
In Cognitive Siene 26:3, 2002Statistial Models of Language Learning and UseMark Johnson Stefan RiezlerBrown University Xerox PARCMark Johnson�Brown.edu riezler�par.xerox.om1 IntrodutionThis paper summarizes our reent work in developing statistial models of lan-guage whih are ompatible with the kinds of linguisti strutures posited byurrent linguisti theories. In a series of papers we have developed tools for esti-mating or \learning" suh models from data (Johnson et al., 1999; Johnson andRiezler, 2000; Riezler et al., 2000) and this paper provides a high-level overviewof both the general approah and the methods we developed.Turning to theoretial results on learning, it seems that statistial learn-ers may be more powerful than non-statistial learners. For example, whileGold's famous results showed that neither �nite state nor ontext free lan-guages an be learnt from positive examples alone (Gold, 1967), it turns outthat probabilisti ontext free languages an be learnt from positive examplesalone (Horning, 1969). Informally, a lass of languages may be statistiallylearnable even though its ategorial ounterpart is not beause the statistiallearning framework makes stronger assumptions about the training data (i.e.,it is distributed aording to some probabilisti grammar from the lass) andaepts a weaker riterion for suessful learning (onvergene in probability).Statistis provides the theory of optimal learners and optimal omprehenders(optimal in an information-theoreti sense) whih serve as idealizations of, andupper bounds to, human performane. If an optimal statistial learner fails tolearn a language given ertain kinds of inputs (say, phonologial forms alone)under ertain assumptions about universal grammar, then we an be fairly er-tain that human beings either have aess to riher data or have stronger biasesthat restrit the lass of possible grammars.An immediate goal of this researh is to �nd a way of de�ning probabilitydistributions over linguistially realisti strutures in a way that permits us tode�ne language learning and language omprehension as statistial problems,and the rest of this paper onentrates on these questions. The next setiondesribes the linguisti theory, Lexial-Funtional Grammar, whih de�nes thelinguisti strutures used in this researh, and the following setion explains howwe de�ne a probability distribution over these strutures. Setion 4 desribes1



how one an learn the parameters that de�ne probability distributions over thesestrutures in priniple, and points out some of the pratial problems that makestraight-forward ways of estimating these distributions infeasible. This leads usto the \pseudo-likelihood" estimation methods desribed in setion 5, whihalso raise interesting questions onerning the nature of the data available tothe hild and modularity of language learning and proessing.2 Lexial-funtional grammarThis researh di�ers from most work in statistial omputational linguistisin that it is ompatible with and builds on the results of modern linguistitheory. While our approah is ompatible with virtually all existing theoriesof grammar (inluding transformational grammar and minimalist grammars),we have adopted the framework and strutures of Lexial-Funtional Grammar(LFG) in our researh. LFG has several properties that make it espeially well-suited for researh involving linguistially-oriented probabilisti grammars. Theformal de�nition of LFGs and the strutures they generate is lear and preise(Kaplan, 1995), and LFG provides simple, lean desriptions of a wide rangeof typologially diverse linguisti phenomena (Bresnan, 1982). There is also asubstantial amount of existing omputational researh on LFG, inluding oneÆient parsing with large grammars (Maxwell III and Kaplan, 1993), whihwe exploit in our researh.An LFG struture of a sentene onsists of a small number of distint ompo-nents, suh as the phonologial struture, the syntati struture, the semantiinterpretation, et. To keep things simple in this paper, however, we will onlyuse a subset of these omponents and simplify them where appropriate. Forexample, we take the phonologial omponent of a sentene to be just a stringof words, and ignore prosody and other phonologial details. Similarly, we takethe semanti interpretation of a sentene to be its prediate-argument struture(roughly, \who did what to whom"), and ignore mood, tense, et. We makeextensive use of two omponents in this paper. The onstituent or -strutureof a sentene shows the temporal arrangement of words, phrases and lausesorganized as a tree struture. The funtional or f-struture of a sentene is anattribute-value struture that shows the grammatial funtion relationships be-tween the phrases and lauses of a sentene, abstrating away from details oflinear order. The partiular grammatial funtion relationship involved (e.g.,subjet, objet, et.) is represented by the attribute name, and f-strutures alsoenode the argument-adjunt distintion. Although it probably deserves to bea omponent in its own right, for simpliity we follow early work in LFG thatenodes the prediate-argument struture of a phrase or sentene as the valueof the prediate attribute in an f-struture. Figure 1 depits the -strutureand f-struture of the English sentene Sandy wants to drink wine.One of the reasons for adopting an attribute-value representation of f-struturein LFG is that suh strutures an desribe the multiple funtional roles that asingle onstituent an play in a single sentene. For example, in Sandy wants2
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37777777777777775Figure 1: The -struture and the f-struture for the English sentene Sandywants to drink wine.to drink wine the NP Sandy funtions both as the subjet of the verb wantsand the verb drink (f., Sandy wants Sam to drink wine). This is indiated bya re-entrany in the f-struture, depited by the shared index \ 1 " in Figure 1.Similiar re-entranies are used to indiate the funtional roles played in rel-ative lauses and wh-questions, where a funtional dependeny may span anunbounded distane in the onstituent struture. For example, in the questionWhih bottle did Sandy want Sam to open?, thewh-phrase whih bottle funtionsas the objet of the verb open even though the two elements are disontinuousin -struture terms. As explained in setion 3, lexial dependenies betweengovernor-governee pairs play an important role in our probabilisti model, andtheir expliit representation in LFG's f-struture makes the onstrution of ourprobabilisti model muh easier.F-strutures also make expliit other important linguisti information. Forexample, the f-struture in Figure 1 enodes person and number features onnoun phrases (important for subjet-verb and pronoun agreement); although notshown here, f-strutures also enode verb tense and other semantially importantinformation. Notie that the f-struture makes expliit dependenies that maybe non-loal or only indiretly marked in the -struture, and represents thesein a relatively language-independent way. This gives LFG the power to providesimple desriptions of phenomena suh as rossed serial dependenies, whihannot be desribed using ontext-free grammars (Bresnan et al., 1982; Shieber,1985; Kaplan and Zaenen, 1995).An aount of language aquisition should explain how the properties thatdi�erentiate the language being learnt from other possible human languages areaquired. Sine one of the goals of this researh is to determine the extentto whih language learning an be viewed as a statistial parameter estimationproblem, the restritions or onstraints imposed on possible linguisti struturesshould be universal, i.e., satis�ed by all possible human languages. Thus theset of andidate linguisti strutures (whih we all 
 below) should inludeall strutures possible in any human language. Unfortunately, suh \universalgrammars" are not yet available: indeed, there are still major oneptual issues3



to be resolved before suh a universal grammar (for any linguisti theory) anbe onstruted. Beause of the lak of any reasonable andidate for a universalgrammar, our omputational experiments to date have utilized grammars forspei� languages suh as English (Johnson et al., 1999; Johnson and Riezler,2000) and German (Riezler et al., 2000). Thus the statistial models developedin these experiments in e�et learn how likely eah grammatial linguisti stru-ture of the partiular language are: thus these models are apable of interpretingand disambiguating phonologial forms in omprehension, but do not diretlymodel language learning per se.3 Probability distributions over linguisti stru-turesThis setion explains how we de�ne a probability distribution over a set ofpossible linguisti strutures 
. In a model of language learning, 
 shouldbe the set of all strutures that ould appear in any human language, but formodels of parsing of a single language we take 
 to be the set of grammatialstrutures of that language. In either ase, 
 is a ountably in�nite set, even ifit is highly onstrained by innate, language-spei� onstraints.The probability distribution over 
 is de�ned in terms of a �nite vetorof features f = (f1; : : : ; fm), where eah fj is a funtion mapping a linguististruture x 2 
 to a real number fj(x). (The term `feature' is used both instatistis and linguistis; we follow the standard usage in statistis here, anduse the term `attribute' to refer to omponents of attribute-value struturesor node labels). While the mathematis impose few onstraints on what thefeatures an be, we generally take fj(x) to be the number of times that a givenonstrution appears in the linguisti struture x 2 
, whih means that fj(x)is a non-negative integer.The features an be lexialized, i.e., they an make referene to a spei�words or word lasses, but they need not be. For an example of a non-lexializedfeature, let f1(x) be the number of times that a diret objet immediatelypreedes its governing verb in x; this is presumably almost always zero forsentenes of English, but is often non-zero for a head-�nal language like German.For an example of a lexialized feature, let f2(x) is the number of times the verbeat appears with a diret objet in the struture x; if this is lose to numberof times eat appears in x then presumably eat is a primarily transitive verb.The seletion of features is presumably an empirial linguisti issue (just as theseletion of onstraints in an Optimality Theory grammar or of parameters ina Priniples and Parameters model are empirial issues).In our experiments with probabilisti LFGs we use a wide variety of fea-tures (see Johnson et al. (1999) for a more detailed desription). Inspired byprobabilisti ontext-free grammars, we introdued a feature fA for eah ate-gory A that an label a -struture node, and de�ne fA(x) to be the numberof times a node labelled A appears in the -struture of x. Additionally, the4



probabilisti LFGs evaluated below used the following kinds of features, whoseseletion was guided by the priniples proposed by Hobbs and Bear (1995).Adjunt and argument features indiate adjunt and argument attahment re-spetively, and permit the model to apture a general argument attahmentpreferene. In addition, there are speialized adjunt and argument featuresorresponding to eah grammatial funtion used in LFG (e.g., subjet, ob-jet, omplement, adjunt, et.) There are features indiating both highand low attahment (determined by the omplexity of the phrase being attahedto). Another feature indiates non-right-branhing nonterminal nodes. There isa feature for non-parallel oordinate strutures (where parallelism is measuredin onstituent struture terms). Eah f-struture attribute-atomi value pairwhih appears in any feature struture is also used as a feature. We also usea number of features identifying syntati strutures that seem partiularly im-portant in the partiular orpora we used in our experiments, suh as a featureidentifying NPs that are dates (it seems that date interpretations of NPs arepreferred if they are available).Ideally we would like to inlude lexial features diretly in our experimentsto apture the dependenies between governors and the heads of the phrasesthat they govern, but we did not have enough training data to estimate thesediretly in our experiments. However, probabilisti models of suh dependeniesan be onstruted by other means, and we an inlude information from suh\auxiliary" models in our model as follows (Johnson and Riezler, 2000; Riezleret al., 2000). Suppose we have an auxiliary model R whih assigns a positivenumerial preferene sore R(x) to eah x 2 
. (R might de�ne a probabilitydistribution over 
, but need not). Then we de�ne a new feature fR(x) =logR(x), and treat it otherwise just as another feature in our model. In e�et,the preferene information from the auxiliary model R is treated as anothersoure of information that will be taken into aount in the model we onstrut.This provides a general mehanism whereby a range of omplex preferenes(possibly inluding innate ones) an be inluded in a statistial model, whihgeneralizes the \referene distribution" approah desribed in Jelinek (1997).We now explain how the probability of a partiular linguisti struture x isde�ned in terms of its feature values f(x) = (f1(x); : : : ; fm(x)). While there aremany ways in whih this an be done, we use the lass of log-linear models inour researh (Abney, 1997). We justify our hoie of log-linear models after wehave explained how they are de�ned.Given a set of linguisti strutures 
 and a feature vetor (f1; : : : ; fm), alog-linear model is de�ned by a parameter vetor � = (�1; : : : ; �m), where eah�j is a real number. Informally, �j is the \weight" assigned to the orrespondingfeature fj . If �j is positive then higher values of fj(x) inrease the probabilityof x, and if �j is negative then higher values of fj(x) derease the probabilityof x (assuming that the values of fj0(x); j0 6= j stay the same).Mathematially, the probability P�(X = x) of x given the parameter vetor� is de�ned as follows. We de�ne the weight V�(x) of x as the exponentialof a linear ombination of the feature values of x, weighted aording to theparameter vetor. (Thus the logarithm of V�(x) is a linear ombination of the5



feature values, hene the name log-linear model).V�(x) = exp( mXj=1 �j fj(x))A probability distribution over linguisti strutures 
 must satisfy the normal-ization onstraint that the sum of probability of the strutures in 
 is 1, i.e.,Px2
 P�(X = x) = 1. We annot set P�(X = x) = V�(x) beause in general V�does not satisfy the normalization onstraint. However, we an make P�(X = x)proportional to V�(x) by dividing the latter by a normalization fator known asthe partition funtion Z� (the name omes from statistial physis, whih wasthe �rst major appliation of log-linear models).Z� = Xx2
V�(x) (1)P�(X = x) = V�(x)Z� (2)Unlike probabilisti ontext free grammars and related models, log-linear modelspermit essentially arbitrary dependenies between features, whih makes themideal for de�ning probability distributions over linguistially realisti strutures(Abney, 1997). Additionally, there are information-theoreti reasons for prefer-ring log-linear models over other model lasses. The lass of log-linear modelsis also the lass of maximum entropy models; roughly speaking, these are themodels whih ontain the minimum additional information over and above theinformation ontained in the training data (see Jelinek (1997) for a textbookintrodution). Virtually all of the well-known probabilisti models of languageare sublasses of the lass of log-linear models (e.g., probabilisti ontext-freegrammars, hidden Markov models, et.). Finally, even though one might sus-pet that the restrition to linear ombinations of the feature values is undulyrestritive, beause no restritions are plaed on the features themselves, we ande�ne a feature whih is a nonlinear ombination of other features, so the lassof log-linear models is muh less restritive than it may �rst seem.4 Learning grammarsThe previous setion desribed how we de�ne a log-linear probability distribu-tion over linguisti strutures 
. We now turn to the problem of determiningthe parameter vetor � from some observational data D. In our experimentswe use maximum likelihood estimators (but see the disussion of regularizationin setion 5). A maximum likelihood estimator selets a parameter vetor �whih makes the data D as likely as possible, i.e., it ignores the prior termand maximizes the log-likelihood LD(�) = log P(Dj�) of the training data in �.Under very general onditions, maximum likelihood estimation is unbiased (the6
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 � : : : �Figure 2: Maximum likelihood estimation from fully observed (parsed) dataexpeted value of the parameter estimate is its true value), onsistent (as thesize of the data grows, the estimated parameters onverge on the true value) andasymptotially eÆient (there is no other estimation proedure whose parame-ter estimates have uniformly lower variane). Further, given the independeneassumptions below the maximum likelihood estimator for a log-linear modelselets the losest model to the training data distribution in terms of Kullbak-Leibler divergene (an information-theoreti measure of the distane betweentwo distributions).More formally, suppose that D onsists of a sequene of fully observed parsesD = (x1; : : : ; xn); xi 2 
. (\Fully observed" means that the learner has aessto the omplete linguisti strutures; we onsider the problem of learning fromphonologial forms alone below). We make the standard statistial assumptionsthat eah observation xi is independent of the other observations xi0 ; i0 6= i,and that eah xi is identially distributed aording to P� for some unknown� (these assumptions are undoubtedly inorret, but we hope that they areapproximately true). Given these assumptions, the likelihood LD of the data Dand the orresponding maximum likelihood estimate �̂ of � are:LD(�) = nYi=1P�(X = xi) (3)�̂ = argmax� LD(�)Figure 2 graphially depits this maximum likelihood estimation. Informally,maximum likelihood estimation adjusts � to make the weight V�(xi) of eahtraining datum as large as possible relative to the partition funtion Z� (thesum of the weights of all linguisti strutures 
).It is straight forward to show that LD has a unique maximum value, andat this maximum the expeted value E�̂(fj) of eah feature under the distribu-tion P�̂ is equal to its expeted value under the \empirial distribution" of thetraining data D, i.e.,:E�̂(fj) = 1n nXi=1 fj(xi); j = 1; : : : ;m:Thus maximum likelihood estimation selets a parameter vetor �̂ so that theexpeted value of eah feature under the estimated distribution P�̂ is the same7
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(w1)� : : : �Figure 3: Maximum likelihood estimation from partially visible (phonologialform) dataas the average value of that feature in the training data, whih intuitively seemsto be a reasonable thing to do.Now we turn to the ase where the training data is partially hidden andonsists of phonologial forms alone, i.e., D0 = (w1; : : : ; wn), where eah wi isa phonologial form (here taken to be a string of words). In this situation thetraining data does not uniquely identify the linguisti struture orrespondingto eah phonologial form wi; all we know is that it lies somewhere inside theset 
(wi) = fx : W (x) = wig of linguisti strutures whose phonologial formis wi. Making the same independene assumptions as before, the likelihood L0D0of the data D0 is now a produt of the marginal probability of eah wi, wherethe marginal probability of w is the sum of the probability of eah x 2 
(w).P�(W = w) = Xx2
(w)P�(X = x)L0D0(�) = nYi=1P�(W = wi) (4)�̂ = argmax� L0D0(�)Figure 3 graphially depits the quantity being maximized during estimationfrom phonologial forms alone. Notie that the maximum likelihood estimatorselets the � that plaes maximum weight on the 
(wi) as ompared to thewhole of 
.There is a standard tehnique known as the Expetation-Maximization (EM)algorithm whih redues the optimization required in maximum likelihood es-timation from partially hidden data to a series of optimizations of the kindinvolved in maximum likelihood estimation from fully visible data (Dempster,Laird, and Rubin, 1977). The tehnique requires an initial guess �(0) of theparameter vetor as well as the partially observed data D0, and it produes asequene of estimates �(1); �(2); : : :. This sequene has the property that eahadditional estimate typially inreases, and provably does not derease, the like-lihood of the partially observed data, i.e., L0D0(�(k+1)) � L0D0(�(k)). Informally,the tehnique involves treating eah partial observation wi as a set of fully ob-served data onsisting of eah x 2 
(wi), with eah full observation x weightedaording to P�(k)(x), where �(k) is the estimate of � at the kth iteration. Thus8



EM \pays most attention to" the x 2 
(wi) that its urrent estimate of � assignsthe highest probability to.Unlike the fully visible ase, there is no guarantee that the likelihood funtionfor partially hidden data has only a single loal maximum, and the EM algo-rithm an get \trapped" in suh loal maxima. Indeed, there is no guaranteethat estimation is possible at all: the parameter vetor � may simply be non-identi�able from the kind of data available. For example, it is logially possiblethat universal grammar permits two di�erent languages with exatly the samemarginal distribution over phonologial forms, even though the two languagesassoiate eah phonologial form with di�erent semanti interpretations.5 Pseudo-likelihood estimationThe previous setion introdued maximum likelihood estimation of � for bothfully visible and partially hidden data. Unfortunately, it seems that diretlymaximizing the likelihood (3) is omputationally infeasible even for fully visibledata (and sine the EM tehnique redues the partially hidden data ase tothe fully visible data ase, it too is infeasible). The standard algorithms formaximizing this likelihood are iterative, and require the alulation of the ex-peted value of eah feature E�(fj) for a variety of di�erent parameter vetors� (see Berger, Della Pietra, and Della Pietra (1996) and Jelinek (1997) for anintrodution to these algorithms). Informally, the ause of the infeasibility isthat maximum likelihood estimation requires us to selet the parameter vetor �that maximizes the weight V�(xi) on the observed datum xi relative to the sumZ� of the weights on all possible linguisti strutures x 2 
 (see Figure 2 andequations 1, 2 and 3). Beause 
 is in�nite, we annot alulate the partitionfuntion Z� or the feature expetations E�(fj) by diretly enumerating 
. In-deed, even alulating the probability P�(X = x) of a single linguisti struturex seems infeasible, sine it too ruially involves Z� (see equation 2).If 
 and the feature vetor f have a suitably simple struture, then it maybe the ase that Z� and E�(fj) an be alulated analytially. For example, if 
is the set of trees generated by a ontext free grammar and the feature fi mapsan x 2 
 to the number of times the ith prodution is used in a derivation ofx, then Z� and E�(fj) an be alulated without an expliit enumeration of 
(Abney, MAllester, and Pereira, 1999; Chi, 1999). However, this alulationdepends ruially on the ontext free or Markovian independene properties ofProbabilisti Context Free Grammars. It seems that suh ontext free systemsannot desribe the true set 
 of possible linguisti strutures (Shieber, 1985),yet these ontext free properties are what makes the diret alulation of Z�and E�(fj) feasible. Indeed, preisely beause the Lexial Funtional Grammarsused in this researh are apable of apturing the non-loal, ontext-sensitivedependenies of natural language, the methods that an be used to alulate Z�and E�(fj) for PCFGs do not extend to LFGs.Never the less, we believe that there may be tehniques for alulating or ap-proximating Z� for LFGs that avoid expliit enumeration. Abney (1997) points9



out that E�(fj) an be approximated using Monte Carlo sampling tehniquesthat do not enumerate all of 
. While this is in priniple orret, a \bak ofthe envelope" alulation suggests that the partiular Hastings Metropolis sam-pling sheme that Abney proposes is omputationally impratial for all butsmall grammars (see Johnson et al. (1999) for further disussion).However, note that the full joint distribution over phonologial forms andtheir parses is not atually required for natural language proessing tasks. Forexample, as explained above, omprehension and parsing only requires the on-ditional distribution P(X jW ) of linguisti strutures given their phonologialforms. Cruially, estimating these onditional distributions is often omputa-tionally feasible, even though estimation of the joint distribution is infeasible.Consider the ase where the data is fully observed: D onsists of parsesD = (x1; : : : ; xn); xi 2 
 as above. Eah parse is assoiated with a phonologialform wi = W (xi). Making the same independene assumptions as before, theonditional likelihood or pseudo-likelihood PLD of the data D and the orre-sponding maximum likelihood estimate �̂ of � are:Z�(w) = Xx2
(w)V�(x)P�(X = xjW = w) = V�(x)Z�(w)PLD(�) = nYi=1P�(X = xijW = wi) (5)�̂ = argmax� PLD(�)Whereas the likelihood LD is a produt of (unonditional) probabilities (3),the pseudo-likelihood PLD is a produt of onditional probabilities (5). Ulti-mately, pseudo-likelihood di�ers from likelihood in that pseudo-likelihood onlyinvolves Z�(w) in plae of the infeasible Z� in the likelihood. It is straightforward to show that at the maximum of (5), the sum of the onditional expe-tations of eah feature must be same as the sum of their empirial values, whereE�(f jW ) is the expetation of f with respet to the onditional distributionP�(X jW ): nXi=1 E�̂(fj jW = wi) = nXi=1 fj(xi); j = 1 : : :m:Moving to pseudo-likelihood makes a ruial di�erene in the kinds of expe-tations that must be omputed in the standard algorithms for maximizing �;they now involve the generally feasible onditional expetations E�(fj jW ) ratherthan the infeasible unonditional expetations E�(fj).It turns out that this idea of diretly estimating a onditional distribution(rather than the joint) has been independently disovered at least twie. Besag(1975), who oined the name `pseudo-likelihood', uses it in a omputational vi-sion setting in whih one part of an image serves as the onditioning environment10
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(w1)� : : : �Figure 4: Maximum pseudo-likelihood estimation from fully observed datafor another part of the image (here, the phonologial form orresponds to onepart of the linguisti struture, and everything else in the struture orrespondsto the other part). Berger, Della Pietra, and Della Pietra (1996) and Jelinek(1997) both desribe optimizations in their algorithms whih replae joint prob-abilities with onditional probabilities in exatly the manner desribed here(but they do not aknowledge that this means they are estimating a onditionalrather than a joint distribution).Figure 4 graphially depits maximum pseudo-likelihood estimation. In-formally, maximum pseudo-likelihood estimation adjusts � to make the weightV�(xi) of eah training datum as large as possible relative to Z�(wi), i.e., thesum of the weights of all parses 
(wi) of the phonologial form wi. As re-marked earlier, 
(wi) is �nite and of managable size for LFGs, so Z�(wi) andthe onditional expetations required for maximizing the pseudo-likelihood anbe alulated using diret enumeration of 
(wi).While pseudo-likelihood estimation is onsistent for the onditional distribu-tion, it is not hard to see that maximizing PLD will not always orretly estimatethe joint P�(X) (Chi, 1998). Suppose there is a feature fj whih depends solelyon the phonologial form W (x) of a linguisti struture x, i.e., fj(x0) = fj(x)for all x 2 
 and x0 2 
(W (x)); we all suh features pseudo-onstant. (Foran example of a pseudo-onstant feature, let fj(x) be the number of times theword eat ours in x). If fj is pseudo-onstant, then it is easy to show thatthe pseudo-likelihood does not depend on the value of the parameter �j asso-iated with fj , so maximum pseudo-likelihood estimation provides no basis forhoosing a value for �j . In fat, in this ase any value of �j gives the sameonditional distribution P�(X jW ), so �j is irrelevant to the problem of hoosinggood parses.Informally, the relationship between maximum likelihood and pseudo-likelihoodestimation is the same as the relationship between the joint P(X;W ) and theonditional P(X jW ), whih are related by the marginal P(W ):P(X;W ) = P(X jW ) P(W ):The parameter vetors estimated by maximum likelihood estimation model thejoint; they desribe both the onditional distribution of parses given phonologi-al forms as well as the marginal distribution of phonologial forms P(W ), whilepseudo-likelihood estimation fouses on the onditional P(X jW ) and ignores themarginal. 11



Interestingly, from a ognitive modularity perspetive, the onditional andthe marginal distributions seem to orrespond to two di�erent kinds of informa-tion. As noted above, the onditional distribution P(X jW ) is preisely the in-formation required for disambiguation in sentene omprehension, whih seemsto be purely linguisti knowledge. The marginal distribution P(W ), on theother hand, desribes the distribution of phonologial forms, whih seems toinvolve world knowledge and ontextual information at least as muh as it in-volves linguisti knowledge. Thus pseudo-likelihood estimation may be moreompatible with a modular view of language, sine it seems to fous on morepurely linguisti knowledge than does maximum likelihood estimation.We now briey desribe some of the more pratial details of pseudo-likelihoodestimation. Despite the assurane of onsisteny, pseudo-likelihood estimationis prone to over �tting when a large number of features is mathed against amodest-sized orpus of training data. One partiularly troublesome manifesta-tion of over �tting results from the existene of features whih, relative to thetraining data, we all \pseudo-maximal". A feature f is pseudo-maximal for aphonologial form w if and only if for all x0 2 
(w) f(x) � f(x0) where x isany orret parse of w, i.e., the feature's value on every orret parse x of wis greater than or equal to its value on any other parse of w. Pseudo-minimalfeatures are de�ned similarly. It is easy to see that if fj is pseudo-maximal oneah sentene of the training orpus then the parameter assignment �j = 1maximizes the orpus pseudo-likelihood. (Similarly, the assignment �j = �1maximizes pseudo-likelihood if fj is pseudo-minimal over the training orpus).Suh in�nite parameter values indiate that the model treats pseudo-maximalfeatures ategorially; i.e., any parse with a non-maximal feature value is as-signed a zero onditional probability.Of ourse, a feature whih is pseudo-maximal over a �nite training orpusis not neessarily pseudo-maximal for all phonologial forms in those language.This is an instane of over �tting, and it an be addressed, as is ustomary,by adding to the objetive funtion a regularization term that promotes smallvalues of �. In Johnson et al. (1999) we added a quadrati to the log pseudo-likelihood, whih orresponds to multiplying the pseudo-likelihood itself by anormal distribution. Spei�ally, we multiplied the pseudo-likelihood by a zero-mean normal in � with diagonal ovariane and with standard deviation �j for�j equal to 7 times the maximum value of fj found in any parse in the trainingdata. Thus instead of hoosing �̂ to maximizing the pseudo-likelihood (5), in theexperiments reported in Johnson et al. (1999) and Johnson and Riezler (2000)we atually seleted �̂ to maximize:logPLD(�̂)� mXj=1 �2j2�2j (6)Interestingly, this way of regularizing has a Bayesian interpretation. In Bayesianestimation one seeks a parameter vetor � that maximizes the posterior proba-bility P(�jD) of the parameter vetor � given the training data D. Aording toBayes theorem, this an be done by maximizing the produt of the prior proba-12
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(w1)� : : : �Figure 5: A straight forward appliation of maximum pseudo-likelihood estima-tion from partially visible (phonologial form) data failsbility P(�) of the parameter vetor and the likelihood P(Dj�) of the data giventhe parameter vetor. If one sets the prior probability P(�) to be proportional toexp(�Pmj=1 �2j=2�2j ) and makes the same independene assumptions onerningthe data as above, then it is possible to show that the Bayesian estimate for �is preisely the � that maximizes (6).In these experiments, the set of possible linguisti strutures 
 was de�nedby a hand-written LFG for English, whih was spei�ally designed at XeroxPar to generate the sentenes in two orpora of business appointment dialogsand \Homeenter" printer/opier doumentation, onsisting of 500 and 1000parsed sentenes respetively. Even though the grammar inluded all standardlinguisti onstraints, the sentenes in the orpora were often highly ambiguous,with an average of 8 parses per sentene. The training data onsisted of theorret parse for eah sentene (whih was identi�ed manually) together withthe set of all alternative (i.e., inorret) parses of the sentene generated bythe grammar. Using a ross-validation framework, we showed that a modeltrained by maximum pseudo-likelihood orretly disambiguated approximately58% of the ambiguous test sentenes, whereas a model that treated eah parseas equally likely would orretly disambiguate only 25% of the ambiguous testsentenes.We now turn to the more realisti situation (in terms of language aquisition)where the training data onsists of phonologial forms alone. Whereas maxi-mum likelihood estimation from partially visible data is oneptually straightforward|one adjusts � to maximize the likelihood of the phonologial forms thatonstitute the training data D|it turns out that a similiar approah based onpseudo-likelihood fails. Spei�ally, onditioning the marginal P(W = wi) in thelikelihood (4) on the phonologial form results in a onstant-valued likelihoodthat does not vary with � or D, so estimation fails.Intuitively, the problem is that we are trying to maximize the sum of theweights V�(x) plaed on the x 2 
(wi) relative to the sum of the weights ofexatly the same set 
(wi), as depited in Figure 5. Standard maximum likeli-hood estimation from partially visible data (as performed by the EM algorithm)maximizes the sum of the weights plaed on 
(wi) relative to the sum Z� of theweights plaed on all possible linguisti strutures 
.We noted earlier that maximum likelihood estimation is infeasible beausethe partition funtion Z� and the expetations E�(fj) involve summing over all13
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(wi)� : : : �Figure 6: An onditional approah to estimation from partially visible (phono-logial form) datapossible linguisti strutures 
. In Riezler et al. (2000) we developed a methodfor maximum likelihood estimation from partially visible data that exploits aonditional approximation to Z� and E�(fj) in whih we replae the summationover 
 with a summation over the �nite set 
(D0) onsisting of all possible parsesof the phonologial forms that onstitute the training data D0 = (w1; : : : ; wn).More preisely, the likelihood funtion L00D0 maximized in these experiments is:
(D0) = n[i=1
(wi)Z�(D0) = Xx2
(D0)V�(x)P�(W = wjW 2 D0) = Z�(wi)Z�(D0)L00D0(�) = nYi=1P�(W = wijW 2 D0)Figure 6 depits the likelihood funtion that this onditional approah max-imizes. Unlike with standard maximum likelihood estimation, omputation ofthe onditional partition funtion Z�(D0) and the orresponding expetationsis feasible. The onditional approah an be viewed as a version of pseudo-likelihood in the following way. Reall the key idea behind pseudo-likelihood:namely, that one an de�ne a likelihood funtion by onditioning one part ofthe struture on another part of that struture. In pseudo-likelihood estimationfrom fully visible (parsed) data we take eah sentene to be an observation andondition eah linguisti struture on its phonologial form. In this onditionalapproah, we take the entire data set D0 to be an observation, and onditioneah phonologial form on the fat that it oured in D0.Sine the above desribed estimation proedure does not require manuallyannotated data for training but merely data onsisting of phonologial formsalone, large sets of training data an easily be provided. In our experimentswe parsed a large orpus of newspaper text with a German LFG grammar (de-veloped in the ParGram projet at the University of Stuttgart), and extratedall parses for sentenes whih were assigned at most 20 parses by the gram-14



mar. This resulted in a training orpus of approximately 36,000 sentenes and250,000 parses. The rationale behind the employed restrition of the ambiguityof the training data is to simplify the estimation problem by restriting theentropy of the distribution over the training parses. A further attempt to reg-ularize the estimation proedure is an initial regularization of parameter valueswith the e�et of foussing the searh in maximization on a proper subspae ofthe parameter spae. Together, these regularization tehniques serve to makeEM a manageable estimation tool for highly preise statistial disambiguation.An evaluation of disambiguation performane on LFG parsed newspaper sen-tenes with on average 25 parses per sentene showed the following results: Thetask of mathing full /f-struture pairs to the manually seleted pair ouldbe performed orretly in over 60% of the test ases; a disambiguation of theprediate-argument strutures of the parses of the test sentenes (whih is suÆ-ient for many appliation purposes) ould be performed orretly in over 90%of test ases.6 Conlusion and further diretionsBeause log-linear models make no assumptions about relationships betweenfeatures, they provide a general framework for de�ning probability distributionsover linguisti strutures from virtually any linguisti theory (Abney, 1997).Maximum likelihood estimation is an optimal method for estimating the param-eter vetors for suh models from data, but preisely beause log-linear modelsare so general, maximum likelihood estimation is typially omputationally in-feasible beause it requires us to alulate expetations over all possible linguis-ti strutures. This lead us to develop tehniques based on pseudo-likelihood(Besag, 1975) for estimating parameter vetors from fully visible (parsed) data(Johnson et al., 1999; Johnson and Riezler, 2000) and partially visible (phono-logial form) data (Riezler et al., 2000).This work is still in its infany, and many interesting avenues remain tobe explored. We believe there is interesting empirial linguisti researh to bedone in investigating the trade-o� between the \hard" grammatial onstraintsinorporated in the grammar that determines 
 and the \soft" preferenes thatan be enoded using features fj in the statistial model. The grammars weused in our experiments were not written with our statistial models in mind,and we might obtain a more robust system with broader overage by removingsome of the grammatial onstraints from the grammar and re-expressing themas features in the statistial model.Turning to more mathematial issues, it would be valuable to investigateother ways for estimating the partition funtion and the expetations requiredfor maximum likelihood estimation from both parsed and phonologial formdata. Tehniques for approximating these quantities have been developed inother �elds (e.g., mean �eld approximations), and it may be possible to applythem in omputational linguistis as well (Saul and Jordan, 1999).A problem left unaddressed in our appliations is eÆient searhing for most15



probable parses. This question beomes ruial if higher overage is desired andtraded in for more super�ial parses and for higher ambiguity. Clearly, for suhases it is desirable to adapt tehniques suh as Viterbi's algorithm (Viterbi,1967) to searhing eÆiently for most probable parses in probabilisti LFGgrammars. Here a loser look at generalized dynami-programming tehniquesas developed for graphial models (Frey, 1998) seems promising.Finally, we believe that there may be other ways of applying pseudo-likelihoodto language learning besides the ways desribed in this paper. The pseudo-likelihood estimation approah from visible (parsed) data it seems highly un-realisti in one respet: suh a learner learns nothing from unambiguous sen-tenes in its training data, even though suh sentenes are intuitively mostinformative of all. This is beause the pseudo-likelihood we used onditionedon phonologial form; i.e., P(X jW ). Suppose instead we adopt a \generation-oriented" pseudo-likelihood, where we ondition on the semanti interpretationS(x) of eah linguisti struture x, so the likelihood is the produt of termsP(X = xijS = si). Suh a learner would learn from eah sentene in its train-ing data whose semanti interpretation an be expressed in more than one wayuniversally.ReferenesAbney, Steven. 1997. Stohasti Attribute-Value Grammars. ComputationalLinguistis, 23(4):597{617.Abney, Steven, David MAllester, and Fernando Pereira. 1999. Relating proba-bilisti grammars and automata. In Proeedings of the 37th Annual Meetingof the Assoiation for Computational Linguistis, pages 542{549, San Fran-iso. Morgan Kaufmann.Berger, Adam L., Vinent J. Della Pietra, and Stephen A. Della Pietra. 1996. Amaximum entropy approah to natural language proessing. ComputationalLinguistis, 22(1):39{71.Besag, J. 1975. Statistial analysis of non-lattie data. The Statistiian, 24:179{195.Bresnan, Joan. 1982. The Mental Representation of Grammatial Relations.The MIT Press, Cambridge, Massahusetts.Bresnan, Joan, Ronald M. Kaplan, Stanley Peters, and Annie Zaenen. 1982.Cross-serial dependenies in duth. Linguisti Inquiry, 13:613{635.Chi, Zhiyi. 1998. Probability Models for Complex Systems. Ph.D. thesis, BrownUniversity.Chi, Zhiyi. 1999. Statistial properties of probabilisti ontext-free grammars.Computational Linguistis, 25(1):131{160.16
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