truth-functional propagation of weights across conventional de�nite clauses.Van Emden's approach initialized research into a now extensively studied area of quantita-tive logic programming. For example, annotated logic programming (Subrahmanian (1987),Kifer and Subrahmanian (1992)) extends the expressive power of quantitative rule sets byallowing variables and evaluable function terms as annotations. Furthermore, in annotatedlogic programs, annotations can be attached to atoms and their conjunctions or disjunctions,and such programs are interpreted in powerful frameworks of lattice-theoretic semantics. De-pending on di�erent understandings of annotations, further extensions of van Emden (1986)'sand Subrahmanian (1987)'s approaches have been presented. Among those are approaches topossibilistic logic programming based on subjective necessity values (Dubois, Lang, and Prade1991), probabilistic logic programming based on intervals of subjective probabilistic truth val-ues (see, e.g., Ng and Subrahmanian (1992), Ng and Subrahmanian (1993)), or probabilisticdeductive databases based on subjective con�dence levels coming as intervals of belief anddoubt (see, e.g., Lakshmanan and Sadri (1994), Lakshmanan and Sadri (1997)).Quantitative extensions of constraint-based grammars have mainly been motivated bypractical considerations. For example, Douglas and Dale (1992) presented an approach torobust parsing in PATR systems where according to a subjective value of necessity/optionalityof constraints, constraint violations are allowed, and so robustness is introduced into theformalism. Kim (1994) presented an approach to best-�rst chart parsing with PATR grammars.

34 Chapter 3. Quantitative CLPIn this approach, atomic values of feature structures are annotated with subjective weights, anda weight combination scheme is de�ned for feature structure uni�cation. The search space inbest-�rst parsing then is restricted by a treshold below which completed and predicted featurestructures are discarded. Erbach (1993a), Erbach (1993b), or Erbach (1998) introduced amodel of preference for the CUF system, which is generalizable to the CLP scheme of Höhfeldand Smolka (1988), and which is used, among others, for tasks such as best-�rst parsing forambiguity resolution and self-monitored generation. In Erbach's model, de�nite clauses as awhole are annotated with subjective preference values. Such preference values are combined inthe resolution process by calculating the preference value of a clause consequent as the productof the preference value of the clause and the preference values of the antecedent predicates,which are additionally weighted to add up to 1.The aim of our approach is to combine the mathematical exactness of the logic-programming approaches with the practical applicability of the quantitative-grammar ap-proaches. We will build our framework of quantitative CLP on ideas developed in the simpleand elegant framework of van Emden (1986). This means that we restrict our attention tonumerical weights attached to CLP clauses as a whole, and use the simple concepts of fuzzyset algebra to provide the basis for an intuitive formal semantics for quantitative CLP. Fur-thermore, we employ a min/max scheme for rule application which enables strategies such asalpha/beta pruning to be used for e�cient searching. Clearly, our approach improves upon vanEmden's approach by not being restricted to Horn clauses or to �nite derivations. Moreover,it enables the application of quantitative search strategies to constraint-based grammars in aformally well-de�ned way.3.3 Syntax of Quantitative CLPBuilding upon the CLP scheme of Höhfeld and Smolka (1988) reported in Chap. 2, we cande�ne the syntax of a quantitative de�nite clause speci�cation PF very quickly. The followingde�nitions are made with respect to implicit constraint languages L and R(L) . A de�niteclause speci�cation P in R(L) then can be extended to a quantitative de�nite clause speci�-cation PF in R(L) simply by adding numerical factors to program clauses.De�nition 3.1 (PF). A quantitative de�nite clause speci�cation PF in R(L) is a �nite setof quantitative formulae, called quantitative de�nite clauses, of the form�&B1 & : : : &Bn f! A;where A, B1; : : : ; Bn are R(L) -atoms, � is an L -constraint, n � 0, f 2 (0; 1]. We may writea quantitative formula also as A f � & B1 & : : : & Bn.These factors (the f in De�nition 3.1) should be thought of as abstract weights whichreceive a concrete interpretation in speci�c instantiations of PF .

3.4 Declarative Semantics of Quantitative CLP 35In the following the notation R(L) will be used more generally to notate relationally ex-tended constraint languages which possibly include quantitative formulae of the above form.3.4 Declarative Semantics of Quantitative CLP3.4.1 Fuzzy Set Algebra and Model-Theoretic SemanticsTo obtain a formal semantics for PF , �rst we have to introduce an appropriate quantitativemeasure into the set-theoretic speci�cation of R(L) -interpretations. One possibility to obtainquantitative R(L) -interpretations is to base the set algebra of R(L) -interpretations on thesimple and well-de�ned concepts of fuzzy set algebra (see Zadeh (1965)).Relying on Höhfeld and Smolka's speci�cation of base equivalent R(L) -interpretations,i.e., R(L) -interpretations extending the same L -interpretation, in terms of the denotations ofthe relation symbols in these interpretations, we can �fuzzify� such interpretations by regardingthe denotations of their relation symbols as fuzzy subsets of the set of tuples in the commondomain.Given constraint languages L and R(L) , we interpret each n-ary relation symbol r 2 Ras a fuzzy subset of Dn, for each R(L) -interpretation A with domain D. That is, we identifythe denotation of r under A with a total function�(_ ; rA) : Dn ! [0; 1];which can be thought of as an abstract membership function. Such membership functions aregeneralized characteristic functions, and classical set membership is coded in this context bycharacteristic functions taking only 0 and 1 as values.Next, we have to give a model-theoretic characterization of quantitative de�nite clauses.Clearly, any monotonous mapping could be used for the model-theoretic speci�cation of theinteraction of weights in quantitative de�nite clauses and accordingly for the calculation ofweights in the proof-theory of quantitative CLP. For concreteness, we will instantiate sucha mapping to the speci�c case of De�nition 3.2 resembling van Emden (1986)'s mode ofrule application. This will allow us to state the proof-theory of quantitative CLP in termsof min/max trees which in turn enables strategies such as alpha/beta pruning to be used fore�cient searching. Such a quantitative CLP scheme improves upon several shortcomings of vanEmden (1986)'s system, e.g. our quantitative CLP scheme clearly is not restricted to groundinstances of Horn theories, and the soundness and completeness results we will present arenot restricted to �nite derivations. However, the choice of the mode of rule application madeis not crucial for the substantial claims of this paper, and generalizations of this particularcombination mode to speci�c applications should be straightforward, but are beyond the scopeof this thesis.

36 Chapter 3. Quantitative CLPThe following de�nition of model corresponds to the de�nition of model in classical logicwhen considering only clauses with f = 1 and mappings Dn ! f0; 1g.De�nition 3.2 (Model). An R(L) -interpretation A extending some L -interpretation I is amodel of a quantitative de�nite clause speci�cation PF i� for each � 2 ASS , for each quanti-tative formula r(~x) f � & q1(~x1) & : : : & qk(~xk) in PF holds:If � 2 [[�]]I , then �(�(~x); rA) � f �minf�(�(~xj); qAj)j 1 � j � kg.In terms of membership degrees, this de�nition of model can be paraphrased as follows: Ifthe antecedent constraint is satis�able, then the membership degrees of the denotations of theconsequent atom must not be less than f times the membership degrees of the denotations ofthe antecedent atom. A truth-functional view could be obtained by considering membershipdegrees as truth degrees of atoms under variable assignments. From the viewpoint of sucha truth-functional propagation of weights across de�nite clauses, a clause contributes to theconsequent a truth value which is f times the truth value of the antecedent.Note that the notation of an R(L) -interpretation A will be used more generally to includeinterpretations of quantitative formulae. R(L) -solutions of a quantitative formula are de�nedas [[r(~x) f � & q1(~x1) & : : : & qk(~xk)]]A = f� 2 ASS j If � 2 [[�]]I , then �(�(~x); rA) �f �minf�(�(~xj); qAj)j 1 � j � kgg.Based on the above de�nition of model, the concept of logical consequence can be de�nedas usual.De�nition 3.3 (Logical consequence). A quantitative formula r(~x) f � is a logical con-sequence of a quantitative de�nite clause speci�cation PF i� for each R(L) -interpretation A ,A is a model of PF implies that A is a model of fr(~x) f �g.Furthermore, we have that the fact that r(~x) f � is a logical consequence of PF impliesthat r(~x) f 0 � is a logical consequence of PF for every f 0 � f .A goal G is de�ned similar to the non-quantitative case as a (possibly empty) conjunctionof R(L) -atoms and L -constraints. We can, without loss of generality, restrict goals to beof the form r(~x) & �, i.e., a (possibly empty) conjunction of a single relational atom r(~x)and an L -constraint �. This can be done since for each goal G = r1(~x1) & : : : & rk(~xk) &� which contains more than one relational atom, we can complete the program with a newclause C = r(~x1; : : : ; ~xk) 1 r1(~x1) & : : : & rk(~xk) & �, with G as antecedent and a newpredicate, which takes all variables in G as arguments, as consequent. Submitting the newpredicate r(~x1; : : : ; ~xk) as query yields the same results as would be obtained when queryingwith the compound goal G.Given some program PF and some goal G, a quantitative PF -answer ' of G is de�nedas a satis�able L -constraint ' s.t. ' f ! G is a logical consequence of PF . A quantitative

3.4 Declarative Semantics of Quantitative CLP 37formula ' f! r(~x) & � is de�ned to be a logical consequence of PF i� every model of PF isa model of f' f! r(~x) & �g. An R(L) -interpretation A is a model of f' f! r(~x) & �g i�[[']]A � [[�]]A and A is a model of fr(~x) f 'g.Next we have to associate a complete lattice of interpretations with quantitative de�niteclause speci�cations.Adopting Zadeh's de�nitions for set operations, we can de�ne a partial ordering on theset of base equivalent R(L) -interpretations. This is done by de�ning set operations on theseinterpretations with reference to set operations on the denotations of relation symbols in theseinterpretations. We get for all base equivalent R(L) -interpretations A; A0:� A � A 0 i� for each n-ary relation symbol r 2 R , for each � 2 ASS , for each ~x 2 VARn:�(�(~x); rA) � �(�(~x); rA0),� A = SX i� for each n-ary relation symbol r 2 R , for each � 2 ASS , for each ~x 2 VARn:�(�(~x); rA) = supf�(�(~x); rA0)j A 0 2 Xg,� A = TX i� for each n-ary relation symbol r 2 R , for each � 2 ASS , for each ~x 2 VARn:�(�(~x); rA) = inff�(�(~x); rA0)j A 0 2 Xg.Note that we de�ne furthermore sup ; = 0, inf ; = 1. Clearly, the set of all base equivalentR(L) -interpretations is a complete lattice under the partial ordering of set inclusion. Thesupremum is given by the union, and the in�mum by the intersection, for any set of base-equivalent R(L) -interpretations. The top element is the R(L) -interpretation A> such thatfor each r 2 R , for each ~u 2 DAr(r): �(~u; rA>) = 1, and the bottom element is the R(L) -interpretation A? such that for each r 2 R , for each ~u 2 DAr(r): �(~u; rA?) = 0.3.4.2 Minimal Model SemanticsBased upon the de�nition of a complete lattice of R(L) -interpretations of a quantitative def-inite clause speci�cation PF , we can state the following equations, which link the declarativeand operational semantics of PF . These equations de�ne the notion of a PF -chain, which willbe crucial for the construction of minimal models for PF . Similar to the non-quantitative case,these equations are based on the respective de�nition of model, and take for the quantitativecase the following form.De�nition 3.4. Let PF be a quantitative de�nite clause speci�cation in R(L) , I be an L -interpretation. Then the countably in�nite sequence hA0;A1;A2; : : : i of R(L) -interpretationsextending I is a PF -chain i� for each n-ary relation symbol r 2 R , for each � 2 ASS , foreach ~x 2 VARn:�(�(~x); rA0) := 0,

38 Chapter 3. Quantitative CLP�(�(~x); rAi+1) := maxff �minf�(�(~xj); qAij)j 1 � j � ng j there is a variant r(~x) f � &q1(~x1) & : : : & qn(~xn) of a clause in PF and � 2 [[�]]Aig.Before turning to the construction of minimal models, we have to prove the followinguseful lemma (see van Emden (1986), Lemmata 2.10', 2.11'). Lemma 3.1 assures that for eachtuple of objects in the denotation of a relation symbol under a minimal model, there is acorresponding �nite step in the PF -chain which introduces these objects into the minimalmodel denotation.Lemma 3.1. For each PF , for each PF -chain hA0;A1;A2; : : : i, for each k-ary relationsymbol r 2 R , for each � 2 ASS , for each ~x 2 VARk, there exists some n 2 IN s.t.�(�(~x); rSi�0 Ai) = �(�(~x); rAn).Proof. We have to show that the supremum v = supf�(�(~x); rAi)j i � 0g can be attained forsome n 2 IN.v = 0: For v = 0, we have n = 0.v > 0: For v > 0, we have to show that for any real �, 0 < � < v, the set f�(�(~x); rAi)j i �0 and �(�(~x); rAi) � �g is �nite.Let F be the �nite set of real numbers of factors of clauses in PF , m be the greatestelement in F s.t. m < 1 and let q be the smallest integer s.t. mq < �.Then, since each real number �(�(~x); rAi) is a product of a sequence of elements of F ,the number of di�erent products � � is not greater than jF jq, the permutation of jF jdi�erent things taken q at a time with repetitions, and thus �nite.Hence, the supremum is the maximum attained for some n 2 IN.Now we can obtain minimal model properties for quantitative de�nite clause speci�cationssimilar to those for the non-quantitative programs of Höhfeld and Smolka (1988). Based on theconstructive de�nition of a PF -chain of R(L) -interpretations extending an L -interpretationI , anR(L) -interpretation A is obtainable as theR(L) -interpretation which is both a model ofPF and minimal with respect to the lattice of base equivalent R(L) -interpretations extendingI . Theorem 3.2 states that we can construct a minimal model A of PF for each quantitativede�nite clause speci�cation PF in the extension of an arbitrary constraint language L and foreach L -interpretation. This means that�due to the de�niteness of PF �we can restrict ourattention to a minimal model semantics of PF .Theorem 3.2 (De�niteness). For each L -interpretation I , for each quantitative de�niteclause speci�cation PF in R(L) , for each PF -chain hA0;A1;A2; : : : i of R(L) -interpretationsextending some L -interpretation I :

3.4 Declarative Semantics of Quantitative CLP 39(i) A0 � A1 � : : : ,(ii) the union A := Si�0Ai is a model of PF extending I ,(iii) A is the minimal model of PF extending I .Proof. (i) We have to show that Ai � Ai+1. We prove by induction on i showing for eachconstraint language L , for each quantitative de�nite clause speci�cation PF in R(L) , for eachL -interpretation I , for each PF -chain hA0;A1;A2; : : : i of R(L) -interpretations extendingsome L -interpretation I , for each n-ary relation symbol r 2 R , for each � 2 ASS , for each~x 2 VARn, for each i 2 IN: �(�(~x); rAi) � �(�(~x); rAi+1).Base: �(�(~x); rA0) = 0 � �(�(~x); rA1).Hypothesis: Suppose �(�(~x); rAn�1) � �(�(~x); rAn).Step: �(�(~x); rAn) = v > 0=) there exists a variant r(~x) f � & q1(~x1) & : : : & qk(~xk) of a clause in PF s.t. v =f � minf�(�(~x1); q1An�1); : : : ; �(�(~xk); qkAn�1)g and � 2 [[�]]An�1 , by De�nition3.4=) �(�(~x1); q1An) � �(�(~x1); q1An�1); : : : ; �(�(~xk); qkAn) � �(�(~xk); qkAn�1) and � 2[[�]]An , by the hypothesis=) �(�(~x); rAn+1) � v, by de�nition of �(�(~x); rAi+1)=) �(�(~x); rAn) � �(�(~x); rAn+1).For v = 0 it follows immediately that �(�(~x); rAn) � �(�(~x); rAn+1).Claim (i) follows by arithmetic induction.(ii) We have to show that A := Si�0Ai is a model of PF extending I . We prove that foreach clause r(~x) f � & q1(~x1) & : : : & qk(~xk) in PF , for each � 2 ASS : If � 2 [[�]]A, then�(�(~x); rA) � f �minf�(�(~xj); qjA)j 1 � j � kg.Note that since every Ai is anR(L) -interpretation extending I , A is anR(L) -interpretationextending I .Now let r(~x) f � & q1(~x1) & : : : & qk(~xk) be a clause in PF s.t. for some � 2 ASS :� 2 [[�]]A and �(�(~xi); qiA) = minf�(�(~xj); qjA)j 1 � j � kg = v.Then there exists some n 2 IN s.t. v = �(�(~xi); qiAn) = minf�(�(~xj); qjAn)j 1 � j � kg, byLemma 3.1 and since for all j s.t. 1 � j � k : �(�(~xj); qjA) = supf�(�(~xj); qjAi)j i � 0g

40 Chapter 3. Quantitative CLP=) �(�(~x); rAn+1) � f � v, by De�nition 3.4=) �(�(~x); rA) � �(�(~x); rAn+1), since �(�(~x); rA) = supf�(�(~x); rAi)j i � 0g=) �(�(~x); rA) � f �minf�(�(~xj); qjA)j 1 � j � kg.This completes the proof for claim (ii).(iii)We have to show that A is the minimal model of PF extending I . We prove for every baseequivalent model B of PF : Ai � B, which gives A � B, by induction on i showing for eachconstraint language L , for each quantitative de�nite clause speci�cation PF in R(L) , for eachL -interpretation I , for each PF -chain hA0;A1;A2; : : : i of R(L) -interpretations extendingsome L -interpretation I , for each n-ary relation symbol r 2 R , for each � 2 ASS , for each~x 2 VARn, for each i 2 IN: �(�(~x); rAi) � �(�(~x); rB).Base: �(�(~x); rA0) = 0 � �(�(~x); rB).Hypothesis: Suppose �(�(~x); rAn�1) � �(�(~x); rB).Step: �(�(~x); rAn) = v > 0=) there exists a variant r(~x) f � & q1(~x1) & : : : & qk(~xk) of a clause in PF s.t. v =f � minf�(�(~x1); q1An�1); : : : ; �(�(~xk); qkAn�1)g and � 2 [[�]]An�1 , by De�nition3.4=) �(�(~x1); q1B) � �(�(~x1); q1An�1); : : : ; �(�(~xk); qkB) � �(�(~xk); qkAn�1) and � 2[[�]]B, by the hypothesis=) �(�(~x); rB) � v, since B is a model of PF=) �(�(~x); rAn) � �(�(~x); rB).For v = 0 it follows immediately that �(�(~x); rAn) � �(�(~x); rB).Claim (iii) follows by arithmetic induction.The following proposition allows us to link the declarative description of the desired outputfrom PF and a goal, i.e., a quantitative PF -answer, to the minimal model semantics of PF .That is, Proposition 3.3 shows that quantitative PF -answers are completely characterized byminimal models of PF . Similar to the non-quantitative case, this is done for the quantitativecase by connecting the concept of logical consequence with the concept of minimal model.Proposition 3.3. Let PF be a quantitative de�nite clause speci�cation in R(L) , ' be an L -constraint and G be a goal. Then ' v! G is a logical consequence of PF i� every minimalmodel A of PF is a model of f' v! Gg.

3.5 Operational Semantics for Quantitative CLP 41Proof. If: For each minimal model A of PF : A is a model of f' v! Gg=) for every model B of PF base equivalent to some minimal model A of PF : B is amodel of f' v! Gg, since A � B by Theorem 3.2, (iii)=) ' v! G is a logical consequence of PF .Only if: ' v! G is a logical consequence of PF=) every model of PF is a model of f' v! Gg, by De�nition 3.3=) A is a model of f' v! Gg.The following example illustrates the basic concepts of the declarative semantics of quan-titative de�nite clause speci�cations. The program of Fig. 3.1 is a quantitative version of theprogram of Fig. 2.1. The factors attached to clauses 2 and 3 express a preference of the L -constraint X = a over the L -constraint X = b in the de�nition of the predicate p. Predicateq is de�ned uniquely in clause 1 and gets assigned the factor 1.1 q(X) 1 p(X):2 p(X) :7 X = a:3 p(X) :5 X = b:Figure 3.1: Quantitative constraint logic programThe construction of a minimal model for the program of Fig. 3.1 is shown in Fig. 3.2. Fora variable assignment � 2 [[X = a]]I , the membership value of :7 of the object h�(X)i in thedenotation of the predicate p (resp. q) under the minimal model A is obtained in step 1 (resp.step 2) of the PF -chain construction. For a variable assignment � 2 [[X = b]]I , a membershipdegree of :5 is obtained in similar manner.Clearly, A = Si�0Ai is a minimal model of the quantitative program of Fig. 3.1.3.5 Operational Semantics for Quantitative CLP3.5.1 Min/Max Trees and Quantitative Proof TreesThe proof procedure for quantitative CLP can be stated conveniently as a search of a tree,corresponding to the search of an SLD-and/or tree in conventional logic programming or tothe search of a derivation tree as de�ned in Chap. 2 for CLP. The structure of such a treeexactly mirrors the construction of a minimal model and thus may be de�ned as a min/maxtree. That is, according to the minimal model construction, which is based on the operationsmin and max, a min/max tree combines the standard left-right selection and depth-�rst search

42 Chapter 3. Quantitative CLP
� 2 [[X = a]]I :�(h�(X)i ; pA0) = 0,�(h�(X)i ; pA1) = maxf:7 �min;g = :7,�(h�(X)i ; pA2) = maxf:7 �min;g = :7,...�(h�(X)i ; pSi�0 Ai) = supf0; :7; :7; : : : g = :7;�(h�(X)i ; qA0) = 0,�(h�(X)i ; qA1) = 0,�(h�(X)i ; qA2) = maxf1 �minf:7gg = :7,...�(h�(X)i ; qSi�0 Ai) = supf0; 0; :7; : : : g = :7.� 2 [[X = b]]I :�(h�(X)i ; pA0) = 0,�(h�(X)i ; pA1) = maxf:5 �min;g = :5,�(h�(X)i ; pA2) = maxf:5 �min;g = :5,...�(h�(X)i ; pSi�0 Ai) = supf0; :5; :5; : : : g = :5;�(h�(X)i ; qA0) = 0,�(h�(X)i ; qA1) = 0,�(h�(X)i ; qA2) = maxf1 �minf:5gg = :5,...�(h�(X)i ; qSi�0 Ai) = supf0; 0; :5; : : : g = :5,Figure 3.2: PF -chain for quantitative constraint logic program

3.5 Operational Semantics for Quantitative CLP 43with a min/max calculation of node-values. A relation node of a derivation tree correspondsin the quantitative case to a max-node, and a constraint node to a min-node. In contrast toderivation trees, in min/max trees the unique successor of a constraint node is split up intoseveral successor nodes, one for each relational atom in the goal. This is necessary to calculatea minimum of node values at a min-node.In the following we will assume implicit constraint languages L and R(L) and a givenquantitative de�nite clause speci�cation PF in R(L) . Furthermore, V will denote the �niteset of variables in the query and the V-solutions of a constraint � in an interpretation I arede�ned as [[�]]IV := f�jVj � 2 [[�]]Ig and �jV is the restriction of � to V.De�nition 3.5 (Min/max tree). A min/max tree determined by a query G1 and a quanti-tative de�nite clause speci�cation PF has to satisfy the following conditions:� Each max-node is labeled by a goal. The value of each nonterminal max-node is themaximum of the values of its successors.� Each min-node is labeled by a clause from PF and a goal. The value of each nonterminalmin-node is f �m, where f is the factor of the clause and m is the minimum of thevalues of its successors.� The successors of every max-node are all min-nodes s.t. for every clause C with r�! -resolvent G0 obtained by C from goal G in a max-node, there is a min-node successorlabeled by C and G0.� The successors of every min-node are all max-nodes s.t. for every R(L) -atom r(~x) ingoal G&�&�0 in a min-node with c�! -resolvent G&�00, there is a max-node successorlabeled by r(~x) & �00.� The root node is a max-node labeled by G1.� A success node is a terminal max-node labeled by a satis�able L -constraint. The valueof a success node is 1.� A failure node is a terminal max-node which is not a success node. The value of a failurenode is 0.Similar to the non-quantitative case, a proof tree in the quantitative case is a subtree of aderivation tree. However, in a quantitative proof tree, each min-node takes all of the successorsof the min-node of the min/max tree as its successors. Furthermore, to check the consistencyof the constraint solving results in the min-node successors, an additional c�! -step has to beapplied to the conjunction of all success nodes of a quantitative proof tree. This step yieldsa satis�able L -constraint, called answer constraint, if the conjunction of the L -constraints inthe success nodes is satis�able.

44 Chapter 3. Quantitative CLPDe�nition 3.6 (Quantitative proof tree). A quantitative proof tree for a goal G1 fromquantitative de�nite clause speci�cation PF is a subtree of a min/max supertree determined byG1 and PF and de�ned as follows:� The root node of the proof tree is the root node of the supertree.� A max-node of the proof tree is a max-node of the supertree and takes one of the successorsof the supertree max-node as its successor.� A min-node of the proof tree is a min-node of the supertree and takes all of the successorsof the supertree max-node as its successors.� All terminal nodes in the proof tree are success nodes �; �0; : : : s.t. � & �0 & : : : c�! 'and ' is a satis�able L -constraint, called answer constraint.� Values are assigned to proof tree nodes in the same way as to min/max tree nodes.3.5.2 Soundness and CompletenessTo prove soundness and completeness of the generalized SLD-resolution proof procedure de-�ned via min/max trees and quantitative proof trees, some further concepts have to be intro-duced.Note that the de�nitions of renaming, �-variant, and variant carry over to the quan-titative case without changes. Clearly, we have the property that a constraint languageR(L) containing quantitative de�nite clauses is closed under renaming if the underlying con-straint language L is closed under renaming. Furthermore, for each such generalized constraintlanguage R(L) which is closed under renaming, and for each R(L) -interpretation A , we havethat A is a model of an R(L) -constraint i� A is a model of each of its variants.Next, we have to rede�ne a complexity measure for goal reduction for the quantitativecase. This measure is crucial in proving termination of goal reduction and works by keyingsteps of the minimal model construction to steps of the goal reduction process.� The complexity of a variable assignment � for an atom r(~x) in the minimal model A s.t.�(�(~x); rA) > 0 is de�ned ascomp(�; r(~x);A) := minfij �(�(~x); rA) = �(�(~x); rAi)g;� The complexity of � for goal G = r1(~x1) & : : : & rk(~xk) & � in A s.t. � 2 [[�]]A and�(�(~xi); riA) > 0 for all i : 1 � i � k is de�ned ascomp(�;G;A) := fcomp(�; ri(~xi);A)j 1 � i � kgwhere f: : : g is a multiset.

3.5 Operational Semantics for Quantitative CLP 45� The V-complexity of � for goal G = r1(~x1) & : : : & rk(~xk) & � in A s.t. � 2 [[�]]AV and�(�(~xi); riA) > 0 for all i : 1 � i � k is de�ned ascompV(�;G;A) := minfcomp(�;G;A) j � 2 [[�]]A; �(�(~xi); riA) > 0for all i : 1 � i � k and � = �jVg.The minimum is taken with respect to a total ordering on multisets s.t. M � M 0 i�8x 2M nM 0;9x0 2M 0 nM s.t. x < x0.The following proofs show that the quantitative proof procedure is sound and completewith respect to the above stated semantic concepts. Again, there is a close similarity to thecorresponding statements for the non-quantitative case of Höhfeld and Smolka (1988).Theorem 3.4 (Soundness). For each quantitative de�nite clause speci�cation PF , for eachgoal G, for each L -constraint ': If there is a quantitative proof tree for G from PF with answerconstraint ' and root value v, then ' v! G is a logical consequence of PF .Proof. The result is proven by induction on the depth d of the quantitative proof tree, whereone unit of depth is from max-node to max-node.Base: We know that quantitative proof trees of depth d = 0 have to take the form of a singlemax-node labeled by a satis�able L -constraint with root value 1. Then 1! is alogical consequence of PF .Hypothesis: Suppose the result holds for quantitative proof trees of depth d < n.Step: Let G0 = r(~x) & � be a goal labeling a quantitative proof tree of depth d = n withanswer constraint and root value h,let G00 = q1(~x1) & : : : & qk(~xk) & � & �0 be a goal labeling the min-node obtained fromG0 via r�! using the variant C 0 = r(~x) f �0 & q1(~x1) & : : : & qk(~xk) of a clause C inPF ,and let G1 = q1(~x1) & �00; : : : ; Gk = qk(~xk) & �00 be goals labeling max-nodes obtainedfrom G00 via c�! .Then each goal G1; : : : ; Gk labels a quantitative proof tree of depth d < n with respectiveanswer constraint 1; : : : ; k and root value g1; : : : ; gk s.t. h = f �minfg1; : : : ; gkg andfor each model A of PF : [[]]A = [[1 & : : : & k]]A, by de�nition of min/max tree=) 1 g1! G1; : : : ; k gk! Gk are logical consequences of PF , by the hypothesis=) for each model A of PF , for each � 2 ASS : [[]]A � [[�00]]A and if � 2 [[]]A, then�(�(~x1); q1A) � g1; : : : ; �(�(~xk); qkA) � gk, by de�nition of logical consequence

46 Chapter 3. Quantitative CLP=) for each model A of PF , for each � 2 ASS : [[]]A � [[�0]]A and if � 2 [[]]A, then�(�(~x); rA) � f � minf�(�(~x1); q1A); : : : ; �(�(~xk); qkA)g, since each model A ofPF is a model of C 0 i� A is a model of C=) for each model A of PF , for each � 2 ASS : [[]]A � [[�]]A and if � 2 [[]]A, then�(�(~x); rA) � h=) h! r(~x) & � is a logical consequence of PF .The result follows by arithmetic induction.Theorem 3.5 (Completeness). Let PF be a quantitative de�nite clause speci�cation inR(L) , L be closed under renaming, A be a minimal model of PF , G be a goal of the formr(~x) & �, � 2 [[�]]AV and �(�(~x); rA) = v s.t. v > 0 and � = �jV. Then there exists a quanti-tative proof tree for G from PF with answer constraint ' and root value v and � 2 [[']]AV .Proof. The result is proven by induction on c = compV(�;G;A).Base: We know that goals with complexity c = ; have to take the form of a satis�able L -constraint �. Then there exists a quantitative proof tree for � from PF consisting of asingle max-node labeled with � and root value 1.Hypothesis: Suppose the result holds for goals with complexity c < N .Step: Let G0 = q(~x) & , �0 2 [[]]AV , �00 2 [[]]A, �0 = �00jV, compV(�0; G0;A) =comp(�00; G0;A) = N , comp(�00; q(~x);A) := i, �(�00(~x); qA) = h and h > 0.First we observe, that �(�00(~x); qAi) = h, since comp(�00; q(~x);A) := i=) there exists a variant q(~x) f 0 & q1(~x1) & : : : & qk(~xk) s.t. h =f � minf�(�(~x1); q1Ai�1); : : : ; �(�(~xk); qkAi�1)g and �00 2 [[0]]Ai�1 and(V [V()) \ V(0 & q1(~x1) & : : : & qk(~xk)) � V(q(~x)), by De�nition 3.4and renaming closure of R(L) , �nite V and in�nitely many variables in VAR=) G0 r;c�! G00 s.t. G00 = q1(~x1) & : : : & qk(~xk) & 00 and [[00]]AV = [[& 0]]AV , byde�nition of the inference rules.Next, �0 2 [[00]]AV , since �00 2 [[]]A, �00 2 [[0]]Ai�1 � [[0]]A, �00 2 [[& 0]]A,[[& 0]]AV = [[00]]AV and �0 = �00jV.Finally, compV(�0; G00;A) < N , since compV(�0; G00;A) � comp(�00; G00;A) < fig =fcomp(�00; q(~x);A)g = comp(�00; G0;A) = compV(�0; G0;A) = N .Now we can obtain goals G1 = q1(~x1) & 00; : : : ; Gk = qk(~xk) & 00 from G00 s.t.�0 2 [[00]]AV , �(�00(~x1); q1A) = g1 > 0; : : : ; �(�00(~xk); qkA) = gk > 0, �0 = �00jV andcompV(�0; G1;A) < N; : : : ; compV(�0; Gk;A) < N

3.5 Operational Semantics for Quantitative CLP 47=) for each goal G1; : : : ; Gk, there exists a quantitative proof tree from PF withrespective answer constraint �1; : : : ; �k and respective root valueg01 = g1; : : : ; g0k = gk and �0 2 [[�1 & : : : & �k]]AV = [[�]]AV , by the hypothesis=) there exists a quantitative proof tree for G0 from PF with answer constraint � and rootvalue h0 = f �minfg01; : : : ; g0kg = f �minfg1; : : : ; gkg = h and �0 2 [[�]]AV .The result follows by arithmetic induction.Returning to our toy example, the proof procedure for quantitative de�nite clause speci�-cations can be illustrated as follows. A min/max derivation tree for the query q(X) &X = eand the program of Fig. 3.1 is given in Fig. 3.3.

X = a1c
2;X = e&X = a:7�minf1g X = b1c

3;X = e&X = b:5�minf1gr rp(X) &X = emaxf:7;:5g=:7c1; p(X) &X = e1�minf:7g=:7rq(X) &X = emaxf:7g=:7

Figure 3.3: Min/max tree for quantitative constraint logic programThis tree contains two success nodes, X = a and X = b, from which two distinct quanti-tative proof trees can be obtained (see Fig. 3.4).Soundness of quantitative CLP tells us that corresponding to the quantitative proof treewith answer constraint X = a (resp. X = b) and root value :7 (resp. :5), we know that thequantitative formula X = a :7! q(X) &X = e (resp. X = b :5! q(X) &X = e) is a logicalconsequence of the program of Fig. 3.1. This can easily be veri�ed from the minimal modelconstructed in Fig. 3.2.Completeness says that for an object h�(X)i assigned by � 2 [[X = e]]I with membershipdegree �(h�(X)i ; qA) = :7 to the denotation of q under the minimal model A , we have acorresponding proof tree with answer constraint X = a and root value :7 and � 2 [[X = a]]I .

48 Chapter 3. Quantitative CLP

X = a1c
2;X = e&X = a:7�minf1grp(X) &X = emaxf:7g=:7c1; p(X) &X = e1�minf:7g=:7rq(X) &X = emaxf:7g=:7

X = b1c
3;X = e&X = b:5�minf1grp(X) &X = emaxf:5g=:5c1; p(X) &X = e1�minf:5g=:5rq(X) &X = emaxf:5g=:5

Figure 3.4: Quantitative proof trees for quantitative constraint logic programSimilarly, for an object h�0(X)i with �0 2 [[X = e]]I and �(h�0(X)i ; qA) = :5, we have a prooftree with answer constraint X = b and root value :5 and �0 2 [[X = b]]I .
3.6 Parsing and Searching in Quantitative CLGsThe quantitative CLP scheme presented in the last chapter allows for a de�nition of the parsingproblem (and similarly of the generation problem) for quantitative CLGs in the following way:Given a program PF (encoding some quantitative CLG) and a query G (encoding some inputsentence), we ask if we can infer a PF -answer ' of G (encoding a parse of the input sentence)at a value � (encoding the weight of the parse) proving ' �! G to be a logical consequenceof PF . That is, according to the soundness and completeness results presented above, theoperational concept of a quantitative proof tree has a declarative counterpart in the formof a quantitative PF -answer. Truth-functionally, a quantitative PF -answer tells us that theanswer constraint ' contributes a truth-value � to the goal G in every model of PF . In termsof membership values, this means that a PF -answer to a query G = r(~x) & � at value � is asatis�able L -constraint ' such that for each model A of PF holds: If ' is satis�able, then �is satis�able and all objects assigned to ~x by a solution of ' are in the denotation of r(~x) ata membership value of at least �.

3.6 Parsing and Searching in Quantitative CLGs 493.6.1 Quantitative Feature-Based CLGsReturning to the simple linguistic CLG of Fig. 2.7, the formal scheme described above can beillustrated as follows.The quantitative constraint logic program PF of Fig. 3.5 is obtained from the program ofFig. 2.7 simply by adding numerical factors to the program clauses.1 phrase(X) f1 X = (phrase^CAT : s^DTR1:CAT : n^DTR2:CAT : v^DTR1:AGR :Y ^ DTR2:AGR : Y ^ DTR1 : Z1 ^ DTR2 : Z2) & sign(Z1) & sign(Z2).2 phrase(X) f2 X = (phrase ^ CAT : np ^ DTR1:CAT : n ^ DTR2:CAT : n ^ DTR1 :Z1 ^ DTR2 : Z2) & sign(Z1) & sign(Z2).3 word(X) f3 X = (word ^ CAT : n ^ PHON : Clinton ^ AGR : sg).4 word(X) f4 X = (word ^ CAT : v ^ PHON : talks ^ AGR : sg).5 word(X) f5 X = (word ^ CAT : n ^ PHON : talks ^ AGR : pl).6 sign(X) f6 phrase(X).7 sign(X) f7 word(X).Figure 3.5: Quantitative feature-based constraint logic grammarGiven the quantitative CLG of Fig. 3.5 and a goal G of the formX = (sign ^ DTR1: PHON : Clinton ^ DTR2: PHON : talks) & sign(X);again encoding the input sentence Clinton talks, we can infer two di�erent proof trees for G,each with a speci�c answer constraint, encoding a parse, and a speci�c root value, encodingthe preference value of the parse. Again, we will depict only success branches and consider theconstraint solver as a black box. The two derivations are shown in Figs. 3.6 and 3.7.The answer constraint � of the �rst derivation is obtained by constraint solving of theterminal constraints of the �rst proof tree. We get?[: : :] & ? [: : :] c�!X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT :n ^ DTR1: PHON : Clinton ^ DTR1: AGR : Y ^ DTR1: AGR : sg ^ DTR2 :word ^ DTR2: CAT : v ^ DTR2: PHON : talks ^ DTR2: AGR : Y ^ DTR2: AGR : sg)yielding the reading [ClintonN talksV]S with weight� = f6 � f1 �minff7 � f3; f7 � f4g:The answer constraint of the second derivation is

50 Chapter 3. Quantitative CLP

?[X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1:AGR : Y ^ DTR1:AGR : sg^DTR2 : word ^ DTR2: CAT : v ^ DTR2: PHON : talks^DTR2:AGR : Y ^ DTR2:AGR : sg)]1
c

3; � [X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1:AGR : Y ^ DTR2 : word ^ DTR2: CAT : v^DTR2: PHON : talks ^ DTR2:AGR : Y ^ DTR1 : Z1 ^ DTR2 : Z2)]& Z1 = (word ^ CAT : n ^ PHON : Clinton ^ AGR : sg)f3
r

�[X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1:AGR : Y ^ DTR2 : word ^ DTR2: CAT : v^DTR2: PHON : talks ^ DTR2:AGR : Y ^ DTR1 : Z1 ^ DTR2 : Z2)]& word(Z1)f3
c

7; � [X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1:AGR : Y ^ DTR2 : word ^ DTR2: CAT : v^DTR2: PHON : talks ^ DTR2:AGR : Y ^ DTR1 : Z1 ^ DTR2 : Z2)]& word(Z1)f7 � f3
r

�[X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1:AGR : Y ^ DTR2 : word ^ DTR2: CAT : v^DTR2: PHON : talks ^ DTR2:AGR : Y ^ DTR1 : Z1 ^ DTR2 : Z2)]& sign(Z1)f7 � f3
?[: : :]1c

4; � [: : :]& Z2 = (word ^ CAT : v^PHON : talks ^ AGR : sg)f4r
�[: : :] & word(Z2)f4c7; � [: : :] & word(Z2)f7 � f4r�[: : :] & sign(Z2)f7 � f4c c1; X = (sign ^ DTR1: PHON : Clinton ^ DTR2: PHON : talks)&X = (phrase ^ CAT : s ^ DTR1: CAT : n ^ DTR2: CAT : v ^ DTR1:AGR : Y^DTR2:AGR : Y ^ DTR1 : Z1 ^ DTR2 : Z2) & sign(Z1) & sign(Z2)f1 �minff7 � f3; f7 � f4grX = (sign ^ DTR1: PHON : Clinton ^ DTR2: PHON : talks) & phrase(X)f1 �minff7 � f3; f7 � f4gc6; X = (sign ^ DTR1:PHON : Clinton ^ DTR2: PHON : talks) & phrase(X)f6 � f1 �minff7 � f3; f7 � f4grX = (sign ^ DTR1: PHON : Clinton ^ DTR2: PHON : talks) & sign(X)f6 � f1 �minff7 � f3; f7 � f4g

Figure 3.6: Quantitative derivation of [ClintonN talksV]S

3.6 Parsing and Searching in Quantitative CLGs 51

?[X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1: AGR : sg ^ DTR2 : word^DTR2: CAT : n ^ DTR2: PHON : talks)]1c
3; � [X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR2 : word ^ DTR2: CAT : n^DTR2: PHON : talks ^ DTR1 : Z1 ^ DTR2 : Z2)]& Z1 = (word ^ CAT : n ^ PHON : Clinton)f3

r
�[X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR2 : word ^ DTR2: CAT : n^DTR2: PHON : talks ^ DTR1 : Z1 ^ DTR2 : Z2)]& word(Z1)f3

c
7; � [X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR2 : word ^ DTR2: CAT : n^DTR2: PHON : talks ^ DTR1 : Z1 ^ DTR2 : Z2)]& word(Z1)f7 � f3

r
�[X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR2 : word ^ DTR2: CAT : n^DTR2: PHON : talks ^ DTR1 : Z1 ^ DTR2 : Z2)]& sign(Z1)f7 � f3

y[X = (phrase ^ CAT : np^DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton^DTR2 : word ^ DTR2: CAT : n^DTR2: PHON : talks^DTR2: AGR : pl)]1
c5; � [: : :]& Z2 = (word ^ CAT : n^PHON : talks ^ AGR : pl)f5r

�[: : :] & word(Z2)f5c7; � [: : :] & word(Z2)f7 � f5r�[: : :] & sign(Z2)f7 � f5c c
2; X = (sign ^ DTR1: PHON : Clinton ^ DTR2: PHON : talks)&X = (phrase ^ CAT : np ^ DTR1: CAT : n ^ DTR2: CAT : n^DTR1 : Z1 ^ DTR2 : Z2)& sign(Z1) & sign(Z2)f2 �minff7 � f3; f7 � f5g

rX = (sign ^ DTR1: PHON : Clinton ^ DTR2: PHON : talks) & phrase(X)f2 �minff7 � f3; f7 � f5gc6; X = (sign ^ DTR1:PHON : Clinton ^ DTR2: PHON : talks) & phrase(X)f6 � f2 �minff7 � f3; f7 � f5grX = (sign ^ DTR1: PHON : Clinton ^ DTR2: PHON : talks) & sign(X)f6 � f2 �minff7 � f3; f7 � f5g

Figure 3.7: Quantitative derivation of [ClintonN talksN]NP

52 Chapter 3. Quantitative CLP?[: : :] & y [: : :] c�!X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT :n ^ DTR1: PHON : Clinton ^ DTR1: AGR : sg ^ DTR2 : word ^ DTR2: CAT :n ^ DTR2: PHON : talks ^ DTR2: AGR : pl)yielding the reading [ClintonN talksN]NP with weight� = f6 � f2 �minff7 � f3; f7 � f5g:Suppose now that we have a subjective weight assignment for the factors of the quantitativeCLG of Fig. 3.5 where f1 > f2 and f4 > f5. That is, we prefer the rule S ! N V over therule NP ! N N to describe a phrase. Furthermore, the terminal rule V ! talks, encodingthe word talks as a verb, is preferred over the rule N ! talks, encoding it as a noun. Clearly,we get a preference of the answer constraint �, encoding the reading [ClintonN talksV]S , overthe answer constraint , encoding the reading [ClintonN talksN]NP , with � > � .3.6.2 Alpha-Beta Searching in Quantitative CLGsAs proposed by van Emden (1986), search strategies such as alpha-beta pruning that are wellknown in game theory can be used quite directly to de�ne e�cient search strategies for quan-titative rule sets. The same technique can be applied to the proof procedure of quantitativeCLP. Alpha-beta pruning is a technique to speed up the search in min/max trees withoutloss of information. For our application, alpha-beta pruning can be used to e�ciently searcha min/max derivation tree for the maximal valued proof tree. The fact that no information islost in alpha-beta pruning means in our context that the maximal valued proof tree is guar-anteed to be found. Furthermore, in general, the amount of search needed to �nd the bestproof for a goal, i.e. the maximal valued proof tree for a goal from a program, will be reducedremarkably by controlling the search by the alpha-beta algorithm.The central concepts of alpha-beta pruning can be summarized as follows (see Nilsson(1982)).Usually some form of depth-�rst search is employed in alpha-beta pruning. The searchprocedure associates with each max-node (resp. min-node) a dynamic alpha-value (resp. beta-value). These values are based on the static values of terminal nodes and will be backed-up insubsequent search by lookahead in the tree.The search procedure starts with a maximum depth execution of depth-�rst search, ini-tializing the alpha and beta values of the �rst subtree. During search, alpha and beta valuesare computed as follows:� The alpha value of a max-node is the maximum of the current values of its successors.� The beta value of a min-node is the minimum of the current values of its successors,multiplied by the factor of the clause labeling the min-node.

3.6 Parsing and Searching in Quantitative CLGs 53The rules for discontinuing the search are as follows:� Alpha-cuto� : Search can be discontinued below any min-node having a beta value lessthan or equal to the alpha value of any of its max-node ancestors. The �nal backed-upvalue of this min-node can then be set to its beta value.� Beta-cuto� : Search can be discontinued below any max-node with the product of itsalpha value and the factor of the rule labeling its min-node ancestor being greater thanor equal to the beta value of this min-node ancestor for all min-node ancestors. The �nalbacked-up value of this max-node can then be set to its alpha value.The procedure terminates when all of the successors of the root node have been given a �nalbacked-up value. The maximal valued proof tree is then the one taking as single successor ofeach of its max-nodes the successor with the maximal �nal backed-up value. This proof treeis found e�ciently if the original min/max tree can be pruned by the alpha-beta procedure toa tree consisting of a relatively small number of nodes.Let us illustrate these concepts with a simple example. A sample arti�cial program is givenin Fig. 3.8. 1 p(X) :7 r(X) & s(X):2 r(X) :8 X = a:3 s(X) :9 X = a:4 s(X) :2 r(X):5 p(X) :7 t(X) & r(X) & s(X):6 t(X) :1 X = a:Figure 3.8: Quantitative constraint logic programThe complete min/max derivation tree for the query p(X)&X = a to the program of Fig.3.8 is given in Fig. 3.9.The concept of alpha-beta pruning can be illustrated with this example as follows (see Fig.3.10). The alpha value � = :9 of the max-node s(X) &X = a times the factor :7 of the min-node ancestor is greater than the beta value � = :56 of this min-node. Since we know that thisalpha value cannot be decreased by further evaluation of the subtrees of this max-node, andsince we are interested in the minimum of the values of the successors of this min-node, we cancut o� the search below this max-node without a risk of losing information relevant to the �nalmaximal valued proof tree. This cuto� is indicated by the dotted line below this max-node inFig. 3.10. In a similar way, search below the min-node 5; t(X) & r(X) & s(X) &X = a canbe discontinued because the non-decreasing beta value � = :07 of this node is already smallerthan the alpha value � = :56 of its max-node ancestor. The pruning of the two subtrees of this

54 Chapter 3. Quantitative CLP

X = a1c2;X = a&X = a:8rr(X) &X = a:8
X = a1c3;X = a&X = a:9

X = a1c2;X = a &X = a:8rr(X) &X = a:8c4; r(X) &X = a:2�:8r rs(X) &X = amax(:9;:16)=:9c c1; r(X) & s(X) &X = a:7�min(:8;:9)=:56
X = a16;X = a &X = a:1t(X) &X = a:1

X = a1c2;X = a&X = a:8rr(X) &X = a:8
X = a1c3; X = a&X = a:9

X = a1c2; X = a&X = a:8rr(X) &X = a:8c4; r(X) &X = a:2�:8r rs(X) &X = amax(:9;:16)=:9c c c5; t(X) & r(X) & s(X) &X = a:7�min(:1;:8;:9)=:07r rp(X) &X = amax(:56;:07)=:56

Figure 3.9: Complete search of a quantitative derivation treemin-node again is indicated by dotted lines in Fig. 3.10. Again, there is no risk of informationloss in this pruning step.Clearly, in each application of the alpha-beta procedure, the number of nodes to be gen-erated and evaluated is minimal when the number of cuto�s is maximal. The best case occurswhen the maximal valued proof tree is reached �rst in the depth-�rst search. In the worstcase, no gain in search e�ciency is obtained at all, i.e., all nodes of the min/max tree have tobe generated. In either case, the maximal valued proof tree is guaranteed to be left unpruned.Risking loss of relevant information, the alpha-beta procedure can be improved by setting aninitial alpha value for the root note which allows to cut o� search branches with root valuelower than this initial value. For a thorough analysis of the properties of alpha-beta pruningthe reader is referred to Knuth and Moore (1975).Furthermore, it should be noted that a strict application of alpha-beta pruning is possibleonly for quantitative CLP based on min/max trees. Suppose for example that the minimumoperator is replaced by a product operator throughout the declarative as well as operationalsemantics of quantitative CLP. This replacement could be motivated by the aim to considerthe contribution of all instead only one antecedent atom to the weight of the consequent. Toe�ciently search for the maximal valued proof tree in such a setting, a version of alpha-betapruning employing only alpha-cuto�s has to be used. In this setting, additional beta-cuto�scan improve the search e�ciency for �nding a good proof tree, but possibly cut o� parts ofthe best proof tree, i.e., here attention has to be paid to the risk of losing information relevant

3.7 Summary and Discussion 55

X = a1c2; X = a&X = a�=:8rr(X) &X = a�=:8
X = a1c3; X = a&X = a�=:9 �-cuto�: :9�:7�:56r s(X) &X = a�=:9c c1; r(X) & s(X) &X = a�=:7�:8

X = a16; X = a&X = a�=:1t(X) &X = a�=:1 �-cuto�: :07�:56c5; t(X) & r(X) & s(X) &X = a�=:7�:1r rp(X) &X = a�=:56

Figure 3.10: Alpha-beta search of quantitative derivation treeto the maximal valued proof tree.3.7 Summary and DiscussionIn this chapter we presented a formal framework for quantitative CLP. In this framework CLPclauses were attached by arbitrary numerical weights. Such weighted clauses were interpretedin a model-theory based on concepts of fuzzy set algebra. The quantitative system was shownto be sound and complete with respect to a �xpoint semantics based on minimal models inthis model-theory. We illustrated the concepts of quantitative CLP by a simple quantitativefeature-based CLG. Furthermore, we showed how to adapt the search algorithm of alpha-betapruning to searching e�ciently for the highest weighted proof tree in a quantitative CLPsystem.The advantage of quantitative CLP clearly is the freedom it o�ers to the grammar writer orimplementer to specify arbitrary weights in a formally clear and e�cient programming frame-work. Such weights could be speci�ed, e.g., as subjective preference values (Erbach 1993b, Kim1994, Douglas and Dale 1992), subjective values expressing graded grammaticality (Erbach1993a), or subjective probabilities (Erbach 1998). Calculation with arbitrary such weightscan be interpreted in a unique well-de�ned formal framework. Furthermore, generalizationsof the formal system to particular applications which require particular calculation schemesare easily obtainable. For example, if we want to model probabilistic context-free grammars(Booth and Thompson 1973) in quantatitive CLP, we simply must attach subjective probabil-ity measures to a context-free program according to the conditions of Booth and Thompson(1973), and replace the minimum operator by a product operator in all relevant de�nitions of

56 Chapter 3. Quantitative CLPthe declarative and operational semantics of quantitative CLP. Unfortunately, such changesin the weight calculation model prevent a direct application of alpha-beta pruning for e�cientdisambiguation. For example, in the case of probabilistic context-free CLP, only a restrictedversion of alpha-beta pruning using exclusively alpha-cuto�s is applicable. Alternatively, onecould use a form of best-�rst pruning for the search task, i.e., a search rule which selects thehighest weighted clause at each derivation step. Clearly, this approach does not guaranteethat the highest weighted proof tree is found, but o�ers only an approximate heuristic searchprocedure.However, regardless of the speci�c choice of weights, a proper speci�cation of a multitude ofweights can be very complex and is always user-dependent. In several applications, one wouldlike to trade in the �exibility of subjective weight assignment for automatic and reusablemethods for estimating weights from empirical data. One solution to this problem is to useautomatic methods for statistical inference to induce values of probabilistic parameters fromempirical data.In the next chapter, we present an framework of probabilistic CLP which addresses theproblem of �nding a proper probability distribution over the set of proof trees of a constraintlogic program and of using statistical estimation methods to infer parameters from empiricaldata. Clearly, even if it would be possible to specify a model-theoretic semantics for such asystem, it is super�uous to do so in the context of automatic statistical inference. Rather, theinterest is here in the stochastic semantics of CLP provided by the probabilistic and statisticalmethods used.

Chapter 4
Probabilistic CLP: ProbabilisticModeling and Statistical Inferencefrom Incomplete Data
In this chapter we present a probabilistic model for CLP and a novel method for statisticalinference of the parameter values of such a model from incomplete training data. We showmononoticity and convergence of the new algorithm to the desired maximum likelihood esti-mates. Furthermore, we show the usefulness of the statistical approach by a small-scale exper-iment on estimating feature-based CLGs. We present a novel algorithm to infer the propertiesof such parametric probability models from incomplete data and discuss di�erent approachesfor approximate computation for the inference task. Moreover, we discuss the possibilities ofusing the structure of the probabilistic model to guide the search in �nding the most probableproof tree in probabilistic CLP and present as heuristic search method for this task.This chapter is based upon work previously published in Riezler (1997), Riezler (1998a),Riezler (1998b), and Johnson, Geman, Canon, Chi, and Riezler (1999).4.1 Introduction and OverviewIn the previous chapter we presented a formal semantics for a system of quantitative CLP.This formal semantics and the connected quantitative inference system were crucially basedupon open parameters for subjective weights. Most approaches to probabilistic logic program-ming interpret such weights as subjective probabilities, and concentrate on inference systemsand formal semantics for programming systems with user-de�ned probabilities attached tothe formulae of the language. The aim of such approaches is the development of sound andcomplete logic programming systems where the handling of weights is restricted to accord to57

58 Chapter 4. Probabilistic CLPthe laws of probability theory. That is, these approaches aim to connect logical inference withprobabilistic inference.In this chapter, we present a completely di�erent approach to probabilistic CLP. In thisapproach, subjective assignment of probabilities is replaced by automatic and reusable meth-ods for estimating empirical probabilities from data. The central aims of this approach are thespeci�cation of a probability distribution over the proof trees given by a program, and the useof statistical methods to infer the values of the probabilistic parameters from empirical data.That is, in this setting, the weight of a CLP proof tree is determined directly by a probabil-ity distribution over proof trees rather than by quantitative calculation scheme referring toweighted clauses. The parameters of the probability distribution are determined by statisticalinference from empirical data rather than by an assignment of subjective weights to clauses.Furthermore, the speci�c properties of the parametric probability model can be inferred bystatistical methods. That means, in this chapter we do not only turn from quantitative to prob-abilistic inference but, what is more, to statistical inference. In such a setting, the connectionof probability theory, semantic �xpoint theory and logical inference theory is not of interestsince the speci�cation of probabilistic parameters is done by automatic statistical methodsand not manipulable by the user. Rather, we are interested in the stochastic semantics de�nedby the methods of probabilistic modeling and statistical inference.The statistical problem we consider here is the problem of statistical parameter estimation.We assume that the statistical properties of a given sample of observations O = O1; : : : ; Oncan be described by a parametric family of probability distributions. That is, the probabilitydistribution that generated the data is assumed to be completely known except for the valuesof a vector � of parameters. We then ask how the unknown value of � can be estimatedfrom the observation sequence O, i.e., a statistical inference is made about the values ofthe parameters de�ning that family. Recent interest in statistical approaches to NLP can beattributed to the fact that solutions to such statistical problems can lead quite directly toe�ective, but conceptually simple and mathematically clear solutions to various problems inNLP. In the context of structural ambiguity resolution in NLP systems, this connection is asfollows: Given a probabilistic grammar depending on parameter vector � and given a trainingcorpus O, a solution �̂ to the parameter estimation problem will adapt the model parametersto best account for the input corpus. This tuning of the grammar to a particular naturallanguage corpus is a necessary prerequisite for probabilistic disambiguation. That is, whenthe plausibility of a parse is connected with its probability, the assumption that the correctparse of a sentence is its most probable parse can be made with some justi�cation if theunderlying probabilistic grammar is based on parameter values �̂ estimated from large datasets of natural language.The aim of this chapter is to solve open problems in statistical inference and probabilisticmodeling of constraint-based grammars. Following Abney (1996), we choose the parametric

4.1 Introduction and Overview 59family of log-linear probability distributions to model such grammars. The great advantageof log-linear models is their generality and �exibility. Log-linear models allow to describearbitrary context dependencies in the data by choosing a few salient properties of the data asthe de�ning properties of the model. In contrast to most approaches to probabilistic grammars,with log-linear models we are not restricted to build our models on production rules or othercon�gurational properties of the data. Rather, we have the virtue of employing essentiallyarbitrary properties in our models. For example, heuristics on preferences of grammaticalfunctions or on attachment preferences as used in Srinivas, Doran, and Kulick (1995), or thepreferences in lexical relations as used in Alshawi and Carter (1994) can be integrated into alog-linear model very easily. However, the step from simple rule-based probability models togeneral log-linear models requires also a more general and more complex estimation algorithm.The estimation algorithm for log-linear models used by Abney (1996) is the iterative scalingmethod of Della Pietra, Della Pietra, and La�erty (1997). This algorithm allows to recast theoptimization of weights of preference functions as done by Srinivas, Doran, and Kulick (1995)or Alshawi and Carter (1994) as estimation of parameters associated with the properties ofa log-linear model. However, there is a drawback: In contrast to rule-based models wheree�cient estimation algorithms from incomplete, i.e., unannotated data exist, the iterativescaling estimation method of Della Pietra, Della Pietra, and La�erty (1997) applies only tocomplete, i.e., fully annotated training data. Unfortunately, the need to rely on large samples ofcomplete data is impractical. For parsing applications, complete data means several person-years of hand-annotating large corpora with specialized grammatical analyses. This task isalways labor-intensive, error-prone, and restricted to a speci�c grammar framework, a speci�clanguage, and a speci�c language domain.Thus, the �rst open problem to solve is fo �nd automatic and reusable techniques forparameter estimation of probabilistic constraint-based grammars from incomplete data. Wewill present a general estimation algorithm for log-linear models from incomplete data whichcan be seen as an extension of the iterative scaling method of Della Pietra, Della Pietra,and La�erty (1997). We prove monotonicity and convergence of the new algorithm to (local)maxima of the incomplete-data log-likelihood function, and show how automatic propertyselection can be done from incomplete data.A further open problem is the empirical evaluation of the performance of probabilisticconstraint-based grammars in terms of �nding human-determined correct parses. We presentan experiment with a log-linear model employing a few hundred general properties encodinggrammatical functions, attachment preferences, branching behaviour, parallelism, and othergeneral properties of constraint-based parses. The experiment was conducted on a small scalebut clearly shows the usefulness of general properties in order to get good results in a linguisticevaluation.Clearly, for larger scales, problems arise concerning the tractability of the estimation for-

60 Chapter 4. Probabilistic CLPmulae. We discuss the applicability of several approximation methods to our problem of sta-tistical inference from incomplete data, including Newton's method, Monte Carlo methods, ormethods for approximating expectations via pseudo-likelihood approaches.A further open problem is the e�cient search for most probable parses, i.e, best-parsesearch, in parsing systems based on probabilistic constraint-based grammars. Instead of listingall possible parses and selecting the most probable one, one would like to use the structureof the probabilistic model to guide the search for the most probable analysis. Most popularapproaches use the search technique of the Viterbi algorithm (Viterbi (1967), Forney (1973)) tosolve this problem, but there is as yet no solution for probabilistic constraint-based grammars.We show that standard methods for best-parse search are only of limited use for probabilisticmodels involving context-dependencies, and make the move to approximate heuristic methods.To summarize, our approach satis�es the following requirements. It� is generally applicable to probability models involving context-dependencies, and espe-cially to a probabilistic model for CLP over arbitrary constraint languages,� provides automatic and reusable techniques for statistical inference from incomplete datafor such probability models, and� is accompanied with search techniques for �nding most probable analyses in probabilisticCLP.This chapter is organized as follows. Is Sect. 4.2 we discuss related previous approaches tostatistical inference for probabilistic constraint-based grammars.In Sect. 4.3 we introduce the basic concepts of maximum likelihood estimation from in-complete data via the EM algorithm.Sect. 4.4 discusses the problem of applying a popular instance of this algorithm, namelyBaum's maximization technique for stochastic context-free models, to parameter estimationfor probabilistic CLP.Sect. 4.5 and 4.6 present in detail a solution to this problem by introducing a log-linearprobability model for CLP coupled with an incomplete-data inference algorithm for suchmodels. This section includes a detailed proof of monotonicity and convergence of the inferencealgorithm.Sect. 4.7 presents an empirical evaluation of the applicability of general log-linear distri-butions to probabilistic constraint-based grammars in a small-scale experiment on estimatinga log-linear model on constraint-based parses.Sect. 4.8 discusses computation issues such as the use of Monte Carlo methods, Newton'snumerical method, and other approximation techniques in the context of this inference process.

4.2 Previous Work 61Sect. 4.9 discusses the applicability of standard parsing and search methods to context-dependent constraint-based models, and presents a heuristic method for searching for bestparses in CLGs.4.2 Previous WorkAn approach to de�ne estimators for probabilistic constraint-based grammars which has beenapplied to nearly all constraint-based formalisms is a renormalized extension of the estima-tor for stochastic regular (Baum, Petrie, Soules, and Weiss 1970) or context-free grammars(Baker 1979) to constraint-based models. Examples for this approach are, e.g., stochasticuni�cation-based grammars (Briscoe and Waegner 1992; Briscoe and Carroll 1993), stochasticconstraint logic programming (Eisele 1994), stochastic head-driven phrase structure grammar(Brew 1995), stochastic logic programming (Miyata 1996), stochastic categorial grammars(Osborne and Briscoe 1997) or data-oriented approaches to lexical-functional grammar (Bodand Kaplan 1998). Since the estimation technique for context-free models is based on theassumption of mutual independence of the model's derivation steps, but context-dependentconstraints on derivations are inherent to constraint-based grammars, a loss in probabilitymass due to failure derivations is caused in these approaches. However, the necessary renor-malization of the probability distribution on derivations with respect to consistent derivationscauses a general deviance of the resulting estimates from the desired maximum likelihoodestimates. This was shown �rstly by Abney (1996) for estimation of constraint-based modelsfrom complete data. We will make a similar argument for incomplete data in the following.Optimization-theoretically these approaches can be described as maximization proceduresfor pseudo-likelihood functions for context-free models where the probability distribution oncontext-free derivations is restricted to consistent derivations in the constraint-based sense.Maximum pseudo-likelihood estimators for context-free models certainly are sensible, e.g., ifthe aim is to constrain an inherently context-free language to include only linguistically plausi-ble derivations as is done by introducing bracketing constraints on context-free derivations byPereira and Schabes (1992). However, it is questionable if is the best way to model constraint-based grammars probabilistically by context-free models which respect constraints only indi-rectly to discard derivations. The move to log-linear models as is done in our approach clearlyhas several advantages. Since there is linguistically no reason to base probabilistic grammarson rule-properties, we can now exploit the �exibility of log-linear distributions and model thecontext-dependencies in the data directly. Furthermore, since the new family of parametricprobability models requires new estimation techniques, we can again take consistent maximumlikelihood estimators as the optimization procedures of our choice.Other approaches to probabilistic constraint-based models have been presented which de-�ne custom-built statistical inference procedures for specialized parsing models including a

62 Chapter 4. Probabilistic CLPlimited amount of context-dependency. For example, the model presented by Goodman (1998)conditions on a �nite set of categorial features beyond the nonterminal of each node whichmakes it possible to explicitly unfold the dependencies in the parsing model. This allows forthe use of standard dynamic programming techniques for computation. In the approaches ofMagerman (1994) and Ratnaparkhi (1998) general statistical inference methods, namely deci-sion trees and maximum-entropy methods, are used to infer weights associated to the actionsof specialized parsing models including limited context-dependency. However, it is di�cult togeneralize these models to arbitrary log-linear models on constraint-based grammars, concern-ing both the choice of properties and the issue of e�cient computation. Clearly, a careful choiceof properties and dependencies makes it possible to tune specialized models to maximum ac-curacy and e�ciency, which does not hold for the general case1 The aim of our approach isto address problems concerning estimation, property design, or approximation methods forgeneral log-linear models and show these general ideas to be applicable in practice.4.3 Maximum Likelihood Estimation from Incomplete Data viathe EM AlgorithmA constant companion during the course of this chapter will be the statistical estimationtechnique of the Expectation-Maximization (EM) algorithm. The fact that both Baum's esti-mation technique, which is shown not to be applicable to probabilistic CLP in Sect. 4.4.2, andthe incomplete-data estimation algorithm for log-linear models we present in Sects. 4.5-4.8,can be seen as instances of the EM algorithm, justi�es a closer look at this estimation scheme.4.3.1 General Theory of the EM AlgorithmThe EM algorithm has been introduced by Dempster, Laird, and Rubin (1977), althoughcentral parts of the general theory can be found earlier in special applications, e.g., in Baum,Petrie, Soules, and Weiss (1970). Various applications and extensions of the algorithm arediscussed in Little and Rubin (1987) and, more recently, in McLachlan and Krishnan (1997).The EM method is a technique for maximum likelihood estimation (MLE) from incompletedata. For a parametric family of probability distributions depending on parameter vector �and a given sample of training data from this parametric family, MLE de�nes the estimate �̂of � as a value of � which maximizes the likelihood of the training sample. MLE from observedcomplete data is particularily easy for many statistical problems, thanks to the nice form of thecomplete-data (log-)likelihood function. The problem the EM algorithm especially addressesis the case where the observed data are incomplete. That is, we observe only a function of1For example, as noted by Goodman (1998), the computational complexity of his dynamic programmingalgorithm for probabilistic feature-grammars is exponential in the general case.

4.3 MLE from Incomplete Data via the EM Algorithm 63complete data, which themselves are unobserved. Because of this indirect, hidden character ofthe complete data, MLE from incomplete data is di�cult.In the following, an incomplete-data estimation setting is assumed to consist of� a sample space Y of observed, incomplete data,� a sample space X of unobserved, complete data,� a many-to-one function Y : X ! Y s.t. Y (x) = y is the unique observation correspondingto the complete datum x, and its inverse X : Y ! 2X s.t. X(y) = fxjY (x) = yg is thecountably in�nite set of complete data corresponding to the observation y,� a complete-data speci�cation p�(x) with parameters � 2 �,� an incomplete data speci�cation g�(y) which is related to the complete-data speci�cationby marginalization as g�(y) = Xx2X(y) p�(x):Let y1; y2; : : : ; yN be a random sample from Y, i.e., values of independently and identicallydistributed (i.i.d.) random variables on Y. Let p[f] =P!2
 p(!)f(!) denote the expectationof a function f :
 ! IR with respect to a probability distribution p on
. If f is a multi-variable function f(!0; !), then the expectation of f with respect to p(!) is written p[f(!0; �)].Furthermore, let the empirical probability ~p(y) of an incomplete data type be de�ned as~p : Y ! IR s.t. ~p(y) = N�1PNi=1 �yi;y where the Kronecker delta �yi;y = (1 if yi = y;0 otherwise.Then the incomplete-data log-likelihood L is de�ned for a random sample from Y as a functionof � as L(�) = lnYy2Y g�(y)~p(y) =Xy2Y ~p(y) ln g�(y) = ~p[ln g�]:The EM algorithm is directed at �nding a value �̂ of � 2 � that maximizes L as a function of� for a given random sample from Y, i.e.,�̂ = argmax�2� L(�) where L(�) = ~p[ln g�] = ~p[ln Xx2X(�) p�(x)]:The summation inside this logarithm can make MLE from incomplete data di�cult even whencomplete-data MLE is easy.

64 Chapter 4. Probabilistic CLPThe old idea formalized in the EM algorithm can be stated informally as follows: 1. Replaceunobserved data values by expected values, 2. perform MLE from the expected completedata, 3. recompute the unobserved data expectations using the new parameter estimates, 4.reestimate parameters using the new expectations, 5. iterate until convergence of the likelihoodfunction.The trick of the EM algorithm thus is to solve the incomplete-data estimation problem forln g�(y) indirectly by proceeding iteratively in terms of complete-data estimation for lnp�(x).Since the x are not observable, ln p�(x) is replaced by its conditional expectation given theobserved data y and the current �t of the parameter values �(t). That is, complete-data log-likelihood values are constructed from a conditional expectation given the observed data ofthe incomplete data problem and the current value of the unknown parameters (E-step). Fromthe thus manufactured complete-data, maximization is simpler and often exists in closed form(M-step). Starting from suitable initial parameter values, the E- and M-steps are iterated untilconvergence of the incomplete-data log-likelihood L.More formally, let k�(xjy) = p�(x)=g�(y) be the conditional probability of x given y and�, then L(�0) = Xy2Y ~p(y) ln g�0(y)= Xy2Y ~p(y)k�[ln g�0(y)]= Xy2Y ~p(y) Xx2X(y) k�(xjy) ln p�0(y)k�0(xjy)= Xy2Y ~p(y) Xx2X(y) k�(xjy) ln p�0(y)�Xy2Y ~p(y) Xx2X(y) k�(xjy) lnk�0(xjy)= ~p[k�[ln p�0]]� ~p[k�[lnk�0]]= Q(�0; �)�H(�0; �):Q(�0; �), the conditional expectation of the complete-data log-likelihood function ln p�0(x)given y and �, then is used as an auxiliary function to construct an EM algorithm via amapping M : �! �, where each iteration is de�ned by �(t+1) =M(�(t)) as follows:E-step: Compute Q(�; �(t)) = ~p[k�(t) [ln p�]]M-step: Choose �(t+1) to be a value of � 2 � which maximizes Q(�; �(t)).That is, M is a point-to-set map M(�(t)) = argmax�2� Q(�; �(t)). This use of Q as an auxiliaryfunction in the EM algorithm can be justi�ed by the fact that an iterative maximization ofQ guarantees that the incomplete-data log-likelihood function L is non-decreasing on eachiteration of an EM algorithm. This can easily be shown with the inequalityL(M(�))� L(�) = (Q(M(�); �)�Q(�; �)) + (H(�; �)�H(M(�); �)) � 0; for all � 2 �;

4.3 MLE from Incomplete Data via the EM Algorithm 65which follows from the positivity of the di�erence both in the Q functions (by de�nition ofM) and in the H functions (by Jensen's inequality (see Cover and Thomas (1991))). That is,we have the following proposition, due to Dempster, Laird, and Rubin (1977).Proposition 4.1 (Dempster et al. (1977), Theorem 1).For each EM algorithm, L(M(�)) � L(�), for all � 2 �.Although Q is globally maximized in each M-step, the term H may hinder a straightglobal maximization of L. As a general result for EM algorithms, Wu (1983) shows that undercontinuity and di�erentiability conditions on L and Q, a sequence of EM iterates fL(�(t))gbounded from above converges monotonically to a critical point of L.Proposition 4.2 (Wu (1983), Theorem 2). For continuous Q, all limit points of any in-stance f�(t)g of an EM algorithm are critical points of L, and for continuous and di�erentiableL, a sequence fL(�(t))g bounded from above converges monotonically to L� = L(��) for somecritical point �� of L.To summarize, the popularity of the EM algorithm is due to its easy computation becauseit relies only on complete-data computations: the E-step involves complete-data conditionalexpectations, and the M-step requires MLE from these completed data. Even if the algorithmmay converge slowly, it conservatively increases the likelihood function at each iteration andin almost all cases converges to a local maximum of L. If a sequence of EM iterates is stuck atsome critical point which is not a local or global maximum of L, e.g., a saddle point or even alocal minimum, a small random perturbation will help it to diverge from this critical point. IfL has several critical points, the convergence properties of an EM sequence will be extremelydependent on the choice of the starting value of the sequence of iterates.4.3.2 Partial M-Steps: The GEM AlgorithmAs discussed in the last section, one main feature of the EM algorithm is to provide a simpli�edM-step where MLE from complete data rather than from incomplete data is performed. Insome cases, even this maximization is complicated and does not exist in closed form. An EMalgorithm involving such a complicated M-step would be computationally unattractive. Forsuch cases, Dempster, Laird, and Rubin (1977) de�ned a so-called generalized EM (GEM)algorithm where the M-step is only partially computed, i.e, each M-step only increases the Qfunction rather than globally maximizing it.That is, for a GEM algorithm, �(t+1) is chosen s.t.Q(�(t+1); �(t)) � Q(�(t); �(t)):As shown by Dempster, Laird, and Rubin (1977), this condition su�ces for increasing theincomplete-data log-likelihood at each interation, i.e., Proposition 4.1 also holds for each GEM

66 Chapter 4. Probabilistic CLPalgorithm. However, appropriate convergence of a GEM algorithm does not follow directlywithout further speci�cation on the process on increasing the Q function. For each instanceof a GEM algorithm, one can either show the general convergence conditions for a GEMalgorithm as given by Wu (1983) to hold, or directly prove convergence of the speci�c GEMinstance in question. The latter approach is pursued in Sect. 4.6.2 where we explicitly showconvergence for a GEM algorithm for log-linear models.4.3.3 Partial E-steps and Maximum Pseudo-Likelihood EstimationFor many cases, a partial computation of the E-step is also useful. These are especially caseswhere the sample space X is too large to be summed over explicitly in the expectations to becalculated in the E-steps. The idea here is to replace the intractable probability function withrespect to which the expectation is taken by a probability function which is more tractable.This change in probability functions results in a corresponding change of the likelihood func-tion to a pseudo-likelihood function which is now de�ned with respect to the new tractabledistribution. Thus from a general optimization-theoretic point of view EM with partial E-stepsis an example of maximum pseudo-likelihood estimation.A theoretical justi�cation for maximum pseudo-likelihood estimation in the context ofEM is given in Neal and Hinton (1998) or Csiszár and Tusnády (1984). In terms of Nealand Hinton (1998), the EM algorithm can be seen as maximizing a joint function F of theparameters and of the distributions over the unobserved data. Using an arbitrary distributionq over the unobserved variables, F can be obtained as a lower bound on the incomplete-datalog-likelihood function L as follows.L(�) = ~p[ln Xx2X(y) p�(x)]= ~p[ln Xx2X(�) q(x)p�(x)q(x)]� ~p[Xx2X(�) q(x) ln p�(x)q(x)], by Jensen's inequality= ~p[q[ln p�]]� ~p[q[ln q]]= F(q; �):Provided that values of x are seen as physical states and the energy of a state is � lnp�(x),the function F(q; �) can be seen as analogous to the negative of the �free energy� of statisticalphysics, i.e., the expected energy under q minus the entropy of q. The EM algorithm can beinterpreted in this framework as alternating between maximizing F as a function of q and �.The E-step maximizes F with respect to q and holds � �xed; the M-step maximizes F with

4.4 Baum's Maximization Technique 67respect to � for �xed q.E-step: Set q(t+1) to argmaxq F(q; �(t)).M-step: Set �(t+1) to argmax� F(q(t+1); �).Neal and Hinton (1998) show that at a true joint maximization, these iterations are equiv-alent to the classical EM iterations de�ned in Sect. 4.3.1. That is, the maximum in the E-step is obtained by taking q(t+1)(x) = k�(t)(xjy), and at this point we have the equalityF(q(t+1); �(t)) = L(�(t)). The maximum in the M-step is obtained by maximizing the termin F depending on �, which is in this case ~p[k�(t) [ln p�]] = Q(�; �(t)). Since each such E-stepguarantees that F = L, and since we maximize Q(�; �(t)) in each M-step, we are guaranteednot to decrease L at each combined EM step.In a partial E-step, q(t+1) is set to a tractable approximation of k�(t)(xjy), which yieldsthe inequality F(q(t+1); �(t)) � L(�(t)). In the corresponding M-step, the term in F dependingon � is maximized. Together, these combined EM steps guarantee not to decrease the lowerbound F on the incomplete-data log-likelihood L at each iteration. Thus, for partial E-steps,monotonicity and convergence of the resulting algorithm have to be shown in terms of thepseudo-likelihood function F which bounds the true likelihood function L from below.4.4 An EM Example: Baum's Maximization Technique4.4.1 Basic ConceptsA special instance of the EM algorithm for MLE of hidden Markov models, i.e., stochastic reg-ular grammars, from incomplete data was presented in Baum, Petrie, Soules, and Weiss (1970)and Baum (1972). The form of this algorithm using dynamic programming techniques for ef-�cient computation is well-known as the �forward-backward algorithm� (see Rabiner (1989)).Most popular approaches to parameter estimation for probabilistic grammars are based uponthis technique. Baker (1979) generalized this algorithm to the so-called �inside-outside algo-rithm�, which e�ciently estimates the parameters of stochastic context-free grammars (seealso Booth and Thompson (1973), Lari and Young (1990) and Jelinek, La�erty, and Mercer(1990)). This algorithm can successfully be applied also to other stochastic grammars whichassume independence of their derivation units of each other. Such models are, e.g, stochasticdependency grammars (Carroll and Charniak 1992) or stochastic lexicalised tree-adjoininggrammars (Resnik 1992; Schabes 1992). In the following, we will refer to the basic version ofthis algorithm as Baum's maximization technique.In the following, we will give a quick review of the basic concepts of Baum's maximizationtechnique. The probabilistic models the algorithm is applied to can be abstracted by stochastic

68 Chapter 4. Probabilistic CLPderivation models which de�ne a derivation process as a stochastic process as follows: Make astochastic choice at each derivation step and assume the stochastic choices to be independent ofeach other; calculate the probability of a derivation as the joint probability of the independentstochastic choices made, and the probability of an input as the sum of the probabilities of itsderivations.More formally, let � = (�ij) 2 � be the parameter vector of the probabilistic processingmodel where �ij � 0 and Pj �ij = 1. The variable i ranges over the types of choices thatthe stochastic process makes, and the variable j ranges over the alternatives to choose fromwhen a choice of type i is made. Furthermore, let y denote an input of the probabilisticprocessing model, i.e., an observation sequence, and let x denote an output of the model,i.e., an analysis, and let Y (x) = y be the unique observation corresponding to analysis xand X(y) = fxjY (x) = yg be the set of analyses of observation y. Finally, let �ij(x) be thenumber of selections of alternative j for a choice of type i in analysis x. The probability ofan analysis is the joint probability of the stochastic choices made in producing it. Since thesestochastic choices are assumed to be independent of each other, the probability of an analysisis calculated as the product of the probabilities of the stochastic choices made in producingit: p�(x) =Yij ��ij(x)ij :The probability of an observation is the sum of the probabilities of its analyses:g�(y) = Xx2X(y) p�(x):For a given random sample of observations, the purpose of Baum's maximization techniqueis to �nd maximum likelihood parameter values for the incomplete-data likelihood function Lwhere L(�) = Yy2Y g�(y)~p(y):The EM mapping M is instantiated here to a particularily simple case. Let k�(xjy) =p�(x)=g�(y), then M(�ij) = ~p[Nij]~p[PlNil] = ~p[k�[�ij]]~p[Pl k�[�il]] :Intuitively, the estimated value of parameter �ij is obtained by prorating Nij , the expectednumber of times choice ij is made during the derivation, byPlNil, the expected total number

4.4 Baum's Maximization Technique 69of times a choice of type i is made during the derivation, for all observations y. Baum, Petrie,Soules, and Weiss (1970) showed that this algorithm is hill-climbing, i.e., L(M(�)) � L(�) forall � 2 �, and that the incomplete-data likelihood L eventually converges to a critical point,i.e., to a local maximum.4.4.2 Baum's Maximization Technique and Context-Dependence in CLPThe intuitive appeal and the e�cient computability of Baum's maximization technique has ledto a multiplicity of applications of this technique to various grammar frameworks. Recently,an attempt to apply this technique to a probabilistic version of the constraint-based formal-ism CUF, which is an instance of the CLP scheme of Höhfeld and Smolka (1988), has beenpresented by Eisele (1994). As recognized by Eisele (1994), there is a context-dependenceproblem associated with applying this technique to such constraint-based systems. In CLPterms, the problem is that incompatible variable bindings can lead to failure derivations,which cause a loss of probability mass in the estimated probability distribution over deriva-tions. A similar problem appears in every constraint-based system which constrains derivationsby restrictions dependent of the context of the derivation. Approaches embedding Baum'smaximization technique into estimation procedures for context-sensitive constraint-based sys-tems have been presented, e.g., by Briscoe and Waegner (1992), Briscoe and Carroll (1993),Brew (1995), Miyata (1996), Osborne and Briscoe (1997) or Bod and Kaplan (1998). Froman optimization-theoretic point of view, all such constraint-based approaches contradict theinherent assumptions of Baum's maximization technique which require that the derivationsteps are mutually independent and thus the set of licensed derivations is unconstrained.This problem of context-dependence is discussed in detail in Abney (1997) in connectionwith the so-called Empirical Relative Frequency (ERF) estimation method, which can be seena complete-data version of Baum's estimation technique. He shows that applying this methodto context-sensitive stochastic attribute-value grammars does not generally yield maximum-likelihood estimates.In the following, this general argument shall be illustrated with a simple CLP example.Let us apply the stochastic derivation model of Sect. 4.4 to a simple context-sensitive con-straint logic program (see Fig. 4.1). The stochastic choices of the abstract model correspondto application probabilities of de�nite clauses in the generalized SLD-resolution procedure;the alternatives to choose from when an atom is selected in goal reduction are the di�erentclauses de�ning the selected atom. To indicate a probabilistic parameter �ij, each clause willbe annotated by a number ij.The relational atom s(Z) is de�ned uniquely in clause 11. The atoms p(Z) and q(Z) eachare de�ned in two di�erent ways, which for the sake of the example are considered to beincompatible. This incompatibility together with the variable sharing in the body of clause 11

70 Chapter 4. Probabilistic CLP11 s(Z) p(Z) & q(Z):21 p(Z) Z = a:22 p(Z) Z = b:31 q(Z) Z = a:32 q(Z) Z = b:Figure 4.1: Constraint logic programintroduces context-dependence into the program. For a selection of atom p(Z) one can choosebetween clauses 21 and 22 in a goal reduction step, whereas for a choice of atom q(Z) thealternatives to choose from are clauses 31 and 32.Suppose we have a training corpus of three queries, consisting of two tokens of queryy1 : s(Z) & Z = a and one token of query y2 : s(Z) & Z = b. Each query gets a unique prooftree from the program of Fig. 4.1, i.e., a query of type y1 gets a proof tree of type x1, and aquery of type y2 gets one of type x2 (see Fig. 4.2). Note that in the proof trees of Fig. 4.2 goalreduction and constraint solving are applied in one step.x1 : 31, Z = ar; c21, q(Z) & Z = ar; c11, p(Z) & q(Z) & Z = ar; cs(Z) & Z = a
x2 : 32, Z = br; c22, q(Z) & Z = br; c11, p(Z) & q(Z) & Z = br; cs(Z) & Z = b

Figure 4.2: Proof trees from constraint logic programFor parameter estimation according to Baum's method, we must calculate conditionalprobabilities k(xjy) for x 2 X(y). These probabilities will be 1 in each case, since there is aunique proof tree for each query. Thus for the calculation of ~p[Nij] = ~p[k�[�ij]], the expectednumber of occurences of clauses in proof trees, we simply have to count and can ignore therespective probabilities of the proof trees. As in an application of the complete-data ERFmethod, for this case Baum's algorithm will give unique parameter estimates �̂ij = ~p[Nij]~p[PlNil]

4.5 A Log-Linear Probability Model for CLP 71y 2 Y x 2 X(y) ~p(y) k(xjy) N11 N21 N22 N31 N32y1 x1 2/3 1 1 � 1 1 � 1 1 � 0 1 � 1 1 � 0y2 x2 1/3 1 1 � 1 1 � 0 1 � 1 1 � 0 1 � 1~p[Nij] = 3/3 2/3 1/3 2/3 1/3~p[PlNil] = 3/3 3/3 3/3 3/3 3/3�̂ij = 1 2/3 1/3 2/3 1/3Table 4.1: Estimation using Baum's maximization techniquein one step (see Table 4.1).If we consider the calculation of the probability distribution over the proof trees of sucha probabilistic CLP model, we see that we cannot simply calculate a product for each prooftree. Instead, we have to introduce a normalization constant in order to ensure the sum overthe sample space of proof trees to be 1. For the program of Fig. 4.1, this partition functionis taken as the sum of the unnormalized probabilities of the proof trees under the estimatedmodel: p�̂(x1) + p�̂(x2) = (1 � 2=3 � 2=3) + (1 � 1=3 � 1=3) = 4=9 + 1=9 = 5=9. The normal-ized probability distribution over proof trees then is: p0̂�(x1) = (4=9)=(5=9) = 4=5; p0̂�(x2) =(1=9)=(5=9) = 1=5. The likelihood L0 of our training corpus under the normalized distribu-tion is: L0 = (4=5)2 � 1=5 = :128. However, note that there is no analytical solution to theproblem of �nding parameter values �0 for the clauses of the program of Fig. 4.1 which de-�ne p0 as a probabilistic context-free model on the proof trees of Fig. 4.2. Rather, what hashappened here is that we implicitly moved to another family of probability distributions byintroducing the normalization constant into p0. This new family of probability distributionsobviously no longer requires the parameter values to sum up to 1 for identical left-hand sidesof rules, but introduces a normalization constant instead in order to guarantee the function tobe a probability function. We will acknowledge this family of probability distributions as log-linear distributions in the next section. Clearly, we can easily �nd parameters of a log-linearmodel which assigns a higher likelihood to this sample. We could take for example a param-eterization �00 which assigns �0021 = 2 and �00ij = 1 forall ij 6= 21. This yields a normalizedprobability distribution over the proof trees with p00�00(x1) = 2=3, p00�00(x2) = 1=3 and likelihoodL00 = (2=3)2 � 1=3 = :148: The fact that L00 > L0 clearly contradicts the assumption thatthe parameter estimates �̂ given by applying Baum's estimation technique to a normalizedcontext-free probability model yield the desired maximum likelihood values.4.5 A Log-Linear Probability Model for CLPAs shown in the last section, we cannot simply apply a stochastic context-free derivationmodel to CLP but have to go to more expressive probability models. In fact, we implicitly

72 Chapter 4. Probabilistic CLPalready have made this move in the above example by introducing a partition function into theprobabilistic context-free model. We will show in the following that acknowledging this modelas a log-linear model not only opens the possibility to �nd new consistent maximum likelihoodestimators but also enables a more �exible parameterization of the probability models.4.5.1 MotivationLog-linear models are widely used in probabilistic modelling but come with di�erent namesin di�erent applications. The name log-linear is standardly used in contingency table anal-ysis (see, e.g, Knoke and Burke (1980)). The model itself originated under the name of theGibbs- or Boltzmann-distribution in statistical physics as a �exible probability model of equi-librium states of physical systems. Jaynes (1957) interpreted such equilibrium models in amore abstract framework and coined the name maximum-entropy model. Log-linear modelshave been applied successfully in the area of image processing, where they are known underthe name of random �elds (see Geman and Geman (1984)). These special log-linear mod-els are closely related to other probabilistic network models such as Boltzmann machines(see Ackley, Hinton, and Sejnowski (1985)) or Bayesian networks (see Frey (1998)). Log-linear models have been used with e�ort also in various NLP applications. To name onlya few, these applications include probabilistic grammar models (Mark, Miller, Grenander,and Abney 1992; Abney 1997), word spellings (Della Pietra, Della Pietra, and La�erty 1997),machine translation (Berger, Della Pietra, and Della Pietra 1996), language modelling (Rosen-feld 1996), prepositional phrase attachment (Ratnaparkhi and Roukos 1994), part-of-speechtagging (Ratnaparkhi 1996), history-based parsing (Ratnaparkhi 1997), lexical correlations(Beeferman, Berger, and La�erty 1997a) text segmentation (Beeferman, Berger, and La�erty1997b), and text classi�cation (Nigam, La�erty, and McCallum 1999).The popularity of log-linear models is clearly due to the great expressive power theyprovide with very simple means. That is, log-linear models can be seen as an exponentialfamily of probability distributions where the probability of a datum is simply de�ned as beingproportional to the product of weights assigned to selected properties of the datum. Let (�i)be a vector of weights and �i(!) the number of times property i appears in datum !, for alli = 1; : : : ; n, then p(!) / nYi=1 ��i(!)i :A log-linear form is obtained from this simply by replacing proportionality by a constantC = Z�1 and parameters �i by log-parameters �i = ln �i, for all i = 1; : : : ; n, i.e., taking thelogarithm of this probability function yields a linear combination of parameters and properties

4.5 A Log-Linear Probability Model for CLP 73and a constant. p(!) = CYni=1 ��i(!)i= Z�1Yni=1 ��i(!)i= Z�1Yni=1 e�i�i(!)= Z�1ePni=1 �i�i(!):A more general form of log-linear models is obtained by including a �xed initial or ref-erence distribution p0 into the model such that p(!) = Z�1ePni=1 �i�i(!)p0(!) and Z =P! ePi �i�i(!)p0(!).Clearly, the main advantage of log-linear models is their great �exibility, which includesthe normalized models used in Sect. 4.4.2 and even probabilistic context-free models as specialcases (the normalization constant has value 1 in this case). However, considering CLP, withlog-linear models we are free to select as properties arbitrary features of proof trees ratherthan being restricted to clauses only. For example, we could take subtrees of proof trees asproperties. This possibility to combine arbitrary clauses to properties allows us to model arbi-trary context-dependencies in proof trees. Clearly, linguistically there is no particular reasonfor assuming rules or clauses as the best properties to use in a probabilistic grammar. As wewill see in Sect. 4.7, more abstract properties referring to grammatical functions, attachmentpreferences, or other general features of constraint-based parses can be employed successfullyto probabilistic CLGs. Furthermore, the log-parameters corresponding to these properties arenot required to constitute a probablity distribution over clauses de�ning the same predicate,i.e., the parameters do not have to sum to 1 for clauses de�ning the same predicate. That is,log-linear models allow us to de�ne a probability distribution over proof trees directly ratherthan indirectly as a joint probability of clause applications as in the context-free models above.Let us illustrate this with the simple CLP example of Sect. 4.4.2. A training corpus con-sisting of two tokens of query y1 : s(Z) & Z = a and one token of query y2 : s(Z) & Z = btogether with the corresponding proof trees generated by the program of Fig. 4.1 is depictedin Fig. 4.3. Note that for ease of readability, we will omit in the following �gures the labelingsof nodes and edges of proof trees.To capture the statistics of the training sample of Fig. 4.3, it is su�cient to de�ne a singleproperty which is able to di�erentiate between the proof tree types. Such a property could be,for example, the terminal node Z = a of proof tree x1. Setting the value of the correspondingparameter of this single-parameter model to ln 2 will yield the desired probability distributionp(x1) = 2=3; p(x2) = 1=3 with incomplete-data log-likelihood L = :148.Another way to understand log-linear models is as maximum-entropy models. From thisviewpoint we do statistical inference and, believing that entropy is the unique consistentmeasure of the amount of uncertainty represented by a probability distribution, we obey the

74 Chapter 4. Probabilistic CLP2� y1 : 1� y2 :
Z = aq(Z) & Z = ap(Z) & q(Z) & Z = as(Z) & Z = a

Z = bq(Z) & Z = bp(Z) & q(Z) & Z = bs(Z) & Z = b
Figure 4.3: Queries and proof trees for constraint logic programfollowing principle:In making inferences on the basis of partial information we must use that probabil-ity distribution which has maximum entropy subject to whatever is known. Thisis the only unbiased assignment we can make; to use any other would amount toarbitrary assumption of information which by hypothesis we do not have. (Jaynes1957)More formally, suppose a random variable X can take on values xk; k = 1; : : : ;m and wewant to estimate the corresponding probabilities pk; k = 1; : : : ;m. All we have are ex-pectations of functions fi(X); i = 1; : : : ; n. Let these expectations be de�ned with respectto a given empirical distribution ~pk; k = 1; : : : ;m on complete data xk; k = 1; : : : ;m s.t.Pmk=1 pkfi(xk) = Pmk=1 ~pkfi(xk); i = 1; : : : ; n. Then the maximum-entropy principle can bestated as follows.Maximize the entropy H(p) = �Pmk=1 pk ln pk subject to the constraintsPmk=1 pkfi(xk) =Pmk=1 ~pkfi(xk); i = 1; : : : ; n and Pmk=1 pk = 1.For all pk; k = 1; : : : ;m which solve the above problem, we get the following parametricsolution: pk = ePni=1 �ifi(xk)Pmk=1 ePni=1 �ifi(xk)Following Jaynes (1957), this result can be derived directly from a constrained optimizationargument where the parameters are viewed as Lagrange multipliers. That is, by applyingthe standard technique of Lagrange multipliers (see, e.g., Thomas and Finney (1996)) to

4.5 A Log-Linear Probability Model for CLP 75the constrained optimization problem stated in the maximum-entropy principle, the aboveparametric probability model can be derived by solving this constrained optimization problemwith respect to the probabilities pk. Let � denote the Lagrangian de�ned by�(p; �) = mXk=1(pk ln pk)� (�0 + 1)(mXk=1 pk � 1)��1(mXk=1 pkf1(xk) + mXk=1 ~pkf1(xk))...��n(mXk=1 pkfn(xk) + mXk=1 ~pkfn(xk)):Then the �rst partial derivative of � with respect to the pk is@@pk� = (ln pk + 1)� (�0 + 1)� �1f1(xk)� � � � � �nfn(xk):Now set @@pk� = 0;then pk = e�0+Pni=1 �ifi(xk):Since the sum of all probabilities pk has to be 1, we have1 = mXk=1 pk = e�0 mXk=1 ePni=1 �ifi(xk):If we de�ne a partition function Z asZ = mXk=1 ePni=1 �ifi(xk);then �0 = ln Z�1and the maximum-entropy distribution ispk = Z�1ePni=1 �ifi(xk) = ePni=1 �ifi(xk)Pmk=1 ePni=1 �ifi(xk) :To sum up, the parametric form of maximum-entropy probability models can be derived bysolving a constrained optimization problem with respect to the probabilities pk; k = 1; : : : ;m.

76 Chapter 4. Probabilistic CLPThe remaining problem, namely solving this constrained maximum-entropy problem withrespect to the parameters �i; i = 1; : : : ; n, can be shown to be equivalent to solving a maximumlikelihood problem for log-linear models. This duality can be stated as follows (see Berger, DellaPietra, and Della Pietra (1996)). The complete-data log-likelihood Lc of a random sample froma log-linear model p� on X, with empirical probability ~p(xk) of the values xk; k = 1; : : : ;m isde�ned as Lc(�) = ln mYk=1 p�(xk)~p(xk) = mXk=1 ~p(xk) ln p�(xk)This function is equivalent to the Lagrangian � instantiated to the parametric model p�:�(p�; �) = mXk=1Z�1� e��f(xk) ln(Z�1� e��f(xk))� nXi=1 �i mXk=1Z�1� e��f(xk)fi(xk)+ nXi=1 �i mXk=1 ~p(xk)fi(xk)= � lnZ� + p�[� � f]� p�[� � f] + ~p[� � f]= � lnZ� + ~p[� � f]:Lc(�) = ln mYk=1 p�(xk)~p(xk)= mXk=1 ~p(xk) ln(Z�1� e��f(xk))= � lnZ� + ~p[� � f]:Thus, the values �� that solve the constrained maximum-entropy problem with respect tothe parameters �i; i = 1; : : : ; n are equivalently a solution to the complete-data maximumlikelihood problem for the log-linear model p�.The more general model which includes an initial or reference distribution p0 is derived ina similar way as the unique parametric probability distribution p that minimizes the KullbackLeibler (KL) distance D(pjjp0) between p and a given reference distribution p0, subject tocertain constraints. That is, the generalized log-linear modelp�(!) = e���(!)p0(!)P!2
 e���(!)p0(!)is the parametric solution to the following constraint optimization problem:

4.5 A Log-Linear Probability Model for CLP 77Minimize D(pjjp0) =P!2
 p(!) ln p(!)p0(!) subject to the constraintsp[fi] = ~p[fi]; i = 1; : : : ; n and P!2
 p(!) = 1.For uniformly distributed p0(!), the KL distance D(pjjp0) is the negative of the entropy H(p),minus a constant not involving �:D(pjjp0) = X!2
 p(!) ln p(!)� ln p0(!) = �H(p)�K:In this case, minimizing the KL distance subject to certain constraints is equivalent to max-imizing the entropy subject to these constraints. Furthermore, a connection to a maximumlikelihood problem can be established for the KL distance miminization problem in a similarway as for the maximum entropy problem.4.5.2 The Form of Log-Linear ModelsLog-linear probability distributions de�ne the probability of a datum simply as proportionalto weights assigned to selected properties of the datum. Formally, the parametric family ofsuch distributions is de�ned as follows.De�nition 4.1 (Log-linear distribution). A log-linear probability distribution p��� on aset
 is de�ned s.t. for all ! 2
:p���(!) = Z����1e���(!)p0(!);Z��� =P!2
 e���(!)p0(!) is a normalizing constant,� = (�1; : : : ; �n) is a vector of log-parameters s.t. � 2 IRn,� = (�1; : : : ; �n) is a vector of properties,� = (�1; : : : ; �n) is a vector of property-functions s.t. for each �i :
 ! IN, �i(!) is thenumber of occurences of property �i in !,� � �(!) is a weighted property-function s.t. � � �(!) =Pni=1 �i�i(!),p0 is a �xed initial distribution.For the following discussion, it will be convenient to introduce some further notation.Properties will be referred to for most purposes by vectors � of property functions rather thanby explicit vectors � of properties. Slightly abusing terminology, we will call properties both� and �.As in De�nition 4.1, a log-linear probability distribution depending on property vector �and parameter vector � will be written in subscript notation as p���. In case the property

78 Chapter 4. Probabilistic CLPvector is �xed and clear from the context, the model (resp. the normalization constant) willbe written p� (resp. Z�) to indicate the dependence on the parameter vector �.Furthermore, it will be convenient to have a recursive de�nition of log-linear models basedon weighted property-functions which are extended by additional properties and correspondingparameters.Proposition 4.3. For each weighted property-funtion �(!) = � � �(!), (!) =
 � �(!) let(+ �)(!) = (!) + �(!) be an extended property-function. Thenp +�(!) = Z ���1e (!)p�(!) where Z �� = p�[e]:Proof. p +�(!) = Z +��1e +�(!)p0(!)= (X!2
 e (!)+�(!)p0(!))�1e (!)+�(!)p0(!)= (X!2
 e (!)e�(!)p0(!)Z�Z��1)�1e (!)e�(!)p0(!)= Z��1(X!2
 e (!)p�(!))�1e (!)e�(!)p0(!)= (X!2
 e (!)p�(!))�1e (!)p�(!)= Z ���1e (!)p�(!):For an extended model with weighted property functions �(!) = � � �(!) and (!) =
 � �(!),written p
+�, we have accordinglyp
+�(!) = Z�1
+�e
��(!)+���(!)p0(!)= (X!2
 e(
+�)��(!)p0(!))�1e(
+�)��(!)p0(!)= (X!2
 e
��(!)p���(!))�1e
��(!)p���(!)= Z
���1e
��(!)p���(!):4.6 Statistical Inference for Log-Linear Models from Incom-plete DataIn the last two sections we argued that a solution to the context-dependence problem inprobabilistic CLP requires probability models which are more expressive than context-freeand proposed log-linear models for this purpose. The price we have to pay for this gain in

4.6 Statistical Inference for Log-Linear Models from Incomplete Data 79log-likelihood auxiliary functioncomplete data @Lc(�)@�i = ~p[�i]� p�[�i] @Ac(
;�)@
i = ~p[�i]� p�[�ie
i�#]incomplete data @L(�)@�i = ~p[k�[�i]� p�[�i]] @Q(�;�0)@�i = ~p[k�0 [�i]� p�[�i]]Table 4.2: Partial derivatives of objective functions for MLE of log-linear modelsexpressivity clearly is a gain in complexity of parameter estimation. Furthermore, the gainin �exibility due to property selection is an additional complexity factor which calls for anautomatic solution. Fortunately, Della Pietra, Della Pietra, and La�erty (1997) have presenteda statistical inference algorithm for combined property selection and parameter estimation forlog-linear models. Abney (1997) has shown the applicability of this algorithm to stochasticattribute-value grammars, which can be seen as a special case of context-sensitive CLGs.This algorithm, however, applies only to complete data. Unfortunately, the need to rely onlarge training samples of complete data is a problem if such data are di�cult to gather. Forexample, in natural language parsing applications, complete data means several person-years ofhand-annotating large corpora with detailed analyses of specialized grammar frameworks. Thisis always a labor-intensive and error-prone task, which additionally is restricted to the speci�cgrammar framework, the speci�c language, and the speci�c language domain in question.Clearly, for such applications automatic and reusable techniques for statistical inference fromincomplete data are desirable.In the following, we present a version of the statistical inference algorithm of Della Pietra,Della Pietra, and La�erty (1997) especially designed for incomplete data problems. We presenta parameter estimation technique for log-linear models from incomplete data (Sect. 4.6.2)and a property selection procedure from incomplete data (Sect. 4.6.3). These algorithms arecombined into a statistical inference algorithm for log-linear models from incomplete data(Sect. 4.6.4). Empirical results on experimenting with these algorithms on a small scale arepresented in Sect. 4.7.This section is based on work presented in shortened form in Riezler (1998a).4.6.1 MotivationWhy is incomplete-data estimation for log-linear models di�cult? The answer is becausecomplete-data estimation for such models is di�cult, too. Let us have a look at the �rst partialderivatives of some objective functions which are considered in MLE of log-linear models fromcomplete and incomplete data (see Table 4.6.1). The system of equations to be solved at thepoints where the �rst partial derivatives of the complete data log-likelihood function Lc are

80 Chapter 4. Probabilistic CLPzero, i.e., at the critical points of Lc, isXx2X Z�1� e���(x)�i(x) = Xx2X ~p(x)�i(x) for all i = 1; : : : ; n:Clearly, because of the dependence of both Z� and e���(x) on � this system of equations cannotbe solved coordinate-wise in �i. This problem is even more severe for the case of incomplete-data estimation. The incomplete-data log-likelihood L has its critical points at the solution ofthe following system of equations in �i:Xy2Y ~p(y)Xx2X Z�1� e���(x)�i(x) =Xy2Y ~p(y) Xx2X(y) k�(xjy)�i(x) for all i = 1; : : : ; n:Here additionally a dependence of k�(xjy) on � has to be respected. However, an applicationof the standard EM theory to incomplete-data estimation of log-linear models only partiallysolves the problem. The equations to be solved to �nd the critical points of the auxiliaryfunction Q(�;�0) for a log-linear model depending on � areXy2Y ~p(y)Xx2X Z�1� e���(x)�i(x) =Xy2Y ~p(y) Xx2X(y) k�0(xjy)�i(x) for all i = 1; : : : ; n:Here k�0(xjy) depends on �0 instead of �. However, the dependency of Z� and e���(x) on � stillremains a problem.Solutions for the system of equations can be found, e.g., by applying general-purpose nu-merical optimization methods (see Fletcher (1987)) to the problem in question. For the smoothand strictly concave complete-data log-likelihood Lc, e.g., a conjugate gradient approach couldbe used. However, optimization methods speci�cally tailord to the problem of MLE from com-plete data for log-linear models have been presented by Darroch and Ratcli� (1972) and DellaPietra, Della Pietra, and La�erty (1997). The �improved iterative scaling� algorithm of DellaPietra, Della Pietra, and La�erty (1997) itself is an extension of the �generalized iterative scal-ing� algorithm of Darroch and Ratcli� (1972). In the �rst algorithm properties are requiredto sum up to a constant independent of the complete data, i.e., �# =Pni=1 �i(x) = K for allx 2 X , whereas in the latter algorithm �# is allowed to vary as a function of x. This prop-erty of �generalized iterative scaling� is claimed to improve the convergence rate by increasingthe step size taken toward the maximum at each iteration. Both iterative scaling algorithmsiteratively maximize an auxiliary function Ac(
;�) which is de�ned as a lower bound on thedi�erence Lc(
 + �) � Lc(�) in complete-data log-likelihood when going from a basic modelp� to an extended model p
+�. The function Ac(
;�) is maximized as a function of
 for �xed� which makes it possible to solve the following equation coordinate-wise in
i; i = 1; : : : ; n:Xx2X p�(x)�i(x)e
i�#(x) = Xx2X ~p(x)�i(x) for all i = 1; : : : ; n:A closed form solution for
i is given for constant �#; otherwise simple numerical methodssuch as Newton's method can be used to solve for the
i. It is shown in Della Pietra, Della

4.6 Statistical Inference for Log-Linear Models from Incomplete Data 81Pietra, and La�erty (1997) and Darroch and Ratcli� (1972) that iteratively replacing �(t+1)by �(t) +
(t) conservatively increases Lc and such a sequence of likelihood values eventuallyconverges to the the global maximum of the strictly concave function Lc.For the case of incomplete-data estimation things are more complicated. Since theincomplete-data log-likelihood function L is not strictly concave, general-purpose numericalmethods such as conjugate gradient cannot be applied. However, such methods can be appliedto the auxiliary function Q as de�ned by a standard EM algorithm for log-linear models.Alternatively, iterative scaling methods can be used to perform maximization of the auxiliaryfunction Q of the EM algorithm. Both approaches result in a doubly iterative algorithm wherean iterative algorithm for the M-step is interweaved in the iterative EM algorithm. Clearly,this is computationally burdensome and should be avoided.The aim of this chapter is exactly to avoid such doubly iterative algorithms. The idea ofour approach is to interleave the auxiliary functions Q of the EM algorithm and Ac of iterativescaling in order to de�ne a singly-iterative incomplete-data estimation algorithm using a newcombined auxiliary function. Similar to the case of iterative scaling for complete data, thenew auxiliary function will be de�ned as a lower bound on the improvement in log-likelihood.This allows for an intuitive and elegant proof of convergence of the new algorithm. Our proofsare completely self-contained and do not rely on the convergence of alternating minimizationprocedures for maximum-entropy models as presented by Csiszár (1975) or Csiszár (1989)or on the regularity conditions for generalized EM algorithms as presented by Wu (1983) orMeng and Rubin (1993). The relation of our algorithm to generalized EM estimation andmaximum-entropy estimation is discussed in Sects. 4.6.2.2 and 4.6.2.3.4.6.2 Parameter Estimation4.6.2.1 General TheoryLet us start with a problem de�nition. Applying the incomplete-data framework de�ned inSect. 4.3.1 to a log-linear probability model for CLP, we can assume the following to be given:� observed, incomplete data y 2 Y, corresponding to a �nite sample of queries for aconstraint logic program P ,� unobserved, complete data x 2 X , corresponding to the countably in�nite sample ofproof trees for queries Y from P ,� a many-to-one function Y : X ! Y s.t. Y (x) = y corresponds to the unique querylabeling proof tree x, and its inverse X : Y ! 2X s.t. X(y) = fxj Y (x) = yg is thecountably in�nite set of proof trees for query y from P ,

82 Chapter 4. Probabilistic CLP� a complete-data speci�cation p�(x), which is a log-linear distribution on X with giveninitial distribution p0, �xed property vector � and property-functions vector � and de-pending on parameter vector �,� an incomplete-data speci�cation g�(y), which is related to the complete-data speci�ca-tion by g�(y) = Xx2X(y) p�(x):The problem of maximum-likelihood estimation for log-linear models from incomplete datacan then be stated as follows.Given a �xed sample from Y and a set � = f�j p�(x) is a log-linear distributionon X with �xed p0, �xed � and � 2 IRng, we want to �nd a maximum likelihoodestimate �� of � s.t. �� = argmax�2� L(�) = lnQy2Y g�(y)~p(y).For the rest of this section we will refer to a given vector � of property functions. Furthermore,we assume that for each property function �i some proof tree x 2 X with �i(x) > 0 exists,and require p� to be strictly positive on X , i.e., p�(x) > 0 for all x 2 X . These conditionsguarantee that p�(x) > 0 for all x 2 X and for all � 2 � which is a desirable property in thefollowing discussion.Similar to the case of iterative scaling for complete-data estimation, we de�ne an auxiliaryfunction A(
; �) as a conservative estimate of the di�erence L(
+�)�L(�) in log-likelihood.The lower bound for the incomplete-data case can be derived from the complete-data case,in essence, by replacing an expectation of complete, but unobserved data by a conditionalexpectation given the observed data and the current �t of the parameter values. Clearly,this is the same trick that is used in the EM algorithm, but applied in the context of adi�erent auxiliary function. From the lower-bounding property of the auxiliary function it canimmediately be seen that each maximization step of A(
; �) as a function of
 will increase orhold constant the improvement L(
 + �)�L(�). This is a �rst important property of a MLEalgorithm. Furthermore, our approach to view the incomplete-data auxiliary function directlyas a lower bound on the improvement in incomplete-data log-likelihood enables an intuitiveand elegant proof of convergence.Let the conditional probability of complete data x given incomplete data y and parametervalues � be de�ned as k�(xjy) = p�(x)=g�(y) = e���(x)p0(x)Px2X(y) e���(x)p0(x) :Then a two-place auxiliary function A can be de�ned as follows.

4.6 Statistical Inference for Log-Linear Models from Incomplete Data 83De�nition 4.2. Let � 2 �,
 2 IRn, �#(x) =Pni=1 �i(x), ��i(x) = �i(x)=�#(x). ThenA(
; �) = ~p[1 + k�[
 � �]� p�[nXi=1 ��ie
i�#]]:The particular form of the auxiliary function A and the connection of A and L is discussedin detail in Lemmata 4.5, 4.6, and 4.7 below. Let us �rst have a look at the extreme valueproperties of A, which are crucial for the iterative maximization of A.By considering the �rst and second derivatives of A, we see that A can be maximizeddirectly and uniquely. This can be explained as follows. Suppose the parameters
 2 IRn to bea convex set; the Hessian matrix of A is a diagonal matrix �lled only with negative elements@2A(
;�)@
i@
j = @@
j (@A(
;�)@
i) = (< 0 if i = j0 elseand thus negative de�nite. Unique maximization follows from this since a function whoseHessian is negative de�nite throughout a convex set is strictly concave, and a strictly concavefunction attains a maximum at most one point of a convex set, and thus a critical point isnecessarily a maximum (see Horn and Johnson (1985)).Proposition 4.4. For each � 2 �,
 2 IRn: A(
; �) takes its maximum as a function of
 atthe unique point
̂ satisfying for each
̂i; i = 1; : : : ; n:~p[k�[�i]] = ~p[p�[�ie
̂i�#]]:Proof. @@
iA(
; �) = @@
i ~p[1 + k�[
 � �]� p�[nXj=1 ��je
j�#]]= ~p[@@
i nXj=1(1n + k�[
j � �j]� p�[��je
j�#])]= ~p[Xj 6=i(@@
i (1n + k�[
j � �j]� p�[��je
j�#]))+ @@
i (1n + k�[
i � �i]� p�[��ie
i�#])]= ~p[k�[�i]�Xx2X(p�(x)��i(x)e
i�#(x)�#(x))]= ~p[k�[�i]�Xx2X(p�(x)�i(x)e
i�#(x))]= ~p[k�[�i]� p�[�ie
i�#]]:@2@
i2A(
; �) = @@
i ~p[k�[�i]� p�[�ie
i�#]]

84 Chapter 4. Probabilistic CLP= �~p[@@
i p�[�ie
i�#]]= �~p[Xx2X(p�(x)�i(x)e
i�#(x)�#(x))]= �~p[p�[�i�#e
i�#]]< 0:From the auxiliary function A an iterative algorithm for maximizing L is constructed. Forwant of a name, we will call this algorithm the �Iterative Maximization (IM)� algorithm. Ateach step of the IM algorithm, a log-linear model based on parameter vector � is extended toa model based on parameter vector � +
̂, where
̂ is an estimation of the parameter vectorthat maximizes the improvement in L when moving away in the parameter space from �.This increment
̂ is estimated by maximizing the auxiliary function A(
; �) as a function of
 and, by Proposition 4.4, determined for each i = 1; : : : ; n uniquely as the solution
̂i to theequation ~p[k�[�i]] = ~p[p�[�ie
̂i�#]]: If �# = Pni=1 �i(x) = K sums to a constant independentof x 2 X , there exists a closed form solution for the
̂i:
̂i = 1K ln ~p[k�[�i]]p�[�i] for all i = 1; : : : ; n:For �# varying as a function of x Newton's method can be applied to �nd an approximatesolution (see Sect. 4.8). The IM algorithm in its general form is de�ned as follows:De�nition 4.3 (Iterative maximization). LetM : �! � be a mapping de�ned byM(�) =
̂ + � with
̂ = argmax
2IRn A(
; �):Then each step of the IM algorithm is de�ned by�(k+1) =M(�(k)):In order to show the monotonicity and convergence properties of the IM algorithm, we �rstmust prove some provisional results. Lemma 4.5 shows that the auxiliary function A(
; �) isa lower bound on the incomplete-data log-likelihood di�erence L(
 + �) � L(�). In the �rstinequality we apply Jensen's inequality to the natural logarithm of an expectation. We get asimpli�ed form similar to the log-likelihood di�erence for complete data, modulo an empiricaldistribution over complete data being replaced by the conditional distribution k�(xjy). Thisform is simpli�ed further by omitting the logarithm, using the inequality lnx � x�1. Further-more, a random variable �# on X is introduced in order to de�ne a probability distribution��i on X . Applying Jensen's inequality to an expectation with respect to ��i in the power of e,we arrive at a �nal simpli�ed form, de�ning the auxiliary function A.Lemma 4.5. A(
; �) � L(
 + �)� L(�).

4.6 Statistical Inference for Log-Linear Models from Incomplete Data 85Proof.L(
 + �)� L(�) = Xy2Y ~p(y) ln g
+�(y)�Xy2Y ~p ln g�(y)= ~p[ln g
+�(�)g�(�)]= ~p[ln 1g�(�) Xx2X(�)(p
+�(x)p�(x)p�(x))]= ~p[ln Xx2X(�)(p�(x)g�(�) p
+�(x)p�(x))]� ~p[Xx2X(�)(p�(x)g�(�) ln p
+�(x)p�(x))] by Jensen's inequality= ~p[Xx2X(�)(p�(x)g�(�) (ln p
+�(x)� ln p�(x)))]= ~p[Xx2X(�)(p�(x)g�(�) (lnZ�1
�� + ln e
��(x) + ln p�(x)� lnp�(x)))]= ~p[k�[
 � �]� ln p�[e
��]]� ~p[k�[
 � �] + 1� p�[e
��]] since lnx � x� 1= ~p[k�[
 � �] + 1�Xx2X(p�(x)ePni=1
i�i(x) �#(x)�#(x))]= ~p[k�[
 � �] + 1�Xx2X(p�(x)ePni=1
i��i(x)�#(x))]� ~p[k�[
 � �] + 1�Xx2X(p�(x) nXi=1 ��i(x)e
i�#(x))] by Jensen's inequality= ~p[k�[
 � �] + 1� p�[nXi=1 ��ie
i�#]]= A(
; �):Lemma 4.6 shows that there is no estimated improvement in log-likelihood at the origin.Lemma 4.6. A(0; �) = 0.Proof. A(0; �) = ~p[k�[0 � �] + 1�Xx2X p�(x) nXi=1 ��i(x)e0] = 0:Lemma 4.7 shows that the critical points of A and L as functions of
 for �xed � are the same.Lemma 4.7. ddt ��t=0A(t
; �) = ddt ��t=0 L(t
 + �).

86 Chapter 4. Probabilistic CLPProof. ddtA(t
; �) = ddt ~p[k�[t
 � �] + 1�Xx2X(p�(x) nXi=1 ��i(x)et
i�#(x))]= ~p[k�[
 � �]�Xx2X(p�(x) nXi=1 �i(x)�#(x)et
i�#(x)
i�#(x))]= ~p[k�[
 � �]�Xx2X(p�(x) nXi=1 �i(x)
iet
i�#(x))]:ddt ����t=0A(t
; �) = ~p[k�[
 � �]�Xx2X(p�(x) nXi=1 �i(x)
ie0)]= ~p[k�[
 � �]� p�[
 � �]]:ddtL(t
 + �) = ~p[ddt ln Xx2X)(�) pt
+�(x)]= ~p[(Xx2X)(�) pt
+�(x))�1 ddt Xx2X)(�) et
��(x)p�(x)Z�1t
��]= ~p[(Xx2X)(�) pt
+�(x))�1 Xx2X)(�) p�(x)(�et
��(x)Z�2t
��Xx2X et
��(x)
 � �(x)p�(x) + Z�1t
��et
��(x)
 � �(x))]= ~p[� Xx2X)(�) pt
+�(x)pt
+�[
 � �](Xx2X)(�) pt
+�(x))�1+ Xx2X)(�) pt
+�[
 � �](Xx2X)(�) pt
+�(x))�1]= ~p[�pt
+�[
 � �] + kt
+�[
 � �]]:ddt ����t=0 L(t
 + �) = ~p[k�[
 � �]� p�[
 � �]]:One central result of this section is stated in Theorem 4.8. It shows the monotonicity ofthe IM algorithm, i.e., the incomplete-data log-likelihood L is increasing on each iteration ofthe IM algorithm except at �xed points ofM or equivalently at critical points of L.Theorem 4.8 (Monotonicity). For all � 2 �: L(M(�)) � L(�) with equality i� � is a �xedpoint ofM or equivalently is a critical point of L.Proof. L(M(�))� L(�) � A(M(�)) by Lemma 4.5� 0 by Lemma 4.6 and de�nition ofM:

4.6 Statistical Inference for Log-Linear Models from Incomplete Data 87The equality L(M(�)) = L(�) holds i� � is a �xed point ofM, i.e.,M(�) =
̂+� with
̂ = 0.Furthermore, � is a �xed point ofM i�
̂ = argmax
2IRn A(
; �) = 0,() for all
 2 IRn : t̂ = argmaxt2IR A(t
; �) = 0,() for all
 2 IRn : ddt ��t=0A(t
; �) = 0,() for all
 2 IRn : ddt ��t=0 L(t
 + �) = 0, by Lemma 4.7() � is a critical point of L:Corollary 4.9 implies that a maximum likelihood estimate is a �xed point of the mappingM.Corollary 4.9. Let �� = argmax�2� L(�). Then �� is a �xed point ofM.Theorem 4.10 discusses the convergence properties of the IM algorithm. In constrast tothe improved iterative scaling algorithm, we cannot show convergence to a global maximumof a strictly concave objective function. Rather we can show convergence of a sequence of IMiterates to a critical point of the non-concave incomplete-data log-likelihood function L. Thecentral property to show is that all limit points of a sequence of IM iterates are critical pointsof L.Theorem 4.10 (Convergence). Let f�(k)g be a sequence in � determined by the IM Algo-rithm. Then all limit points of f�(k)g are �xed points of M or equivalently are critical pointsof L.Proof. Let f�(kn)g be a subsequence of f�(k)g converging to ��. Then for all
 2 IRn:A(
; �(kn)) � A(
̂(kn); �(kn)) by de�nition ofM� L(
̂(kn) + �(kn))� L(�(kn)) by Lemma 4.5= L(�(kn+1))� L(�(kn)) by de�nition of IM� L(�(kn+1))� L(�(kn)) by monotonicity of L(�(k)),and in the limit as n ! 1, for continuous A and L: A(
; ��) � L(��) � L(��) = 0. Thus
 = 0 is a maximum of A(
; ��), using Lemma 4.6, and �� is a �xed point ofM. Furthermore,ddt ��t=0A(t
; ��) = ddt ��t=0 L(t
 + ��) = 0, using Lemma 4.7, and �� is a critical point of L.From this and Theorem 4.8 it follows immediately that each sequence of likelihood values forwhich an upper bound exists monotonically converges to a critical point of L.Corollary 4.11. Let fL(�(k)g be a sequence of likelihood values bounded from above. ThenfL(�(k)g converges monotonically to a value L� = L(��) for some critical point �� of L.Thus, the general properties of the IM algorithm are as follows: The IM algorithm con-servatively increases the incomplete-data log-likelihood function L. Furthermore, it converges

88 Chapter 4. Probabilistic CLPmonotonically to a critical point of L, which in almost all cases is a local maximum. And itshows a chaotic behaviour in that for functions L with several extreme values, convergencewill be extremely sensitive to the starting value of a sequence of iterates.4.6.2.2 Relation to Generalized EM EstimationAs discussed in Sect. 4.6.1, a direct application of the standard EM theory to log-linear modelsis complicated, since complete-data MLE is complicated for log-linear models. That is, a directapplication of the EM algorithm to log-linear models always is doubly iterative, because theM-step itself involves some kind of iterative scaling procedure. Examples using iterative M-steps in MLE of log-linear models for partially classi�ed contingency tables are given in Littleand Rubin (1987).Iterative M-steps can be avoided by going to partial M-steps, i.e., to GEM algorithms,as shown in Sect. 4.3.2. In a GEM algorithm, the auxiliary function Q is increased in eachM-step rather than maximized. That means, if the improved iterative scaling algorithm isused in the M-step, a single maximization step on the auxiliary function of this algorithmsu�ces to increase the objective function of this algorithm. Della Pietra, Della Pietra, andLa�erty (1997) use the auxiliary function Ac(
; �) = 1 + ~p[
 � �] � p�[Pni=1 ��ie
i�#] for theobjective complete-data log-likelihood function Lc(�)= lnQx2X p�(x)~p(x). An incorporation ofthis complete-data MLE algorithm into a GEM setting yields the following procedure: First,for a given sample from Y, the auxiliary function Q for the incomplete-data log-likelihoodL = lnQy2Y g�(y)~p(y) is computed as prescribed by the E-step of the EM theory. Next, �t+1is set to increase Q. That is, we perform only a partial M-step. This task can be ful�lledby tuning the complete-data auxiliary function Ac of Della Pietra, Della Pietra, and La�erty(1997) to a new auxiliary function Â for the manufactured objective function Q, and byperforming a one-step maximization of the complete-data auxiliary function Ac.E-step: Compute Q(�;�(t)) = ~p[k�(t) [ln p�]] for a log-linear model p�.M-step: Choose �(t+1) s.t. Q(�(t+1);�(t)) � Q(�(t);�(t)),i.e., �(t+1) =
(t) + �(t) with
(t) = argmax
2IR Â(
; �(t)),and Â(
; �(t)) = ~p[1 + k�(t) [
 � �]� p�(t) [Pni=1 ��ie
i�#]].Note that the auxiliary function Â which is constructed by applying the complete-data auxil-iary function Ac to the manufactured complete-data log-likelihood Q is identical to our auxil-iary function A as speci�ed in De�nition 4.2. From the theory of the improved iterative scalingalgorithm we can deduce that Q is increased at each M-step of the above procedure. Giventhis, the theory of the GEM algorithm tells us that the incomplete-data log-likelihood L alsois increased at each GEM step of the above procedure. However, convergence of this combined

4.6 Statistical Inference for Log-Linear Models from Incomplete Data 89procedure has yet to be studied. An intuitive and elegant way to do this is by consideringthe auxiliary function A as a lower bound not only on the manufactured complete-data log-likelihood Q but also directly on the incomplete-data log-likelihood L, and prove convergencedirectly from the relation of A to L. This is the approach we took in the last section.4.6.2.3 Relation to Maximum-Entropy EstimationThe improved iterative scaling algorithm can be seen also from the perspective of maximum-entropy estimation. Della Pietra, Della Pietra, and La�erty (1997) and Berger, Della Pietra,and Della Pietra (1996) show a duality between maximum likelihood and maximum entropyproblems, which can be stated as follows.The probability distribution p� with maximum entropy subject to constraintsp[fi] = ~p[fi]; i = 1; : : : ; n from a distribution ~p(x) over complete data X is themodel in the parametric family of log-linear models p� that maximizes the likeli-hood of the training sample X distributed according to ~p(x).Clearly, due to the lack of a distribution ~p(x) over complete data X , a similar result cannothold for the incomplete-data case. Rather, in each M-step we get a maximum of a manufacturedcomplete-data likelihood Q(�;�0) = ~p[k�0 [ln p�]] which corresponds to a maximum-entropysolution subject to constraints from the conditional distribution k�0(xjy). If the M-steps arepartial themselves , i.e., if we use a GEM setting, then we get the following �increasing-entropy�theorem:The probability distribution p� that increases the entropy H(p) for any probabilitydistribution p subject to the constraints p[fi] = k�0 [fi]; i = 1; : : : ; n from a con-ditional distribution k�0(xjy) is the model in the parametric family of log-linearprobability distributions p� with Q(�;�0) � Q(�;�).4.6.3 Property SelectionFor the task of parameter estimation discussed in the last section, we assumed a vector ofproperties to be given. Clearly, exhaustive sets of properties can grow unmanageably largeand must be curtailed. An appropriate quality measure on properties can then be used tode�ne an algorithm for automatic property selection.More generally, property selection can be seen from the viewpoint of model induction.That means, selecting prominent properties out of a set of possible properties can be seenas incrementally inducing a model that captures only the salient statistical qualities of thetraining data. Such induced models disallow over�tting the training data, which would be the

90 Chapter 4. Probabilistic CLPcase with models with one unique property per training element. Instead, compact modelsallow generalizations to new data and temper the overtraining problem.Di�erent approaches to model induction have been presented. For example, Stolcke andOmohundro (1994) have given a Bayesian approach to inducing the structure of hidden Markovmodels. This approach starts with a hidden Markov model that directly encodes the data, andproceeds by incrementally generalizing by merging states according to a Bayesian posteriorprobability measure. This measure trades o� the likelihood of the data, which prefers over-�tting models, against a prior probability, which prefers simpler models. Maximization of theposterior probability, i.e., the product of the prior and the likelihood, determines which statesto merge and when to stop generalizing.The property selection approach presented by Della Pietra, Della Pietra, and La�erty(1997) and Berger, Della Pietra, and Della Pietra (1996) proceeds from the opposite direction.Starting from a uniform distribution over the data, which is encoded by a model with noproperties at all, properties are incrementally added to the model according to a likelihoodmeasure. A naive form of this measure is the improvement in complete-data log-likelihoodwhen extending a model by a single candidate property c with corresponding log-parameter�. Unfortunately, when a new parameter is added to the parameter vector of the model,the optimal values can change for all parameters. Thus the calculation of the likelihood-improvement due to adding a single property requires MLE for all parameters. Clearly, thisis infeasible for models with large parameter spaces. Della Pietra, Della Pietra, and La�erty(1997) and Berger, Della Pietra, and Della Pietra (1996) propose an approximate solutionwhere the complete-data log-likelihood function is maximized directly as a function of a singleparameter �. That is, the improvement due to adding a single candidate is approximated byadjusting only the parameter of this candidate and holding all other parameters �xed. Thisyields a greedy algorithm which makes it practical to evaluate a large number of candidatesat each stage of the combined inference algorithm.Let us turn now to property selection for log-linear CLP models. For the sake of concrete-ness, let properties of proof trees be speci�ed as connected, non-overlapping subtrees of prooftrees as follows: A property of a proof tree is a connected subgraph of a proof tree, whereeach node of such a subtree has either zero descendants or the same number of descendantsas the corresponding node of the supertree, and the node sets of every two subtrees in the setof properties must not intersect.Suppose furthermore that properties can be incrementally constructed by selecting froman initial set of goals and from subtrees built by performing a resolution step at a terminalnode of a subtree already in the model.Clearly, an exhaustive set of such properties must be pruned according to some qualitymeasure. What could be an appropriate quality measure for the case of incomplete data?

4.6 Statistical Inference for Log-Linear Models from Incomplete Data 91For a MLE framework, the approach of Della Pietra, Della Pietra, and La�erty (1997) andBerger, Della Pietra, and Della Pietra (1996) o�ers itself. Unfortunately, we cannot applythe approximate solution of maximizing the likelihood as a function of a single parameter �,since the incomplete-data log-likelihood L is not concave in the parameters. However, we canexpress a conservative estimate of the likelihood-gain by instantiating the auxiliary functionA of De�nition 4.2 to the extension of a model p��� by a single property c with parameter �.A(�; �) = ~p[1 + k�[�ici]� p�[nXi=1 �cie�ic#]]= ~p[1 + k�[�c] � p�[e�c]]since �i = �; ci(x) = c(x); c#(x) = c(x); �ci(x) = 1:From this, we can de�ne an estimated likelihood-gain Gc(�; �) for a candidate c as follows.De�nition 4.4. Let � � �(x) be a weighted property function, c be a candidate property, and� 2 IR the log-parameter corresponding to c. Then the estimated gain Gc(�; �) of addingcandidate property c with parameter value � to the log-linear model p��� is de�ned s.t.Gc(�; �) = ~p[1 + k��� [�c] � p��� [e�c]].Clearly, this estimated likelihood-gain Gc(�; �) is a lower bound on the true likelihood-gainL(� + �) � L(�) for a parameter � corresponding to a property c. Gc(�; �) also is strictlyconcave in the parameters and can be maximized directly and uniquely.Proposition 4.12. Gc(�; �) takes its maximum as a function of � at the unique point �̂satisfying ~p[k��� [c]] = ~p[p��� [c e�̂c]]:Proof. @@�Gc(�; �) = ~p[k��� [c]� p���[c e�c]];@2@�2Gc(�; �) = �~p[p��� [c2e�c]] < 0:Property selection then will incorporate that property out of the set of candidates thatgives the greatest improvement to the model at the property's best adjusted parameter value.Since we are interested only in relative, not absolute gains, a single, non-iterative maximizationof the estimated gain will su�ce to choose from the candidates. This yields a greedy algorithmfor approximate property selection de�ned as follows.

92 Chapter 4. Probabilistic CLPDe�nition 4.5 (Property selection). Let C be a set of candidate properties, c 2 C bea candidate property with log-parameter � 2 IR, and Gc(�) = max� Gc(�; �) the maximalestimated gain that property c can give to model p���. Then c is selected in a property selectionstep for model p��� if c = argmaxc02C Gc0(�).A reasonable stopping criterion for property selection is to employ cross-validation tech-niques. That is, the training corpus from Y has to be divided into a training portion anda held-out portion. Each candidate property is subjected to maximization of the likelihoodfor both the training portion and the held-out portion. If the likelihood is increasing for thetraining portion, but no longer for the held-out portion, the property is discarded. The ideais that at such a point over�tting is indicated for a set of properties that too tighly �ts thetraining portion (and its noise) but no longer provides a good statistical model for both thetraining and held-out portion of the training corpus. A similar approach of cross-validationcan be used to provide a stopping criterion in parameter estimation.4.6.4 Combined Statistical InferenceThe IM procedure for parameter estimation (De�nition 4.3) and the procedure for propertyselection (De�nition 4.5) can be combined into a statistical inference algorithm for log-linearmodels from incomplete data as shown in Table 4.3. The initial model of the CombinedStatistical Inference algorithm is assumed to be chosen according to the respective application.For example, p0 can be chosen as uniform distribution for �nite X , or as the estimate resultingfrom an applicaton of Baum's maximization technique to CLP (see Sect. 4.4.2) for in�nite X .After each property-selection step t, a good starting point for parameter estimation is a p0based upon parameter value �̂+�(t), where �̂ is the parameter value of the selected property ĉthat maximizes the gainGĉ(�; �(t)). Note that X is de�ned as the disjoint union of the completedata corresponding to the incomplete data in the random sample, i.e., X :=Py2Yj~p(y)>0X(y).Let us illustrate this procedure with a simple CLP example. Suppose our sample programis the same as in Fig. 4.1 but with L -constraints taken from a language of hierarchical types.The ordering on the types is de�ned by the operation of set inclusion on the denotations ofthe types and depicted graphically in Fig. 4.4.
ac bde

Figure 4.4: Type hierarchyFurthermore, suppose we have a training corpus of ten queries, consisting of three tokens

4.6 Statistical Inference for Log-Linear Models from Incomplete Data 93

Input Initial model p0, incomplete-data sample from Y.Output Log-linear model p� on complete-data sample X = Py2Yj~p(y)>0X(y)with selected property function vector �� and log-parameter vector �� =argmax�2� L(�) where � = f�j p� is a log-linear model on X based on p0, ��and � 2 IRng.Procedure1. p(0) := p0 with C(0) := ;,2. Property selection: For each candidate property c 2 C(t), compute the gainGc(�(t)) := max�2IR Gc(�; �(t)), and select the property ĉ := argmaxc2C(t) Gc(�(t)).3. Parameter estimation: Compute a maximum likelihood parameter value�̂ := argmax�2� L(�) where � = f�j p�(x) is a log-linear distribution on Xwith initial model p0, property function vector �̂ := (�(t)1 ; �(t)2 ; : : : ; �(t)n ; ĉ),and � 2 IRn+1g.4. Until the model converges, setp(t+1) := p�̂��̂,t := t+ 1,go to 2.Table 4.3: Algorithm (Combined Statistical Inference)

94 Chapter 4. Probabilistic CLPof query y1 : s(Z) & Z = a, four tokens of y3 : s(Z) & Z = c, and one token each of queryy2 : s(Z) & Z = b; y4 : s(Z) & Z = d, and y5 : s(Z) & Z = e. The corresponding proof treesgenerated by the program in Fig. 4.1 are given in Fig. 4.5. Note that queries y1, y2, y3 and y4are unambiguous, being assigned a single proof tree, while y5 is ambiguous.3� y1: 1� y2: 4� y3:
Z = aq(Z) & Z = ap(Z) & q(Z) & Z = as(Z) & Z = a

Z = bq(Z) & Z = bp(Z) & q(Z) & Z = bs(Z) & Z = b
Z = aq(Z) & Z = ap(Z) & q(Z) & Z = cs(Z) & Z = c

1� y4: 1� y5:
Z = bq(Z) & Z = bp(Z) & q(Z) & Z = ds(Z) & Z = d

Z = aq(Z) & Z = a Z = bq(Z) & Z = bp(Z) & q(Z) & Z = es(Z) & Z = e
Figure 4.5: Queries and proof trees for constraint logic programA useful �rst distinction between the proof trees of Fig. 4.5 can be obtained by selecting thetwo subtrees �1 : Z = a and �2 : Z = b as properties. These properties allow us to clusterthe proof trees in two disjoint sets on the basis of similar statistical qualities of the proof threesin these sets. Since in our training corpus seven out of ten queries come unambiguously witha proof tree including property �1, we would expect the maximum likelihood parameter valuecorresponding to property �1 to be higher than the parameter value of property �2. However,we cannot simply recreate the proportions of the training data from the corresponding prooftrees as we did in the unambiguous example of Sect. 4.5. Here we are confronted with anincomplete-data problem, which means that we do not know the frequency of the possibleproof trees of query y5.

4.7 An Experiment 95Let us apply the IM algorithm to this incomplete-data problem. For the selected properties�1 and �2, we have �#(x) = �1(x) + �2(x) = 1 for all possible proof trees x for the sample ofFig. 4.5. Thus the parameter updates
̂i can be calculated from a particularly simple closedform
̂i = ln ~p[k�[�i]]p�[�i] : A sequence of IM iterates is given in Table 4.4. Probabilities of prooftrees involving property �i are denoted by pi. Starting from an initial uniform probability of1=6 for each proof tree, this sequence of likelihood values converges with an accuracy in thethird place after the decimal point after three iterations and yields probabilities p1 � :259 andp2 � :074 for the respective proof trees.Iteration t �(t)1 �(t)2 p(t)1 p(t)2 L(�(t))0 0 0 1=6 1=6 �17:2244481 ln 1:5 ln :5 :25 :08_3 �15:7724862 ln 1:55 ln :45 :258_3 :075 �15:7536783 ln 1:555 ln :445 :2591_6 :0741_6 �15:753481Table 4.4: Estimation using the IM algorithm4.7 An ExperimentIn this section we present an empirical evaluation of the applicability of log-linear probabilitymodels and iterative scaling techniques to constraint-based grammars. We present a computa-tionally tractable maximum pseudo-likelihood estimation procedure for log-linear models andapply it to estimating a probabilistic constraint-based grammar from a small corpus of LFGanalyses provided by Xerox PARC. The log-linear models employ a small set of about 200properties to induce a probability distribution on 3000 parses where on average each sentenceis ambiguous in 10 parses. The empirical evaluation shows that the correct parse from the setof all parses is found about 59 % of the time.This section is based on joint work described in Johnson, Geman, Canon, Chi, and Riezler(1999).4.7.1 Incomplete-Data Estimation as Maximum Pseudo-Likelihood Esti-mation for Complete DataAs we saw in Sect. 4.6, the equations to be solved in statistical inference of log-linear modelsinvolve the computation of expectations of property-functions �i(x) with respect to p�(x).Clearly it is possible to �nd constraint-based grammars where the sample space X of parsesto be summed over in these expectations is unmanageably large or even in�nite.One possibility to sensibly reduce the summation space is to employ the de�nition of

96 Chapter 4. Probabilistic CLPthe sample space X := Py2Yj~p(y)>0X(y) used in incomplete-data estimation as a reductionfactor in complete-data estimation. That is, we approximate expectations with respect to thedistribution p�(�) on X by considering only such parses x 2 X whose terminal yield y = Y (x) isseen in the training corpus. Furthermore, the distribution g�(y) on terminal yields is replacedby the empirical distribution ~p(y):p�[�i] = Xx2X p�(x)�i(x)= Xy2Y Xx2X(y) p�(x)�i(x)= Xy2Y g�(y) Xx2X(y) k�(xjy)�i(x)� Xy2Y ~p(y) Xx2X(y) k�(xjy)�i(x):Clearly, for most cases the approximate expectation is easier to calculate since the spacePy2Yj~p(y)>0X(y) is smaller than the original full space X .The equations to be solved in complete-data estimation for log-linear models are thenXy2Y ~p(y) Xx2X(y) k�(xjy)�i(x) = Xx2X ~p(x)�i(x) for all i = 1; : : : ; n:These equations are solutions to the maximization problem of another criterion, namely acomplete-data log-pseudo-likelihood function PLc which is de�ned with respect to the condi-tional probability of parses given the yields observed in the training corpus.PLc(�) = ln Yx2X ;y2Y k�(xjy)~p(x;y)In the actual implementation described in Johnson, Geman, Canon, Chi, and Riezler (1999)a slightly di�erent function involving a regularization term promoting small values of � onto theobjective function was maximized. The maximization equations were solved using a conjugate-gradient approach adapted from Press, Teukolsky, Vetterling, and Flannery (1992). A similarapproach to maximum pseudo-likelihood estimation for log-linear models from complete databut in the context of an iterative scaling approach can be found in Berger, Della Pietra, andDella Pietra (1996).4.7.2 Property Design for Feature-Based CLGsOne central aim of our experiment was to take advantage of the high �exibility of log-linearmodels and evaluate the usefulness of this issue in hard terms of empirical performance.The properties employed in our models clearly deviate from the rule or production proper-ties employed in most other probabilistic grammars by encoding as property-functions general

4.7 An Experiment 97linguistic principles as proposed by Alshawi and Carter (1994), Srinivas, Doran, and Kulick(1995) or Hobbs and Bear (1995). The de�nition of properties of LFG parses refers to both thec(onstituent)- and f(eature)-structures of the parses. Examples for the properties employed inour model are� properties counting the number of adjuncts, arguments and segments in an analysis,� properties corresponding to grammatical functions used in LFG, including SUBJ, OBJ,OBJ2, COMP, XCOMP, ADJUNCT, etc.� properties measuring the complexity of the phrase being attached to, thus indicatingboth high and low attachment,� properties indicating non-right-branching of nonterminal nodes,� properties indicating non-parallel coordinate structures,� properties for atomic attribute-value pairs in feature structures,� properties for particular syntactic structures such as date-NPs,� standard rule-properties.The number of properties de�ned for each of the two corpora we worked with was about200 including about 50 rule-properties respectively.We would also have liked to have included properties corresponding to lexical-semantichead-head relations, but found the small size of our training corpora to be an obstacle inestimating the associated parameters accurately.4.7.3 Empirical EvaluationThe two corpora provided to us by Xeroc PARC contain appointment planning dialogs (Verb-mobil corpus, henceforth VM-corpus), and a documentation of Xerox printers (Homecentrecorpus, henceforth HC-corpus). The basic properties of the corpora are summarized in Table4.5. The corpora consist of a packed representation of the c- and f-structures of parses producedfor the sentences by a LFG grammar. The LFG parses have been produced automatically bythe XLE system (see Maxwell III. and Kaplan (1989)) but corrected manually in addition.Furthermore, it is indicated for each sentence which of its parses is the linguistically correctone. The ambiguity of the sentences in the corpus is 10 parses on average.In order to cope with the small size of the corpora a 10-way cross-validation framework hasbeen used for estimation and evaluation. That is, the sentences of each corpus were assignedrandomly into 10 approximately equal-sized subcorpora. In each run, 9 of the subcorpora

98 Chapter 4. Probabilistic CLPVM-corpus HC-corpusnumber of sentences 540 980number of ambiguous sentences 314 481number of parses of ambiguous sentences 3245 3169Table 4.5: Properties of the corpora used for the estimation experiment
served as training corpus, and one subcorpus as test corpus. The evaluation scores presentedin Tables 4.6 and 4.7 are sums over the the evaluation scores gathered by using each subcorpusin turn as test corpus and training on the 9 remaining subcorpora.We used two evaluation measures on the test corpus. The �rst measure Ctest(�) givesthe accuracy of disambiguation based on most probable parses. That is, Ctest(�) counts thepercentage of sentences in the test corpus whose most probable parse according to a model p�is the manually determined correct parse. If a sentence has k most probable parses and one ofthese parses is the correct one, this sentence gets score 1=k. The second evaluation measure is�PLtest(�), the negative log-pseudo-likelihood for the correct parses of the test corpus giventheir yields. This metric measures how much of the probability mass the model puts onto thecorrect analyses.In the empirical evaluation, the maximum pseudo-likelihood estimator is compared againsta baseline estimator which treats all parses as equally likely. Furthermore, another objectivefunction is considered: The function C ~X (�) is the number of times the highest weighted parseunder � is the manually determined correct parse in the training corpus ~X . This functiondirectly encodes the criterion which is used in the linguistic evaluation. However, C ~X (�) isa highly discontinuous function in � and hard to maximize. Experiments using a simulatedannealing optimization procedure (Press, Teukolsky, Vetterling, and Flannery 1992) for thisobjective function showed that the computational di�culty of this procedure grows and thequality of the solutions degrades rapidly with the number of properties employed in the model.The results of the empirical evaluation are shown in Tables 4.6 and 4.7. The maximumpseudo-likelihood estimator performed superior to both the simulated annealing estimator andthe uniform baseline estimator on both corpora. The simulated annealing procedure typicallyscores better than the maximum pseudo-likelihood approach if the number of properties is verysmall. However, the pseudo-likelihood approach outperforms simulated annealing already fora property-size of 200 as used in our experiment. Furthermore it should be noted that theabsolute numbers of 59 % accuracy on the disambiguation task have to be assessed relative toa number of on average 10 parses per sentence.

4.8 Approximation Methods 99Ctest for VM-corpus �PLtest for VM-corpusuniform baseline estimator 9.7 % 533simulated annealing estimator 53.7 % 469maximum pseudo-likelihood estimator 58.7 % 396Table 4.6: Empirical evaluation of estimators on Ctest (accuracy of disambiguation with mostprobable parse) and �PLtest (negative log-pseudo-likelihood of correct parses in test corpus)on VM-corpus Ctest for HC-corpus �PLtest for HC-corpusuniform baseline estimator 15.2 % 655simulated annealing estimator 53.2% 604maximum pseudo-likelihood estimator 58.8 % 583Table 4.7: Empirical evaluation of estimators on HC-corpus4.8 Approximation MethodsWith the algorithms and proofs of the preceding sections in hand, it seems that statisticalinference of log-linear models from incomplete data reduces to solving simple equations andcomputing expectations of simple functions. However, depending on the size of the samplespaces over which these expectations must be taken and depending on the complexity of theparameter- and property-space, these equations can become intractable both analytically andnumerically. In order to give a self-contained recipe for statistical inference of log-linear mod-els from incomplete data, we will discuss the possibilities of applying various approximationmethods to achieve both analytical and computational tractability in complex applications.4.8.1 Enforcing a Closed-Form SolutionAs mentioned above, if the property-functions sum to a constant independent of x, i.e., if�#(x) = nXi=1 �i(x) = K for all x 2 X ;then the maximum
̂ of the auxiliary function A used in parameter estimation is given inclosed form.For a given vector of property-functions � with �#(x) = K, the IM algorithm can bestated as shown in Table 4.8. Note that the complete-data sample X is computed as X =

100 Chapter 4. Probabilistic CLPPy2Yj~p(y)>0X(y).Input Initial model p0, property-functions vector �, incomplete-data sample fromY.Output MLE model p�� on X =Py2Yj~p(y)>0X(y).ProcedureUntil convergence doCompute p�; k�, based on � = (�1; : : : ; �n),For i from 1 to n do
i := 1K ln Py2Y ~p(y)Px2X(y) k�(xjy)�i(x)Py2YPx2X p�(x)�i(x) ,�i := �i +
i,Return �� = (�1; : : : ; �n).Table 4.8: Algorithm (Iterative Maximization, Closed-Form)In this case, the IM algorithm can be seen as an incomplete-data version of the generalizediterative scaling algorithm of Darroch and Ratcli� (1972).If the constancy-condition is not ful�lled, it can be enforced by introducing a �correction�property-function �l as follows:Choose K = maxx2X �#(x) and �l(x) = K � �#(x) for all x 2 X ,then Pli=1 �i(x) = K for all x 2 X .Unfortunately, de�ning a correction property can be expensive, e.g., in case a property selectionprocedure is used in statistical inference, a correction property has to be de�ned after eachproperty selection step.Correction properties can be avoided by letting �# vary over x 2 X . This approach is alsoclaimed to improve the convergence rate of iterative scaling methods by increasing the stepsize taken toward the maximum at each iteration.4.8.2 Numerical Approximation via Newton's MethodIf �#(x) does not add up to a constant for all x 2 X , the solutions to the maximizationequations in parameter estimation and property selection cannot, in general, be determinedin closed form. Fortunately, numerical methods such as Newton's method can be used toe�ciently compute approximate solutions to these equations.

4.8 Approximation Methods 101Newton's method approximates the solution � of an equation f(�) = 0 by using a sequenceof linearizations of f . At each step, the intersection of the tangent to f at �t with the �-axisis taken, yielding an improved estimate �t+1. The iteration formulae to approach the solutionup to a desired accuracy are de�ned as follows.�t+1 = �t � f(�t)f 0(�t) where f 0(�t) is the derivative of f at �t.This method directly suits our application when we replace f(�) by the �rst derivativeof the auxiliary function A, @@
iA(
; �), in case of parameter estimation, and by the �rstderivative of the approximate gain Gc, @@�Gc(�; �), in case of property selection. Newton'smethod usually converges rapidly for such functions.To e�ciently compute the functions in the Newton formulae, we can use a cashing techniquesimilar to the one used in Abney (1997) and apply it to our incomplete-data problem. First,we have to de�ne tables of total probabilities as follows.� Si;v = Px2X p�(x)��i(x);v is the expexted number of times property function �i takesvalue v,� Ti;y = Px2X(y) k�(xjy)�i(x) is the conditionally expected number of times property �ioccurs,� Ui;m = Px2Xj �#(x)=m p�(x)�i(x) is the expected number of times property �i occurswhen there is a total number of m property instances.Corresponding to these expectations, we de�ne the following counting variables:� sr(�; i) =Pv Si;ve�vvr,� tr(�; i) =Py Ti;y�r,� ur(�; i) =Pm Ui;me�mmr.The Newton formulae for property selection can then be �lled with these expected counts asfollows: �t+1 = �t + @@�tGc(�t; �)@2@�2tGc(�t; �)= �t + ~p[k�[c]�Np�[c e�tc]Np�[c2e�tc]= �t + t0(�t; c)�Ns1(�t; c)Ns2(�t; c) :

102 Chapter 4. Probabilistic CLPThe tables of total probabilities de�ned above also allow us to express the gain Gc(�̂; �)of adding property c with best parameter value �̂ to model p� in terms of expected counts:Gc(�̂; �) = N + ~p[k�[�̂c]�Np�[e�̂c]= N + t1(�̂; c)�Ns0(�̂; c):For the task of parameter estimation, similar Newton formulae can be obtained from theexpected counts: �t+1 = �t + @@�tA(
; �)@2@�2t A(
; �)= �t + ~p[k�[�i]�Np�[�ie�t�#]Np�[�i�#e�t�#]= �t + t0(�t; i)�Nu0(�t; i)Nu1(�t; i) :For a random sample from Y of size N , an algorithm for approximate parameter estimationcan be de�ned from the above Newton formulae as shown in Table 4.9.Similarly, an algorithm for approximate property selection can be given as in Table 4.10.4.8.3 Approximating Expectations via Monte Carlo MethodsIndependent of whether the solutions of the maximization equations exist in closed form,a further problem arises in connection with large or in�nite sample spaces. That is, if thesample space X is too large to be summed over in the calculation of the expectations in themaximization equations, methods must be used to approximate these expectations.One possibility is to use Monte Carlo Methods. Following Abney (1997), we use theMetropolis-Hastings method and show how it can be applied to our incomplete-data prob-lem.The strategy behind this method is to generate a random sample from a target distributionp by choosing a nominating matrix p0 from which sampling is easy, and performing a Bernoullitrial with parameter � to determine whether to accept or reject the nominated sample point.That means, this method converts a sampler for p0 into a sampler for p via an evaluation matrix�. For our application, we can take as nominating matrix for each query y 2 Y a stochasticcontext-free CLP model p�(x) onX(y) as de�ned in Sect. 4.4.2. From this stochastic derivationmodel sampling is easy and can be converted by a standard evaluation matrix to samplingfrom the desired log-linear distribution p�(x) on X(y).

4.8 Approximation Methods 103
Input Initial model p0, property-functions vector �, incomplete-data sample fromY.Output MLE model p�� on X =Py2Yj~p(y)>0X(y).ProcedureUntil convergence doCompute tables T , U , based on � = (�1; : : : ; �n),For i from 1 to n do� := 0,Until � is accurate enough dou0 := 0; u1 := 0; t0 := 0,For m from 0 to mmax doa := Ui;me�m,u0 := u0 + a,u1 := u1 + am,For y 2 Y where ~p(y) > 0 dob := Ti;y,t0 := t0 + b,� := �+ t0�Nu0Nu1 ,�i := �i + �,Return �� = (�1; : : : ; �n).Table 4.9: Algorithm (Iterative Maximization, Newton-Estimate)

104 Chapter 4. Probabilistic CLP
Input Model p�, set of candidate properties C, incomplete-data sample from Y.Output Selected property c� with maximal parameter value ��.ProcedureCompute tables S, T , based on �,G� := 0; c� := ;, �� := 0,For all candidates c 2 C do� := 0,Until � is accurate enough dos0 := 0; s1 := 0; s2 := 0; t0 := 0; t1 := 0,For v from 0 to vmax doa := Sc;ve�v,s0 := s0 + a,s1 := s1 + av,s2 := s2 + av2,For y 2 Y where ~p(y) > 0 dob := Ti;y,t0 := t0 + b,t1 := t1 + b�,� := �+ t0�Ns1Ns2 ,G := N + t1 �Ns0,If G > G�, then G� := G; c� := c; �� := �.Return c�; ��.Table 4.10: Algorithm (Property Selection, Newton-Estimate)

4.8 Approximation Methods 105Input Initial state x0 2 X(y),Nominating matrix p0 = p�(x) on X(y),Log-linear distribution p = p�(x) on X(y),Evaluation matrix �x;z = (1 if p(x)p0(z) � p(z)p0(x)p(z)p0(x)p(x)p0(z) if p(x)p0(z) > p(z)p0(x) ,Terminal number of steps k.Output Random sample X0; : : : ;Xk from p� on X(y).ProcedureX0 := x0,i := 1 ,While i � kx := Xi�1,Randomly generate z from p0,If z = Xi�1 , then Xi := Xi�1,Else evaluate �x;z,Randomly generate u from uniform distribution on [0; 1],If u � �x;z , then Xi := z ,Else Xi := Xi�1,i := i+ 1,Return X0; : : : ;Xk.Table 4.11: Algorithm (Metropolis-Hastings Sampling)Following standard textbooks such as Fishman (1996), an application of the Metropolis-Hastings algorithm to our problem is as shown in Table 4.11.Note that the evaluation matrix �x;z reduces to a particularly simple form for our appli-cation which does not require the computation of normalization constants Z�. That is, bytaking the initial model p0 of the log-linear CLP model p� to be of the form of a stochasticCLP model p�, and by assuming independence of the nominated sample points, we get thefollowing form of �x;z:
�x;z = min�1; p(z)p0(x)p(x)p0(z)� where p(z)p0(x)p(x)p0(z) = p�(z)p�(x)p�(x)p�(z)= Z�1� e���(z)p�(z)p�(x)Z�1� e���(x)p�(x)p�(z)

106 Chapter 4. Probabilistic CLP= e���(z)e���(x)= e(���(z)����(x)):It can be shown for this sampling method that the distribution of the i.i.d. random variablesXi converges in distribution to the target distribution p� as i!1:limi!1P (Xi = x) = p�(x) for all x 2 X(y):Furthermore, a proper random sample from a probability distribution p enables to estimateexpectations of functions f with respect to p directly from the sample points Xi. That is, theestimated expectation converges to the true expectation with probability 1:limK!1 1K KXi=1 f(Xi) =Xx f(x)p(x) with probability 1:Applying the Metropolis-Hastings algorithm to a log-linear model for CLP yields for eachy 2 Y where ~p(y) > 0 a random sample ~X(y) from p� on X(y). Such samples can be combinedinto a sample ~X =Py2Yj~p(y)>0 ~X(y) from p� on X . From these random samples the desiredestimates of expectations of functions with respect to p� can be computed.Note that we can use the same random sample for each iteration of Newton's methodto estimate the gain for each candidate property simultaneously. After adding the selectedproperty to the model, again a single random sample from the extended model can be used toestimate the MLE values for each parameter in parallel. Suppose we have a random samplefrom Y of size N , a complete data sample ~X(y) of size My for y, and combined complete datasample ~X = Py2Yj~p(y)>0 ~X(y) of size L. Then we can de�ne tables similar to the tables oftotal probabilities used in Sect. 4.8.2 as follows.� Si;v =P~x2 ~X ��i(~x);v is the number of times property function �i takes value v in combinedrandom sample ~X ,� Ti;y =P~x2 ~X(y) �i(~x) is the number of times property �i occurs in random sample ~X(y),� Ui;m = P~x2 ~Xj �#(~x)=m �i(~x) is the number of times property �i occurs in combinedrandom sample ~X when there is a total number of m property instances for each samplepoint.For the expectations involved in the closed-form updates in parameter estimation of Sect.4.8.1, the following counting variables will be convenient:� s(i) =Pv Si;vv,� t(i) =Py Ti;yM�1y .

4.8 Approximation Methods 107The closed-form parameter update
̂ can then be approximated by random sampling as follows.
̂i � 1K ln t(i)NL s(i) :For the expectations involved in the Newton formulae, the counting variables are the same asthose of Sect. 4.8.2, except for� tr(�; i) =Py Ti;y�rM�1y .The Newton update used in property selection is approximated by random sampling as follows.�t+1 � �t + t0(�t; c)� NL s1(�t; c)NL s2(�t; c) :The gain is approximated asGc(�̂; �) � N + t1(�̂; c)� NL s0(�̂; c):Similar random sampling estimates can be obtained for the Newton update used in parameterestimation: �t+1 � �t + t0(�t; i)� NL u0(�t; i)NL u1(�t; i) :4.8.4 Approximating Expectations via Maximum Pseudo-Likelihood Esti-mationAs stated above, Monte Carlo methods o�er the theoretical assurance that the approximationof an expectation converges to the true expectation in the limit. This means that one can getarbitrarily close to the true value of the expectation with increasing sample size. However,convergence can be very slow, i.e., the sample size necessary for an appropriate approximationmay be very large. This is especially the case if the distributions of the nominating modelp� and the target model p� are far apart. This may be the case if probabilistic context-freegrammars are used as nominating model for a log-linear model on constraint-based grammars.Besides the compensation for sampling errors, many samples may have to be generated toguarantee a reliable estimate of the desired expectations. Together, these problems can makeMonte Carlo approximations infeasible in practice.

108 Chapter 4. Probabilistic CLPAn alternative to Monte Carlo methods is to approximate expectations in a maximumpseudo-likelihood estimation framework. In Sect. 4.3.3 we introduced partial E-steps in theEM algorithm as in instance of maximum pseudo-likelihood estimation. The idea was thereto replace an intractable probability function with respect to which an expectation is takenby a probability function which is more tractable. One possibility to achieve such tractableexpectations is to use sparse expectations: Instead of replacing the intractable sample spaceby a Monte-Carlo sample and counting from this, the original sample space is restricted to anappropriate �nite subset over which the expectation is calculated.The general form of such sparse approximations is as follows (cf. Neal and Hinton (1998)).Let S(y) be a �nite subset of the set X(y) of complete data corresponding to an incom-plete datum y 2 Y. Then a sparse conditional distribution s�(xjy) on complete data x givenincomplete data y and the current value of the parameters � can be de�ned s.t.s�(t)(xjy) = 8<: 0 if x 62 S(t)(y);p�(t)(x)Px2S(t)(y) p�(t)(x) if x 2 S(t)(y):That is, for a given subset S(t)(y) of the sample space X(y) de�ned at time t, the sparseprobability distribution s�(t)(xjy) is de�ned as the normalized probability distribution thatassigns a positive probability only to the elements in S(t)(y). The calculation of expectationsPx2S(t)(y) s�(t)(xjy)f(x) of functions f(x) with respect to s�(t)(xjy) then only takes timeproportional to the size of S(t)(y) at time t.Various heuristics can be used for a �exible de�nition of S(t)(y). A sensible approach isto de�ne S(t)(y) as the N most probable x 2 X(y), and recalculate this set at each step t,and frequently perform a full iteration with S(t)(y) = X(y) for all y 2 Y with ~p(y) > 0. ForN = 1, this approach yields the well-known Viterbi-approximation of the EM algorithm. Hereeach y is assumed to come with a unique x 2 X(y) at time t. Given algorithms for e�cientlysearching for the most probable proof tree x for a given query y, a Viterbi-approximationcan be de�ned for parameter estimation of a probabilistic CLP model. A recursive use of thisalgorithm also enables an N-best-approximation.A linguistically motivated de�nition of S(t)(y) as the trees x 2 X(y) of a context-freegrammar which correspond to a bracketing structure annotated to the sample of trainingsentences has been presented by Pereira and Schabes (1992). Since the bracketing does notchange during the estimaton process, S(t)(y) is constant for all t. Clearly, such bracketingconstraints yield on the one hand better linguistic results in terms of a constituent structuresof trees consistent with hand-annotated bracketings. On the other hand, the restriction of thesample space to the x 2 X which correspond to the bracketing structure of the sample fromY also reduce the computational load of the estimation process.A general form of the IM algorithm using sparse approximations s�(xjy) is given in Table4.12.

4.8 Approximation Methods 109Input Initial model p0, initial set S0(y), property-functions vector �, incomplete-data sample from Y.Output Approximated MLE model p�� on X =Py2Yj~p(y)>0X(y).ProcedureUntil convergence doCompute S(y); p�; s�, based on � = (�1; : : : ; �n),For i from 1 to n do
i := 1K ln ~p[Px2S(y) s�(xjy)�i(x)]Px2X p�(x)�i(x) ,�i := �i +
i,Return �� = (�1; : : : ; �n).Table 4.12: Algorithm (Sparse Iterative Maximization, Closed-Form)A theoretical justi�cation of such approaches can be given in terms of partial expectationsin the context of the EM algorithm. In Sect. 4.3.3, we saw that the incomplete-data log-likelihood L(�) = ~p[ln g�(y)] for a given random sample from Y is lower bounded by a pseudo-likelihood function F(q; �) which is a joint function of the parameters and of the distributionsover the unobserved data. The function q can be set to a tractable sparse approximation s�(t)of k�(t) . Thus a sparse distribution s�(t) yields a lower bound F(s�(t) ; �(t)) � L(�(t)) in the E-step, which is maximized as a function of � in the M-step. As shown by Neal and Hinton (1998)or Csiszár and Tusnády (1984), even if some iterations may decrease L, we are guaranteedthat the pseudo-likelihood F which bounds L from below is increased or held constant withevery iteration. The interpretation of the IM algorithm as an instance of a GEM algorithmgiven in Sect. 4.6.2.2 thus justi�es a replacement of k�(t) by a sparse approximation s�(t) alsofor an IM algorithm.However, it has to be kept in mind that for such partial E-steps monotonicity and con-vergence of the estimation algorithm has to be proven in terms of the lower bound F on L.Clearly, convergence can be shown easily for approaches with constant S(t)(y) for all t induced,e.g., by �xed bracketing constraints, but is hard to verify for approaches which let S(t)(y) varyas a function of t such as Viterbi-approximations. More subtle versions of pseudo-likelihoodapproaches to EM include variational approximation methods, where a parameterized approx-imating distribution q is used and the parameters are varied to minimize the Kullback Leiblerdistance between q and k�. Minimizing this distance clearly results in a minimization of thedistance between the pseudo-likelihood function F and the true likelihood function L.L(�)�F(q; �) = ~p[ln g�(�)] � ~p[Xx2X(�) q(x) ln p�(x)q(x)]

110 Chapter 4. Probabilistic CLP= ~p[ln g�(�)� Xx2X(�) q(x)(ln k�(xj�) + ln g�(�)� ln q(x))]= ~p[Xx2X(�) q(x) ln q(x)k�(xj�)]= ~p[D(qjjk�)]The parametric models used, e.g., in the context of large-scale neural networks, are modelsassuming complete independence of the variables of the network (mean �eld approximation,see Parisi (1988)) or approximated models probabilistic dependencies of the original model(structured variational approximation, see Saul and Jordan (1996)). Possible applications ofvariational approximation to estimating probabilistic CLGs could follow these lines. A discus-sion of such approaches yet is beyond the scope of this thesis.4.9 Parsing and SearchingIn the foregoing chapters we discussed the mathematical and algorithmic details of statisticalinference of log-linear models from incomplete data, and experimented with these techniqueson a small set of real-world data of parses of a constraint-based grammar. On this smallscale it was possible to do ambiguity resolution by explicitly listing all parses according tothe induced probability distribution and picking the most probable one as the correct one.However, for applications on a larger scale an important question is how the structure ofthe probability model on parses can be used to guide the search for the most probable parsee�ciently without having to list all parses explicitly. Thus the question is whether the searchtechniques standardly used for probabilistic grammars can be re-applied to the log-linear CLPand CLG models.We begin our discussion in Sect. 4.9.1 with an application of the tabular parsing method ofEarley deduction (Pereira and Warren 1983) to CLGs. The table of pending derivations de�nedin this method will lay the ground for probabilistic search methods for �nding most probableparses. In Sect. 4.9.2 we show that the probabilistic search method of the Viterbi algorithm(Viterbi (1967), Forney (1973)) standardly used in context-free tabular processing models �ndsthe most probable parse of a probabilistic CLG model only under certain restrictions. Sincesuch restrictions may trade o� against the search complexity, methods for sensibly relaxingthe restrictions are desirable. A heuristic search algorithm resulting from such a relaxation isdiscussed in Sect. 4.9.3.4.9.1 Earley Deduction for Feature-Based CLGsEarley deduction has been introduced by Pereira and Warren (1983) as a generalization ofEarley's e�cient context-free parsing algorithm (Earley (1970), Aho and Ullman (1972)) to a

4.9 Parsing and Searching 111tabular parsing algorithm for de�nite clause grammars. In contrast to backtracking methods,in tabular parsing methods a table, or chart, of pending subderivations is built up duringderivation. In Earley deduction, subderivations correspond to de�nite clauses derived fromthe grammar axioms and a query. Storing such derivation states for future use as items ina chart may avoid the redundancy of backtracking methods which leads in the worst caseto an exponential search complexity. Instead, this dynamic-programming technique of storingsolutions to subproblems may reduce the search complexity to be polynomial in input length.The very basic concepts of an application of Earley deduction to CLP can be given asfollows. Earley deduction works on two sets of de�nite clauses, the set of program clauses P andthe set of derived clauses constituting the chart C. An active item of a context-free Earley parsercorresponds here to a de�nite clause with at least one relational atom on its righthandside, i.e.,to a non-unit clause. Passive items correspond to clauses whose righthandsides consist only ofan L -constraint, i.e., to unit-clauses. A selection function determines for each non-unit clauseits selected R(L) -atom. We adopt here the standard Prolog selection rule where the �rst atomon the righthandside of a clause is selected in each step. The input to the algorithm consistsof a set of program clauses P and a query G. The content of the chart C initially consists of Gand is continually added to by an exhaustive application of the following two inference rules2(the rules are to be read as �If there are clauses c1 and c2 and the conditions on these clausesare satis�ed, then add clause c3 to the chart.�).Prediction:c1 = (H1 B1) 2 Cc2 = (H2 B2) 2 Pc3 = (S B02 [�) 2 Cwhere c1 is non-unit, c2 is unit or non-unit, S is the selected atom in B1, � isthe L -constraint in B1, and there exists a variant c02 = (S B02) of c2 s.t.V(c1) \ V(B02) � V(S) and the L -constraint �0 of c3 is satis�able.
2Prediction is called �instantiation� in Pereira and Warren (1983) and completion corresponds to their �reso-lution�. In context-free Earley parsing standardly a distinction between �predictor�, �scanner� and �completer�operations is made. The �rst operation corresponds to prediction and the latter two operations are subsumedby the completion operation of the Earley decuction framework de�ned below.

112 Chapter 4. Probabilistic CLPCompletion:c1 = (H1 B1) 2 Cc2 = (H2 B2) 2 Cc3 = (H1 (B1 n S) [B02) 2 Cwhere c1 is non-unit, c2 is unit, S is the selected atom in B1, and there exists avariant c02 = (S B02) of c2 s.t. V(c1) \ V(B02) � V(S) and the L -constraint �0 ofc3 is satis�able.These rules can be rationalized as follows: The prediction rule proposes for the selectedatom of a clause c1 a possible variant of a program clause c2 using which an r;c�!-step, i.e., acombined goal-reduction and constraint-solving step, can be performed. For a unit clause c2,the completion rule then performs a combined r;c�!-step on the lefthandside atom of c2 andsubstitutes this selected atom in clause c1 by the resulting righthandside L -constraint. Bothrules collect the L -constraints of the antecedent clauses and take care of successful constraintsolving and prevent accidental variable sharing in the consequent clause.Clearly, this combination of top-down prediction and bottom-up completion de�nes asearch rule which can reduce the parsing complexity in comparison to backtracking meth-ods. However, to make these inference rules a workable algorithm, several issues concerningthe e�ective applicability of Earley deduction to di�erent purposes have to be addressed. Sincethese topics are not of direct relevance for our problem, we refer the reader to the extensive lit-erature on this subject (see, e.g., Pereira and Shieber (1987), Dörre (1993), Dörre and Johnson(1995)).Let us illustrate the basic concepts of Earley deduction with a simple feature-based CLG.In the following example we will make use of a standard technique for string position indexing,e.g., the indexed clause sign(X; 0; 1) X = �:abbreviates an actual CLP clausesign(X;Y;Z) X = �& Y = 0 & Z = 1:where the constants 0 and 1 denote the start and end position of the span of the predicatein the input string. The string position can be read o� for unit clauses from the lefthandsideatom, but for non-unit clauses from the �rst string position argument of the head atom andthe �rst string position argument of the leftmost atom in the body. Note that string positionindexing is not mentioned in the de�nition of the inference rules for Earley deduction. In fact,

4.9 Parsing and Searching 113this indexing is not necessary for Earley deduction to work. Rather, it is an e�ective way toreduce the number of unsuccesful rule applications in an implementation, and will also makeour example more transparent.Let us return for illustration to the simple example of Fig. 3.5. An indexed variant of thisprogram is given in Fig. 4.6.1 phrase(X;S0; S) X = (phrase ^ CAT : s ^ DTR1:CAT : n ^ DTR2:CAT :v ^ DTR1:AGR : Y ^ DTR2:AGR : Y ^ DTR1 : Z1 ^ DTR2 :Z2) & sign(Z1; S0; S1) & sign(Z2; S1; S).2 phrase(X;S0; S) X = (phrase^CAT : np^DTR1:CAT : n^DTR2:CAT : n^DTR1 :Z1 ^ DTR2 : Z2) & sign(Z1; S0; S1) & sign(Z2; S1; S).3 word(X; 0; 1) X = (word ^ CAT : n ^ PHON : Clinton ^ AGR : sg).4 word(X; 1; 2) X = (word ^ CAT : v ^ PHON : talks ^ AGR : sg).5 word(X; 1; 2) X = (word ^ CAT : n ^ PHON : talks ^ AGR : pl).6 sign(X;S0; S) phrase(X;S0; S).7 sign(X;S0; S) word(X;S0; S).Figure 4.6: Indexed feature-based constraint logic grammarAn application of Earley deduction to parsing the querysign(X; 0; 2) &X = (sign ^ DTR1: PHON : Clinton ^ DTR2: PHON : talks):denoting the input sentence 0Clinton1 talks2:is given in Figs. 4.7 and 4.8.A convenient way to illustrate graphically the relation of derived items in a chart to partialparses of an input sentence is by a chart graph. An chart graph for the sequence of derivedclauses of Figs. 4.7 and 4.8 is given in Fig. 4.9. This graph associates the numbers of derivedclauses with directed edges which connect input string position nodes. Edges which pointfrom a node to the node itself are attached with the numbers of clauses derived by predictionwith non-unit clauses. In the language of context-free Earley parsing, such edges representpredictions on non-terminal symbols. Scanning of terminal symbols is represented by edgesconnecting a node with the next node on its right. Such edges are attached with the numbersof clauses derived by prediction with unit clauses. Completion of non-terminal symbols is

114 Chapter 4. Probabilistic CLP
9 sign(X; 0; 2)&X = (sign ^ DTR1: PHON : Clinton ^ DTR2: PHON : talks): (I)10 sign(X; 0; 2) phrase(X; 0; 2) & X = (sign ^ DTR1: PHON : Clinton ^DTR2: PHON : talks): (P 9,6)11 phrase(X; 0; 2) sign(Z1; 0; S1)&sign(Z2; S1; 2)&X = (phrase^CAT : s^DTR1 :word ^DTR1: CAT : n ^ DTR1: PHON : Clinton ^DTR1: AGR : Y ^DTR2 :word ^ DTR2: CAT : v ^ DTR2: PHON : talks ^ DTR2: AGR : Y ^ DTR1 :Z1 ^ DTR2 : Z2): (P 10,1)12 sign(Z1; 0; S1) word(Z1; 0; S1) & X = (phrase ^ CAT : s ^ DTR1 : word ^DTR1: CAT : n ^ DTR1: PHON : Clinton ^ DTR1: AGR : Y ^ DTR2 :word ^ DTR2: CAT : v ^ DTR2: PHON : talks ^ DTR2: AGR : Y ^ DTR1 :Z1 ^ DTR2 : Z2): (P 11,7)13 word(Z1; 0; 1) X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT :n ^ DTR1: PHON : Clinton ^ DTR1: AGR : Y ^ DTR1: AGR : sg ^ DTR2 :word^DTR2: CAT : v^DTR2: PHON : talks^DTR2: AGR : Y ^DTR2: AGR :sg ^ DTR1 : Z1 ^ DTR2 : Z2): (P 12,3)14 phrase(X; 0; 2) sign(Z1; 0; S1) & sign(Z2; S1; 2) & X = (phrase ^ CAT : np ^DTR1 : word ^ DTR1: CAT : n ^ DTR1: PHON : Clinton ^ DTR2 : word ^DTR2: CAT : n ^ DTR2: PHON : talks ^ DTR1 : Z1 ^ DTR2 : Z2). (P 10,2)15 sign(Z1; 0; S1) word(Z1; 0; S1) & X = (phrase ^ CAT : np ^ DTR1 : word ^DTR1: CAT : n ^ DTR1: PHON : Clinton ^ DTR2 : word ^ DTR2: CAT :n ^ DTR2: PHON : talks ^ DTR1 : Z1 ^ DTR2 : Z2). (P 14,7)16 word(Z1; 0; 1) X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT :n ^DTR1: PHON : Clinton ^DTR1: AGR : sg ^DTR2 : word ^DTR2: CAT :n ^ DTR2: PHON : talks ^ DTR1 : Z1 ^ DTR2 : Z2). (P 15,3)17 sign(Z1; 0; 1) X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT :n ^ DTR1: PHON : Clinton ^ DTR1: AGR : Y ^ DTR1: AGR : sg ^ DTR2 :word^DTR2: CAT : v^DTR2: PHON : talks^DTR2: AGR : Y ^DTR2: AGR :sg ^ DTR1 : Z1 ^ DTR2 : Z2): (C 12,13)18 phrase(X; 0; 2) sign(Z2; 1; 2) & X = (phrase ^ CAT : s ^ DTR1 : word ^DTR1: CAT : n ^ DTR1: PHON : Clinton ^ DTR1: AGR : Y ^ DTR1: AGR :sg ^ DTR2 : word ^ DTR2: CAT : v ^ DTR2: PHON : talks ^ DTR2: AGR :Y ^ DTR2: AGR : sg ^ DTR1 : Z1 ^ DTR2 : Z2): (C 11,17)19 sign(Z1; 0; 1) X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT :n ^DTR1: PHON : Clinton ^DTR1: AGR : sg ^DTR2 : word ^DTR2: CAT :n ^ DTR2: PHON : talks ^ DTR1 : Z1 ^ DTR2 : Z2). (C 15,16)20 phrase(X; 0; 2) sign(Z2; 1; 2) & X = (phrase ^ CAT : np ^ DTR1 : word ^DTR1: CAT : n ^ DTR1: PHON : Clinton ^ DTR1: AGR : sg ^ DTR2 :word ^ DTR2: CAT : n ^ DTR2: PHON : talks ^ DTR1 : Z1 ^ DTR2 : Z2). (C 14,19)Figure 4.7: Earley deduction chart

4.9 Parsing and Searching 115
21 sign(Z2; 1; 2) word(Z2; 1; 2) & X = (phrase ^ CAT : s ^ DTR1 : word ^DTR1: CAT : n ^ DTR1: PHON : Clinton ^ DTR1: AGR : Y ^ DTR1: AGR :sg ^ DTR2 : word ^ DTR2: CAT : v ^ DTR2: PHON : talks ^ DTR2: AGR :Y ^ DTR2: AGR : sg ^ DTR1 : Z1 ^ DTR2 : Z2): (P 18,7)22 word(Z2; 1; 2) X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT :n ^ DTR1: PHON : Clinton ^ DTR1: AGR : Y ^ DTR1: AGR : sg ^ DTR2 :word^DTR2: CAT : v^DTR2: PHON : talks^DTR2: AGR : Y ^DTR2: AGR :sg ^ DTR1 : Z1 ^ DTR2 : Z2): (P 21,4)23 sign(Z2; 1; 2) word(Z2; 1; 2) & X = (phrase ^ CAT : np ^ DTR1 : word ^DTR1: CAT : n ^ DTR1: PHON : Clinton ^ DTR1: AGR : sg ^ DTR2 :word ^ DTR2: CAT : n ^ DTR2: PHON : talks ^ DTR1 : Z1 ^ DTR2 : Z2): (P 20,7)24 word(Z2; 1; 2) X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT :n ^DTR1: PHON : Clinton ^DTR1: AGR : sg ^DTR2 : word ^DTR2: CAT :n ^ DTR2: PHON : talks ^ DTR2: AGR : pl ^ DTR1 : Z1 ^ DTR2 : Z2): (P 23,5)25 sign(Z2; 1; 2) X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT :n ^ DTR1: PHON : Clinton ^ DTR1: AGR : Y ^ DTR1: AGR : sg ^ DTR2 :word^DTR2: CAT : v^DTR2: PHON : talks^DTR2: AGR : Y ^DTR2: AGR :sg ^ DTR1 : Z1 ^ DTR2 : Z2): (C 21,22)26 phrase(X; 0; 2) X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT :n ^ DTR1: PHON : Clinton ^ DTR1: AGR : Y ^ DTR1: AGR : sg ^ DTR2 :word^DTR2: CAT : v^DTR2: PHON : talks^DTR2: AGR : Y ^DTR2: AGR :sg ^ DTR1 : Z1 ^ DTR2 : Z2): (C 18,25)27 sign(X; 0; 2) X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT :n ^ DTR1: PHON : Clinton ^ DTR1: AGR : Y ^ DTR1: AGR : sg ^ DTR2 :word^DTR2: CAT : v^DTR2: PHON : talks^DTR2: AGR : Y ^DTR2: AGR :sg ^ DTR1 : Z1 ^ DTR2 : Z2): (C 10,26)28 sign(Z2; 1; 2) X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT :n ^DTR1: PHON : Clinton ^DTR1: AGR : sg ^DTR2 : word ^DTR2: CAT :n ^ DTR2: PHON : talks ^ DTR2: AGR : pl ^ DTR1 : Z1 ^ DTR2 : Z2): (C 23,24)29 phrase(X; 0; 2) X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT :n ^DTR1: PHON : Clinton ^DTR1: AGR : sg ^DTR2 : word ^DTR2: CAT :n ^ DTR2: PHON : talks ^ DTR2: AGR : pl ^ DTR1 : Z1 ^ DTR2 : Z2): (C 20,28)30 sign(X; 0; 2) X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT :n ^DTR1: PHON : Clinton ^DTR1: AGR : sg ^DTR2 : word ^DTR2: CAT :n ^ DTR2: PHON : talks ^ DTR2: AGR : pl ^ DTR1 : Z1 ^ DTR2 : Z2): (C 10,29)Figure 4.8: Earley deduction chart, cont.

116 Chapter 4. Probabilistic CLP

9

10, 11, 12 13, 17, 18

16, 19, 20

21

23

22, 25

24, 28

26, 27

14, 15

29, 30

Clinton talks

Figure 4.9: Chart graph

4.9 Parsing and Searching 117represented by edges connecting a node with a node possibly further on its right. Such nodesare attached with the numbers of clauses derived by the completion rule.There are two parses of the above input sentence hidden in the Earley deduction chartof Figs. 4.7 and 4.8. In the chart graph of Fig. 4.9, these two parses are represented by theupper and lower half of the symmetric graph. From each of the two �nal completed clauses,27 and 30, a proof tree representing a parse can be reconstructed using the algorithm of Def.4.6. This algorithm de�nes the construction of partial proof trees from completed clauses, andwhen applied recursively, permits the construction of proof trees from a given Earley deductionchart.De�nition 4.6. Let ck be a completed clause derived from clauses ci and cj, let ti and tj bethe unique partial proof trees corresponding to ci and cj, and de�ne for each predicted clause(E F) a partial proof tree EjF . Then the partial proof tree t(ti; tj) corresponding to ck isconstructed s.t.
t(ti; tj) = 8>>>>>>>>>>><>>>>>>>>>>>:

ti�tj if both ci; cj are completed clauses,ti
tj if one or both ci; cj are predicted clauses,
and ...At1 j� = B [Ct2 jD... , ...At1 j
 = Bt2 jB n C [D... , if ...t1 = AjB , Cjt2 = D... .
The proof tree for completed clause 27, corresponding to the parse [ClintonN talksV]S ,is the proof tree of Fig. 2.8 and repeated here in Fig. 4.10. The parse [ClintonN talksN]NPis derived via the proof tree of Fig. 2.9, repeated here in Fig. 4.11, and can be reconstructedfrom completed clause 30.4.9.2 Probabilistic CLGs and the Viterbi AlgorithmTurning to probabilistic CLGs, we see that because CLGs are simply instances of CLP, alltechniques developed for statistical inference of probabilistic CLP apply to probabilistic CLGs

118 Chapter 4. Probabilistic CLP

�2 : X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1: AGR : Y ^ DTR1: AGR : sg ^ DTR2 : word^DTR2: CAT : v ^ DTR2: PHON : talks ^ DTR2: AGR : Y ^ DTR2: AGR : sg)
X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1: AGR : Y ^ DTR1: AGR : sg ^ DTR2 : word^DTR2: CAT : v ^ DTR2: PHON : talks ^ DTR2: AGR : Y ^ DTR2: AGR : sg^DTR2 : Z2) & word(Z2)
X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1: AGR : Y ^ DTR1: AGR : sg ^ DTR2 : word^DTR2: CAT : v ^ DTR2: PHON : talks ^ DTR2: AGR : Y ^ DTR2: AGR : sg^DTR2 : Z2) & sign(Z2)
X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1: AGR : Y ^ DTR2 : word ^ DTR2: CAT : v^DTR2: PHON : talks ^ DTR2: AGR : Y ^ DTR1 : Z1 ^ DTR2 : Z2)& word(Z1) & sign(Z2)

�1 : X = (phrase ^ CAT : s ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1: AGR : Y ^ DTR2 : word ^ DTR2: CAT : v^DTR2: PHON : talks ^ DTR2: AGR : Y ^ DTR1 : Z1 ^ DTR2 : Z2)& sign(Z1) & sign(Z2)
X = (sign ^ DTR1: PHON : Clinton ^ DTR2: PHON : talks)& phrase(X)X = (sign ^ DTR1: PHON : Clinton ^ DTR2: PHON : talks)& sign(X)

Figure 4.10: Proof tree for [ClintonN talksV]S

4.9 Parsing and Searching 119

�4 : X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1: AGR : sg ^ DTR2 : word^DTR2: CAT : n ^ DTR2: PHON : talks ^ DTR2: AGR : pl)
X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1: AGR : sg ^ DTR2 : word^DTR2: CAT : n ^ DTR2: PHON : talks ^ DTR2 : Z2)& word(Z2)
X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR1: AGR : sg ^ DTR2 : word^DTR2: CAT : n ^ DTR2: PHON : talks ^ DTR2 : Z2)& sign(Z2)
X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR2 : word ^ DTR2: CAT : n^DTR2: PHON : talks ^ DTR1 : Z1 ^ DTR2 : Z2)& word(Z1) & sign(Z2)

�3 : X = (phrase ^ CAT : np ^ DTR1 : word ^ DTR1: CAT : n^DTR1: PHON : Clinton ^ DTR2 : word ^ DTR2: CAT : n^DTR2: PHON : talks ^ DTR1 : Z1 ^ DTR2 : Z2)& sign(Z1) & sign(Z2)
X = (sign ^ DTR1:PHON : Clinton ^ DTR2: PHON : talks)& phrase(X)X = (sign ^ DTR1: PHON : Clinton ^ DTR2: PHON : talks)& sign(X)

Figure 4.11: Proof tree for [ClintonN talksN]NP

120 Chapter 4. Probabilistic CLPwithout modi�cation. The simplest way to inspect a probability distribution on parses is tolist the respective proof trees and calculate their probabilities from the subtree-propertiesand the corresponding parameters. An imaginable probability model for the proof trees ofFigs. 4.10 and 4.11 could take as properties the subtrees introduced by the clauses whichare responsible for the two di�erent readings of the input sentence, namely clauses 1, 4, 2,and 5. The respective properties �1; �2; �3; and �4 are depicted in Figs. 4.10 and 4.11 asframed parts of the proof trees. MLE from a large natural language corpus for the parameters�1; �2; �3 and �4 corresponding to these properties would probably return a higher weight forparameters �1 and �2 than for �3 and �4. Thus this probability model would tell the prooftree of Fig. 4.10, corresponding to the parse [ClintonN talksV]S , to be more probable giventhe input sentence Clinton talks than the proof tree of Fig. 4.11, corresponding to the parse[ClintonN talksN]NP .However, if we are interested in the most probable parse of a sentence, listing all possibleparses may be too costly in general, even if the parses just have to be extracted from achart. Clearly, it would be nice if we could make use of the structure of the probabilisticmodel to guide the search for the most probable parse. The Viterbi algorithm (Viterbi (1967),Forney (1973)) for �nding the most probable parse implements this idea using a dynamic-programming approach as follows: During derivation, each derivation state must keep trackof the most probable path of derivation states leading towards it. When the �nal derivationstate is reached, the maximum probability derivation can be recovered by tracing back thestored path of most probable derivation states.Clearly, di�erent speci�cations of this algorithm depend on the chosen parsing strategyand on the underlying probability model. For example, Stolcke (1993) computes a Viterbiparse for probabilistic context-free grammars in a framework of probabilistic Earley parsingas follows: During derivation, each completed item keeps track of the most probable pathof items contributing to it. The rule probabilities are propagated recursively by associatingeach predicted item with the probability of the rewriting rule used in the prediction, andby recording for each completed item the product of probabilities of the pair of items thatcontributes with maximal value to the completion. Storing at each completion step the item-pair leading to the maximum, �nally yields a path of most probable items from which themost probable derivation can be retrieved.Under certain restrictions on the parsing strategy and on the probabilistic search method,the idea of the Viterbi algorithm is applicable to Earley deduction for log-linear probabilisticCLGs as follows.Concerning the parsing strategy, let us strictly adhere to the de�nition of Earley deductiongiven above. That is, we only speak of an ambiguous derivation of a completed clause if morethan one pair of clauses yields via completion the same clause with the same variable binding.That is, in this setting a numerical comparison at a completion step is done only between

4.9 Parsing and Searching 121clause-pairs contributing via completion to the same �instantiated� clause.Considering the probabilistic search method, Stolcke (1993)'s model of Viterbi parsing canbe reconstructed if we identify the properties of the log-linear model with program clauses.If properties are allowed to be subtrees of proof trees, things are more complictated. In thissetting, in order to compare numerically between alternatives, we have to incrementally buildup partial proof trees and check their properties during derivation.First, we have to de�ne a function w to calculate the weight of a partial proof tree tk undera log-linear probability model p�.De�nition 4.7. Let C be an Earley deduction chart for query G and program P , let X be theset of proof trees for G from P , and let p� be a log-linear distribution on X . Then the weightw of a partial proof tree tk constructable for a completed clause ck 2 C is de�ned s.t.w(tk) = e���(tk):Furthermore, a numerical comparison between alternatives leading to the same completionrequires the partial proof trees corresponding to the alternative completions to include onlycompletely built-up subtree-properties. This is necessary to avoid the outranking of highlyweighted partial proof trees by lower weighted partial proof trees at a completion step wherethe highly weighted subtree-properties cannot yet be taken under consideration. For an ap-propriate partial ordering on trees based on an operation �, we can ensure that partial prooftrees include only completely built-up properties as follows.A partial proof tree tk is complete for a property-vector � = (�1; : : : ; �n) i� foreach i = 1; : : : ; n: �i � tk or else �i \ tk = ;.The algorithm of Def. 4.6 can be used for a recursive comparison as follows. Note that we usethe de�nition of variant given in Chap. 2 for the speci�cation of an equivalence class of clausesto be compared.For each equivalence class [ck] of completed clauses, record the partial proof treet�k = argmaxtk w(tk), where [ck] = fc 2 Cj c is a variant of ck, and there exist clausesci and cj in C from which c is derivable via completiong, and tk 2 ft(t�i ; t�j)j t�i andt�j are the hightest weighted complete partial proof trees corresponding to clausesci and cjg.Clearly, given the above restrictions, this procedure will yield the most probable proof treefor a given query to a program. The possible savings in computational complexity induced bythis procedure depend on the size of the subtree-properties to be worked out during the search

122 Chapter 4. Probabilistic CLPa b feFigure 4.12: Type hierarchyprocess. That is, small subtrees will permit an e�cient pruning at nearly each completion stepwhereas subtrees connecting nodes over long distances may in the worst case yield no gain ine�ciency at all.4.9.3 Heuristic Searching for Most Probable ParsesHowever, the e�ective applicability of the search procedure stated above strongly depends theform of the grammars under consideration. That means, for particular CLGs, it is ine�cientto restrict the numerical selection only to alternative completions which lead to the sameclause with the same variable binding. The storing of variable bindings in each step of anEarley deduction procedure is necessary to enable partial proofs to be reused in other partialproofs. Unfortunately, deriving a new clause with each new variable binding may introduceoverhead which causes in the worst case an exponential search cost. This can be the case, e.g.,for grammars which encode parses entirely via variable bindings, i.e., via L -constraints, andin not via predicates, i.e., R(L) -atoms. The extreme ends of the spectrum of such examplescan be marked, e.g., for the �rst case by CLGs resulting from a direct application of thecompilation procedure of Götz (1995). This procedure translates HPSG descriptions into theL -constraints of a CLP fragment using a single R(L) -atom for processing. An example forthe second case are de�nite clause grammars such as those presented in Pereira and Warren(1983) which encode each grammar symbol as a distinct CLP predicate. For cases like the�rst, it would be more e�ective if one could compare alternative completions leading to avariant of a CLP clause irrespective of the variable bindings. Unfortunately, this approachto comparing �uninstantiated� completed clauses introduces a context-dependence problemcaused by incompatible variable bindings. That is, we are confronted here with a trade-o�between e�ciency and correctness of the search method.Let us illustrate this context-dependence problem with a simple example. For illustrationwe use the program of Fig. 4.1, repeated here in Fig. 4.13, with L -constraints from a languageof hierarchcal types. The ordering on the types is depicted in Fig. 4.12.An Earley deduction chart for the query s(Z) & Z = e is given in Fig. 4.14.Let the properties �1 to �5 of a probability distribution over the proof trees correspondingto the Earley deduction chart of Fig. 4.14 be de�ned as the framed subtrees shown in Fig.4.15. Furthermore, let the corresponding parameter values be �1 = ln2; �2 = ln3; �3 =

4.9 Parsing and Searching 1231 s(Z) p(Z) & q(Z):2 p(Z) Z = a:3 p(Z) Z = b:4 p(Z) Z = f:5 q(Z) Z = a:6 q(Z) Z = b:Figure 4.13: Constraint logic program7 s(Z) & Z = e. (I)8 s(Z) p(Z) & q(Z) & Z = e. (P 7,1)9 p(Z) Z = a. (P 8,2)10 p(Z) Z = b. (P 8,3)11 p(Z) Z = f . (P 8,4)12 s(Z) q(Z) & Z = a. (C 8,9)13 s(Z) q(Z) & Z = b. (C 8,10)14 s(Z) q(Z) & Z = f . (C 8,11)15 q(Z) Z = a. (P 12,5)16 q(Z) Z = b. (P 13,6)17 s(Z) Z = a. (C 12,15)18 s(Z) Z = b. (C 13,16)Figure 4.14: Earley deduction chartln 5; �4 = ln5 and �5 = ln3. Now let us take a look at how the probability model de�ned bythese properties and parameters guides the search for the most probable proof tree of querys(Z) & Z = e from the program of Fig. 4.13. The �rst decision to be made is between thecompleted clauses 12, 13 and 14, which di�er only by their variable bindings, i.e., by theirL -constraints. The partial proof trees corresponding to these clauses, t12, t13 and t14, areshown in Fig. 4.15. However, t14, the highest weighted of these partial proof trees, is notincluded in any proof tree, t17 or t18, corresponding to the �nal completion steps. That is, inthis case the probabilistic search has not only missed the most probable proof tree but hasled to failure! Even if we ignore the clauses contributing to this failure, namely clauses 4, 11and 14, a problem still remains. In this case, w(t13) > w(t12), and the weight of proof treet18 including the best partial proof tree t13 is w(t18) = 9. However, the weight of proof treet17 including the partial proof tree t12, which we just have thrown away, is w(t17) = 10 andw(t17) > w(t18). Thus in this case the probabilistic search method has led us to the lowerweighted proof tree.Clearly, the �rst of these problems can be solved by constructing the Earley deduction chartin advance and by checking the terminal L -constraint of each partial proof tree correspondingto an alternative completion against the L -constraints of the �nal completion steps in thechart. This can be accomplished by the the following re-de�nition of the equivalence class [ck]

124 Chapter 4. Probabilistic CLPt12: t13: t14:
�1 q(Z) & Z = ap(Z) & q(Z) & Z = es(Z) & Z = e

�2 q(Z) & Z = bp(Z) & q(Z) & Z = es(Z) & Z = e
�3 q(Z) & Z = fp(Z) & q(Z) & Z = es(Z) & Z = e

t17: t18:
�4 Z = a�1 q(Z) & Z = ap(Z) & q(Z) & Z = es(Z) & Z = e

�5 Z = b�2 q(Z) & Z = bp(Z) & q(Z) & Z = es(Z) & Z = e
Figure 4.15: Partial proof treesof completed clauses which is subject to a numerical comparison in a completion step. Notethat we refer here to the de�nition of variable renaming given in Chap. 2.Let C be an Earley deduction chart for query G and program P , ck = (A B1 & : : : Bn &) be a clause in C, and c0k = ck n . Then an equivalence class [ck]of completed clauses in C is de�ned s.t.[ck] = fc 2 Cj there exist clauses ci and cj in C from which clause c = (C D1& : : : &Dm&�) is derivable via completion, c0 = c n� is obtained from c0kby simultaneously replacing each occurence of a variable X in c0k by a renamedvariable �(X) for all variables X 2 V(c0k) for a renaming �, and there existsa satis�able L -constraint � & ' for at least one �nal completed clause in Cwith L -constraint 'g.However, the latter of the problems stated above is solvable only at the cost of re-introducing the restriction to compare only �instantiated� variants of completed clauses, i.e.,variants of clauses with the same L -constraints. Each search algorithm which allows �unin-stantiated� variants of completed clauses to be compared, necessarily provides only a heuristicsearch procedure in the sense that it does not guarantee that the most probable proof treeis found. According to the de�nition of [ck], the equivalence class of completed clauses whichare compared in a completion step, and the satisfaction of the completeness requirement on

4.9 Parsing and Searching 125partial proof trees, the algorithm of Table 4.9.3 de�nes either an approximate heuristic or atrue best-parse search algorithm.An approach to a Viterbi-like heuristic search procedure similar to ours is used by Carrolland Briscoe (1992) for searching the parse forest produced by their probabilistic LR parser foruni�cation-based grammars. There also the parse forest must be built up completely beforeunpacking to ensure that the search algorithm does pursue successful derivations.On the whole, the decision between a possibly more e�cient, but only approximate heuris-tic procedure and a possibly ine�cient, but optimal Viterbi algorithm has to be made withrespect to particular classes of CLGs in mind. Furthermore, if a heuristic search procedure isused, an alternative to completing the chart in advance is to using a backtracking procedure inconnection with an incremental computation of clauses and corresponding best partial prooftrees.Input Log-linear model p� on set X of proof trees for goal G from program P ,weight function w, tree-constructor function t, Earley deduction algorithm,choice of equivalence class of completed clauses.Output Best proof tree t�k for G from P .ProcedureUntil no clauses can be addedCompute clauses by Earley deduction algorithm,If ck is a completed clause,Then w� := 0, compute [ck],If [ck] = [cl] for some l < k,Then t�k := t�l ,Else for each c 2 [ck],For each ci; cj which derive c via completion,Compute the best proof tree t�i for ci,Compute the best proof tree t�j for cj ,tk := t(t�i ; t�j),If w(tk) > w�,Then w� := w(tk); t�k := tk,Else delete c,Return t�k. Table 4.13: Algorithm (Best-Parse Search)

126 Chapter 4. Probabilistic CLP4.10 Summary and DiscussionIn this chapter we presented a probabilistic model for CLP and a novel method for statisti-cal inference about the parameters of such models from incomplete data. We discussed theproblems of previous approaches which applied Baum's estimation technique for stochasticcontext-free models to estimation of stochastic constraint-based models. We showed with acounterexample that this incomplete-data estimation method does not generally yield thedesired maximum likelihood values when applied to constraint-based systems. To overcomethe inherent context-dependence problem of such systems, we introduced a powerful log-linearprobability model for CLP. Furthermore, we presented a new algorithm to infer the parametersof log-linear models, and also the properties of such parametric models, from incomplete train-ing data. We showed monotonicity and convergence of the algorithm to the desired maximumlikelihood estimates and applied it experimentally to estimation of a CLG on a small scale.Furthermore, we discussed various methods for approximate computation of the formulae in-volved in the inference task, and presented methods which use the structure of the probabiliticmodel to guide the search for the most probable analysis. To this end we presented an approx-imate heuristic search algorithm based on dynamic programming techniques. Depending onthe class of grammars under consideration, this algorithm can provide a considerable e�ciencygain in searching for the most probable analysis.In comparison to the work on quantitative CLP presented above, the advantages of proba-bilistic CLP are clearly the possibility to use automatic techniques for statistical inference forparameter estimation and property selection. Rather, our incomplete-data inference algorithmis general enough to be applicable to log-linear probability distributions in general, and thusis useful in other incomplete-data settings as well. In this chapter the algorithm has especiallybeen shown to be useful for probabilistic context-sensitive NLP models. In contrast to relatedapproaches such as that of Magerman (1994), Ratnaparkhi (1998) or Goodman (1998), whichrequire fully annotated corpora for estimation, our statistical inference algorithm providesgeneral means for automatic and reusable training of arbitrary probabilistic constraint-basedgrammars from unannotated corpora. Furthermore, our approach is the �rst one since theintroduction of log-linear models into the discussion of probabilistic parsing by Abney (1996)which evaluates experimentally the usefulness of general log-linear models on CLGs.

Chapter 5
Conclusion
In this �nal chapter we present a short summary of the work of this thesis. We compare theadvantages and shortcomings of the two presented approaches to quantitative and probabliisticCLP relative to each other and relative to other approaches. Not surprisingly, the presentedwork is not de�nitive but raises several questions which could not be answered in the courseof this thesis. These questions will be dealt with when we discuss future continuations of thepresented work.5.1 SummaryIn this thesis, we have presented new mathematical and algorithmic techniques for quantitativeand statistical inference in constraint-based NLP. We have chosen the general concepts of CLPas the formal framework to deal with constraint-based NLP, yielding CLGs as instances ofCLP. Aiming at a general solution of the problem of structural ambiguity in CLGs, we havepresented two independent approaches to weighted CLGs.The �rst approach, called quantitative CLP, is situated in a clear logical framework, andpresents a sound and complete system of quantitative inference for de�nite clauses with subjec-tive weights attached to them. This approach permits to specify weights in arbitrary ways, e.g.,as subjective probabilities, user-de�ned preference values, or degrees of grammaticality, andto use search techniques such as alpha-beta pruning for �nding the maximally weighted prooftree for a given set of queries e�ciently. Related previous work either focussed solely on formalsemantics of quantitative logic programs without speci�c applications in mind, or presentedonly informal attachments of weights to grammar components for the aim of weight-basedpruning in natural language parsing. Our approach is the �rst one to combine weight-basedparsing for constraint-based systems with a rigid formal semantics for such quantitative infer-ence systems. 127

128 Chapter 5. ConclusionThe second approach, called probabilistic CLP, addresses the problem of structural ambi-guity resolution by a completely di�erent form of weighted CLGs. Here a log-linear probabilitymodel is presented which de�nes a probability distribution over the proof trees of a constraintlogic program on the basis of weights assigned to arbitrary properties of these trees. Thepossibility to de�ne arbitrary features of proof trees as such properties and to estimate appro-priate weights for them permits the probabilistic modeling of arbitrary context-dependencies.In this thesis we �rstly evaluate empirically the applicability and feasibility of estimation ofgeneral log-linear models on CLGs. In contrast to previous approaches which were restrictedto estimation from annotated data for specialized probabilistic parsing models we present analgorithm to estimate the parameters and to induce the properties of log-linear models fromincomplete, unanalyzed data. The new algorithm has the same computational complexityas related complete-data inference algorithms for log-linear models. Furthermore, we addressthe problem of computational intractability of large summations in the inference task bydiscussing various techniques to approximately solve this task and present an approximateheuristic search algorithm for CLGs.5.2 Future WorkAs shown in Sect. 4.7, the empirical evaluation of estimating log-linear models on CLGsshowed promising results both for training and evaluation on a small scale. Clearly, the maintask of future work is a thorough investigation of the performance of the presented generalalgorithms on larger scales of real-world NLP applications. In larger experiments issues whichwere addressed so far only theoretically shall be evaluated in practice. Such issues are theempirical evaluation of property selection, the evaluation of various approximation methodsin parameter estimation, or the empirical testing of the performance of non-heuristic versusheuristic search techniques in terms of linguistic results.New issues which shall be addressed in larger experiments are the use of dynamic pro-gramming techniques not only for searching for best parses but also for e�cient calculationof expectations in the estimation process. Similar to the heuristic Viterbi algorithm presentedfor best parse search the application of dynamic programming to computing expectations willbe possible only in a heuristic way. Clearly, the question to be addressed is how such heuristicestimation procedures perform in terms of linguistic evaluations.Another issue that will become important for larger data sets is the use of reference distri-butions as simpler and easier to estimate back-o� models. A reasonable choice of a referencedistribution for our task is, e.g., a model de�ning a probability distribution on lexical-semantichead-head relations such as verb-noun pairs (see, e.g, Rooth, Riezler, Prescher, Carroll, andBeil (1999)). Such a clustering model does not require complex parsing models or costly anno-tated corpora, but can be estimated easily from large corpora of verb-noun pairs. Furthermore,

5.2 Future Work 129such a class-based model will also provide a smooth default distribution and thus help to solvethe sparse data problem.A further task of future work will be the investigation of possible applications of log-linearmodels and incomplete-data estimation to NLP applications di�erent from parsing.

130 List of Figures

List of Figures
2.1 Constraint logic program . 172.2 Type hierarchy . 182.3 Minimal model construction for constraint logic program 182.4 Derivation tree for constraint logic program . 182.5 Signature for feature-based grammar . 252.6 Feature-based grammar . 252.7 Feature-based constraint logic grammar . 262.8 A derivation of [ClintonN talksV]S . 272.9 A derivation of [ClintonN talksN]NP . 283.1 Quantitative constraint logic program . 413.2 PF -chain for quantitative constraint logic program 423.3 Min/max tree for quantitative constraint logic program 473.4 Quantitative proof trees for quantitative constraint logic program 483.5 Quantitative feature-based constraint logic grammar 493.6 Quantitative derivation of [ClintonN talksV]S 503.7 Quantitative derivation of [ClintonN talksN]NP 513.8 Quantitative constraint logic program . 533.9 Complete search of a quantitative derivation tree 543.10 Alpha-beta search of quantitative derivation tree 554.1 Constraint logic program . 704.2 Proof trees from constraint logic program . 704.3 Queries and proof trees for constraint logic program 74131

132 List of Figures4.4 Type hierarchy . 924.5 Queries and proof trees for constraint logic program 944.6 Indexed feature-based constraint logic grammar 1134.7 Earley deduction chart . 1144.8 Earley deduction chart, cont. 1154.9 Chart graph . 1164.10 Proof tree for [ClintonN talksV]S . 1184.11 Proof tree for [ClintonN talksN]NP . 1194.12 Type hierarchy . 1224.13 Constraint logic program . 1234.14 Earley deduction chart . 1234.15 Partial proof trees . 124

List of Tables
4.1 Estimation using Baum's maximization technique 714.2 Partial derivatives of objective functions for MLE of log-linear models 794.3 Algorithm (Combined Statistical Inference) . 934.4 Estimation using the IM algorithm . 954.5 Properties of the corpora used for the estimation experiment 984.6 Empirical evaluation of estimators on Ctest (accuracy of disambiguation withmost probable parse) and �PLtest (negative log-pseudo-likelihood of correctparses in test corpus) on VM-corpus . 994.7 Empirical evaluation of estimators on HC-corpus 994.8 Algorithm (Iterative Maximization, Closed-Form) 1004.9 Algorithm (Iterative Maximization, Newton-Estimate) 1034.10 Algorithm (Property Selection, Newton-Estimate) 1044.11 Algorithm (Metropolis-Hastings Sampling) . 1054.12 Algorithm (Sparse Iterative Maximization, Closed-Form) 1094.13 Algorithm (Best-Parse Search) . 125

133

134 Bibliography

BibliographyAbney, S. (1996). Statistical methods and linguistics. In J. Klavans and P. Resnik (Eds.),The Balancing Act. Cambridge, MA: The MIT Press.Abney, S. (1997). Stochastic attribute-value grammars. Computational Linguistics 23 (4),597�618.Ackley, D. H., G. E. Hinton, and T. J. Sejnowski (1985). A learning algorithm for Boltzmannmachines. Cognitive Science 9, 147�169.Aho, A. V. and J. D. Ullman (1972). The Theory of Parsing, Translation and Compiling,Volume I: Parsing. NJ: Prentice-Hall.Aït-Kaci, H., A. Podelski, and S. C. Goldstein (1993). Order-sorted feature theory uni�ca-tion. Technical Report 32, Digital Equipment Corporation.Alshawi, H. and D. Carter (1994). Training and scaling preference functions for disambigua-tion. Computational Linguistics 20 (4), 635�648.Baker, J. (1979). Trainable grammars for speech recognition. In D. Klatt and J. Wolf (Eds.),Speech Communication Papers for the 97th Meeting of the Acoustical Society of America,pp. 547�550.Baum, L. E. (1972). An inequality and associated maximization technique in statisticalestimation for probabilistic functions of Markov processes. Inequalities III, 1�8.Baum, L. E., T. Petrie, G. Soules, and N. Weiss (1970). A maximization technique occurringin the statistical analysis of probabilistic functions of Markov chains. The Annals ofMathematical Statistics 41 (1), 164�171.Beeferman, D., A. Berger, and J. La�erty (1997a). A model of lexical attraction and repul-sion. In Proceedings of the 35th Annual Meeting of the ACL, Madrid, Spain.Beeferman, D., A. Berger, and J. La�erty (1997b). Text segmentation using exponentialmodels. In Proceedings of EMNLP-2.Berger, A. L., V. J. Della Pietra, and S. A. Della Pietra (1996). A maximum entropyapproach to natural language processing. Computational Linguistics 22 (1), 39�71.135

136 BibliographyBod, R. and R. Kaplan (1998). A probabilistic corpus-driven model for lexical-functionalanalysis. In Proceedings of COLING/ACL 98, Montreal, Canada.Booth, T. L. and R. A. Thompson (1973). Applying probability measures to abstract lan-guages. IEEE Transactions on Computers C-22 (5), 442�450.Bresnan, J. and R. M. Kaplan (1982). Lexical functional grammar: A formal system forgrammatical representation. In J. Bresnan (Ed.), The Mental Representation of Gram-matical Relations, Chapter 4, pp. 173�281. Cambridge, MA: The MIT Press.Brew, C. (1995). Stochastic HPSG. In Proceedings of EACL, Dublin, Ireland.Briscoe, T. and J. Carroll (1993). Generalized probabilistic LR parsing of natural language(corpora) with uni�cation-based grammars. Computational Linguistics 19 (1), 25�59.Briscoe, T. and N. Waegner (1992). Robust stochastic parsing using the inside-outsidealgorithm. In Proceedings of the AAAI92 Workshop on Probabilistically-Based NaturalLanguage Processing Techniques, San Jose, CA.Carpenter, B. (1992). The Logic of Typed Feature Structures. Cambridge Tracts in Theoret-ical Computer Science 32. Cambridge University Press.Carroll, G. and E. Charniak (1992). Two experiments on learning probabilistic dependencygrammars from corpora. Technical Report RI 02912, Department of Computer Science,Brown University, Providence RI.Carroll, J. and T. Briscoe (1992). Probabilistic normalisation and unpacking of packed parseforests for uni�cation-based grammars. In Proceedings of the AAAI Fall Symposium onProbabilistic Approaches to Natural Language, Cambridge, MA.Church, K. and R. Patil (1982). Coping with syntactic ambiguity or how to put the block inthe box on the table. American Journal of Computational Linguistics 8 (3-4), 139�149.Cover, T. M. and J. A. Thomas (1991). Elements of Information Theory. New York: Wiley.Csiszár, I. (1975). I-divergence geometry of probability distributions and minimization prob-lems. The Annals of Probability 3 (1), 146�158.Csiszár, I. (1989). A geometric interpretation of Darroch and Ratcli�'s generalized iterativescaling. The Annals of Statistics 17 (3), 1409�1413.Csiszár, I. and G. Tusnády (1984). Information geometry and alternating minimizationprocedures. Statistics and Decisions Supplement Issue(1), 205�237.Darroch, J. and D. Ratcli� (1972). Generalized iterative scaling for log-linear models. TheAnnals of Mathematical Statistics 43 (5), 1470�1480.Della Pietra, S., V. Della Pietra, and J. La�erty (1997). Inducing features of random �elds.IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (4), 380�393.

Bibliography 137Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from incompletedata via the EM algorithm. Journal of the Royal Statistical Society 39 (B), 1�38.Dörre, J. (1993). Generalizing Earley deduction for constraint-based grammars. In J. Dörre(Ed.), Computational Aspects of Constraint-Based Linguistic Description I, pp. 25�41.DYANA-2 Deliverable R1.2.A.Dörre, J. and M. Dorna (1993). CUF - a formalism for linguistic knowledge representation.In J. Dörre (Ed.), Computational Aspects of Constraint-Based Linguistic Description I,pp. 3�22. DYANA-2 Deliverable R1.2.A.Dörre, J. and A. Eisele (1991). A comprehensive uni�cation-based grammar formalism.Technical report, DYANA Deliverable R3.1.B.Dörre, J. and M. Johnson (1995). Memoization of coroutined constraints. In Proceedings ofthe 33rd Annual Meeting of the ACL, pp. 100�107.Douglas, S. and R. Dale (1992). Towards robust PATR. In Proceedings of COLING, Nantes.Dubois, D., J. Lang, and H. Prade (1991). Towards possibilistic logic programming. In Pro-ceedings of the 8th International Conference on Logic Programming (ICLP '91), Paris.Earley, J. (1970). An e�cient context-free parsing algorithm. Communications of theACM 13 (2), 94�102.Eisele, A. (1994). Towards probabilistic extensions of constraint-based grammars. InJ. Dörre (Ed.), Computational Aspects of Constraint-Based Linguistic Description II,pp. 3�21. DYANA-2 Deliverable R1.2.B.Erbach, G. (1993a). Towards a theory of degrees of grammaticality. CLAUS Report 34,Computational Linguistics at the Univerity of the Saarland.Erbach, G. (1993b). Using preference values in typed feature structures to exploit non-absolute constraints for disambiguation. In H. Trost (Ed.), Feature Formalisms andLinguistic Ambiguity. Ellis-Horwood.Erbach, G. (1998). Bottom-Up Earley Deduction for Preference-Driven Natural LanguageProcessing. Ph. D. thesis, Computational Linguistics, Universität des Saarlandes, Saar-brücken.Fishman, G. S. (1996). Monte Carlo. Concepts, Algorithms and Applications. Berlin:Springer.Fletcher, R. (1987). Practical Methods of Optimization. New York: Wiley.Forney, G. D. (1973). The Viterbi algorithm. Proceedings of the IEEE 61 (3), 268�278.Frey, B. J. (1998). Graphical Models for Machine Learning and Digital Communication.Cambridge, MA: The MIT Press.

138 BibliographyGeman, S. and D. Geman (1984). Stochastic relaxation, Gibbs distributions, and theBayesian restoration of images. IEEE Transactions on Pattern Analysis and MachineIntelligence PAMI-6, 721�741.Goodman, J. (1998). Parsing Inside-Out. Ph. D. thesis, Computer Science Groupt, HarvardUniversity, Cambridge, MA.Götz, T. (1995). Compiling HPSG constraint grammars into logic programs. In Workshopon Computational Logic and Natural Language Processing, Edinburgh.Götz, T. (to appear). Feature Constraint Grammars. Ph. D. thesis, Seminar für Sprachwis-senschaft, University of Tübingen.Götz, T. and D. Meurers (1995). Compiling HPSG type constraints into de�nite clauseprograms. In Proceedings of the 33rd Annual Meeting of the ACL, MIT, Cambridge,MA.Hobbs, J. R. and J. Bear (1995). Two principles of parse preference. In A. Zampolli, N. Cal-zolari, and M. Palmer (Eds.), Linguistica Computazionale: Current Issues in Computa-tional Linguistics. In Honour of Don Walker. Dortrecht: Kluwer.Höhfeld, M. and G. Smolka (1988). De�nite relations over constraint languages. LILOGReport 53, IBM Deutschland, Stuttgart.Horn, R. A. and C. R. Johnson (1985). Matrix Analysis. New York: Cambridge UniversityPress.Ja�ar, J. and J.-L. Lassez (1986). Constraint logic programming. Technical Report 74,Department of Computer Science, Monash University.Ja�ar, J. and M. J. Maher (1994). Constraint logic programming: A survey. Journal of LogicProgramming 19,20, 503�581.Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review 106,620�630.Jelinek, F., J. D. La�erty, and R. L. Mercer (1990). Basic methods of probabilistic contextfree grammars. Technical report, Continuous Speech Recognition Group IBM - T.J.Watson Research Center, Yorktown Heights, NY.Johnson, M. (1988). Attribute-value Logic and the Theory of Grammar. CSLI lecture notes16. Stanford, CA: CSLI.Johnson, M., S. Geman, S. Canon, S. Chi, and S. Riezler (1999). Estimators for stochastic�uni�cation-based� grammars. In Proceedings of the 37th Annual Meeting of the ACL,College Park, MD.Kepser, S. (1994). A satis�ability algorithm for a typed feature logic. Arbeitspapiere desSonderforschungsbereichs 340 60, Tübingen.

Bibliography 139Kifer, M. and V. S. Subrahmanian (1992). Theory of generalized annotated logic program-ming and its applications. Journal of Logic Programming 12, 335�367.Kim, A. (1994). Graded uni�cation. A framework for interactive processing. In Proceedingsof the 32nd Annual Meeting of the ACL, New Mexico.King, P. J. (1989). A Logical Formalism for Head-Driven Phrase Structure Grammar. Ph.D. thesis, Department of Mathematics, University of Manchester.King, P. J. (1994). An expanded logical formalism for head-driven phrase structure gram-mar. Arbeitspapiere des Sonderforschungsbereichs 340 59, University of Tübingen.Knoke, D. and P. J. Burke (1980). Log-Linear Models. Beverly Hills/London: Sage Publica-tions.Knuth, D. E. and R. W. Moore (1975). An analysis of alpha-beta pruning. Arti�cial Intel-ligence 6, 293�326.Lakshmanan, L. V. S. and F. Sadri (1994). Probabilistic deductive databases. In Proceedingsof the International Logic Programming Symposium (ILPS '94), Ithaca, NY.Lakshmanan, L. V. S. and F. Sadri (1997, October). On a theory of probabilistic deductivedatabases. unpublished manuscript.Lari, K. and S. J. Young (1990). The estimation of stochastic context-free grammars usingthe inside-outside algorithm. Computer Speech and Language 4, 35�56.Little, R. J. and D. B. Rubin (1987). Statistical Analysis with Missing Data. New York:Wiley.Lloyd, J. W. (1987). Foundations of Logic Programming. Berlin: Springer.Magerman, D. M. (1994). Natural Language Parsing as Statistical Pattern Recognition. Ph.D. thesis, Department of Computer Science, Stanford University.Mark, K., M. Miller, U. Grenander, and S. Abney (1992). Parameter estimation for con-strained context-free language models. In DARPA Speech and Natural Language Work-shop, Harriman, New York.Maxwell III., J. and R. Kaplan (1989). An overview of disjunctive constraint satisfaction.In Proceedings of the International Workshop on Parsing Technologies, Pittsburgh, PA.McLachlan, G. J. and T. Krishnan (1997). The EM Algorithm and Extensions. New York:Wiley.Meng, X.-L. and D. B. Rubin (1993). Maximum likelihood estimation via the ECM algo-rithm: A general framework. Biometrika 80 (2), 267�278.Miyata, T. (1996). A Study on Inference Control in Natural Language Processing. Ph. D.thesis, Graduate School of the University of Tokyo, Tokyo, Japan.

140 BibliographyMorawietz, F. (1997). Monadic second order logic, tree automata and constraint logic pro-gramming. Arbeitsberichte des Sonderforschungsbereichs 340, Bericht Nr. 86, Seminarfür Sprachwissenschaft, Universität Tübingen.Neal, R. M. and G. E. Hinton (1998). A view of the EM algorithm that justi�es incremen-tal, sparse, and other variants. In M. I. Jordan (Ed.), Learning in Graphical Models,Dordrecht. Kluwer.Ng, R. and V. S. Subrahmanian (1992). Probabilistic logic programming. Information andComputation 101, 150�201.Ng, R. and V. S. Subrahmanian (1993). A semantical framework for supporting subjectiveand conditional probabilities in deductive databases. Journal of Automated Reason-ing 10, 191�235.Nigam, K., J. La�erty, and A. McCallum (1999). Using maximum entropy for text classi�-cation. In Proceedings of IJCAI'99 Workshop on Information Filtering.Nilsson, N. J. (1982). Principles of Arti�cial Intelligence. Berlin: Springer.Osborne, M. and T. Briscoe (1997). Learning stochastic categorial grammars. In CoNLL97:Proceedings of the Workshop on Computational Natural Language Learning, Madrid,Spain.Parisi, G. (1988). Statistical Field Theory. Redwood City, CA: Addison-Wesley.Pereira, F. and Y. Schabes (1992). Inside-outside reestimation from partially bracketedcorpora. In Proceedings of the 30th Annual Meeting of the ACL, Newark, Delaware.Pereira, F. C. and S. M. Shieber (1987). Prolog and Natural-Language Analysis. CSLI Lec-ture Notes 10. Stanford: CSLI.Pereira, F. C. N. and D. H. D. Warren (1983). Parsing as deduction. In Proceedings of the21st Annual Meeting of the Asssociation for Computational Linguistics, Boston, MA.Pollard, C. and I. A. Sag (1994). Head-Driven Phrase Structure Grammar. Chicago: Uni-versity of Chicago Press.Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992). NumericalRecipes in C: The Art of Scienti�c Computing. Cambridge University Press.Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications inspeech recognition. In Proceedings of the IEEE, Vol. 77, No. 2.Ratnaparkhi, A. (1996). A maximum entropy model for part-of-speech tagging. In Proceed-ings of EMNLP-1.Ratnaparkhi, A. (1997). A linear observed time statistical parser based on maximum entropymodels. In Proceedings of EMNLP-2.

Bibliography 141Ratnaparkhi, A. (1998). Maximum Entropy Models for Natural Language Ambiguity Reso-lution. Ph. D. thesis, University of Pennsylvania, Philadelphia, PA.Ratnaparkhi, A. and S. Roukos (1994). A maximum entropy model for prepositional phraseattachment. In Proceedings of the ARPA Workshop on Human Language Technology.Resnik, P. (1992). Probabilistic tree-adjoining grammars as a framework for statistical nat-ural language processing. In Proceedings of COLING-92, Nantes.Riezler, S. (1996). Quantitative constraint logic programming for weighted grammar appli-cations. In C. Retoré (Ed.), Logical Aspects of Computational Linguistics (LACL '96),pp. 346�365. Berlin: Springer. LNCS/LNAI, 1328.Riezler, S. (1997). Probabilistic constraint logic programming. Arbeitsberichte des Son-derforschungsbereich 340, Bericht Nr. 117, Seminar für Sprachwissenschaft, UniversitätTübingen.Riezler, S. (1998a). Statistical inference and probabilistic modeling for constraint-basedNLP. In Proceedings of KONVENS 98, Bonn.Riezler, S. (1998b). Statistical inference for probabilistic constraint logic programming. InA. di Pierro and H. Wiklicky (Eds.), Proceedings of the Workshop on Probabilistic Logicand Randomised Computation, held at ESSLLI 98, Saarbrücken.Rogers, J. (1994). Studies in the Logic of Trees with Applications to Grammar Formalisms.Ph. D. thesis, University of Delaware.Rooth, M., S. Riezler, D. Prescher, G. Carroll, and F. Beil (1999). Inducing a semanticallyannotated lexicon via EM-based clustering. In Proceedings of the 37th Annual Meetingof the ACL, Maryland.Rosenfeld, R. (1996). A maximum entropy approach to adaptive statistical language mod-eling. Computer, Speech and Language 10, 187�228.Saul, L. K. and M. I. Jordan (1996). Exploiting tractable substructures in intractable net-works. In D. Touretzky, M. Mozer, and M. Hasselmo (Eds.), Advances in Neural Infor-mation Processing Systems 8, Cambridge, MA. MIT Press.Schabes, Y. (1992). Stochastic lexicalized tree-adjoining grammars. In Proceedings ofCOLING-92, Nantes.Shieber, S. M. (1986). An Introduction to Uni�cation-Based Approaches to Grammar. CSLILecture Notes 4. Stanford: CSLI.Smolka, G. (1988). A feature logic with subsorts. LILOG Report 33, IBM Deutschland,Stuttgart.Smolka, G. (1992). Feature-constraint logics for uni�cation grammars. Journal of LogicProgramming 12, 51�87.

142 BibliographySrinivas, B., C. Doran, and S. Kulick (1995). Heuristics and parse ranking. In Proceedingsof the Forth International Workshop on Parsing Technologies (IWPT 95).Stolcke, A. (1993). An e�cient probabilistic context-free parsing algorithm that computespre�x probabilities. Technical Report TR-93-065, International Computer Science Insti-tute, Berkeley, CA.Stolcke, A. and S. M. Omohundro (1994). Best-�rst model merging for hidden Markovmodel induction. Technical Report TR-94-003, International Computer Science Insti-tute, Berkeley, CA.Subrahmanian, V. S. (1987). On the semantics of quantitative logic programs. In Proceedingsof the 4th IEEE Symposium on Logic Programming, Washington D.C., pp. 173�182.Computer Society Press.Thomas, G. B. and R. L. Finney (1996). Calculus and Analytic Geometry. Redwood City,CA: Addison-Wesley.van Emden, M. H. (1986). Quantitative deduction and its �xpoint theory. The Journal ofLogic Programming 1, 37�53.Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimumdecoding algorithm. IEEE Transactions on Information Theory IT-13, 260�269.Wu, C. (1983). On the convergence properties of the EM algorithm. The Annals of Statis-tics 11 (1), 95�103.Zadeh, L. A. (1965). Fuzzy sets. Information and Control 8, 338�353.

