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om1 Introdu
tionThis paper summarizes our re
ent work in developing statisti
al models of lan-guage whi
h are 
ompatible with the kinds of linguisti
 stru
tures posited by
urrent linguisti
 theories. In a series of papers we have developed tools for esti-mating or \learning" su
h models from data (Johnson et al., 1999; Johnson andRiezler, 2000; Riezler et al., 2000) and this paper provides a high-level overviewof both the general approa
h and the methods we developed.Turning to theoreti
al results on learning, it seems that statisti
al learn-ers may be more powerful than non-statisti
al learners. For example, whileGold's famous results showed that neither �nite state nor 
ontext free lan-guages 
an be learnt from positive examples alone (Gold, 1967), it turns outthat probabilisti
 
ontext free languages 
an be learnt from positive examplesalone (Horning, 1969). Informally, a 
lass of languages may be statisti
allylearnable even though its 
ategori
al 
ounterpart is not be
ause the statisti
allearning framework makes stronger assumptions about the training data (i.e.,it is distributed a

ording to some probabilisti
 grammar from the 
lass) anda

epts a weaker 
riterion for su

essful learning (
onvergen
e in probability).Statisti
s provides the theory of optimal learners and optimal 
omprehenders(optimal in an information-theoreti
 sense) whi
h serve as idealizations of, andupper bounds to, human performan
e. If an optimal statisti
al learner fails tolearn a language given 
ertain kinds of inputs (say, phonologi
al forms alone)under 
ertain assumptions about universal grammar, then we 
an be fairly 
er-tain that human beings either have a

ess to ri
her data or have stronger biasesthat restri
t the 
lass of possible grammars.An immediate goal of this resear
h is to �nd a way of de�ning probabilitydistributions over linguisti
ally realisti
 stru
tures in a way that permits us tode�ne language learning and language 
omprehension as statisti
al problems,and the rest of this paper 
on
entrates on these questions. The next se
tiondes
ribes the linguisti
 theory, Lexi
al-Fun
tional Grammar, whi
h de�nes thelinguisti
 stru
tures used in this resear
h, and the following se
tion explains howwe de�ne a probability distribution over these stru
tures. Se
tion 4 des
ribes1



how one 
an learn the parameters that de�ne probability distributions over thesestru
tures in prin
iple, and points out some of the pra
ti
al problems that makestraight-forward ways of estimating these distributions infeasible. This leads usto the \pseudo-likelihood" estimation methods des
ribed in se
tion 5, whi
halso raise interesting questions 
on
erning the nature of the data available tothe 
hild and modularity of language learning and pro
essing.2 Lexi
al-fun
tional grammarThis resear
h di�ers from most work in statisti
al 
omputational linguisti
sin that it is 
ompatible with and builds on the results of modern linguisti
theory. While our approa
h is 
ompatible with virtually all existing theoriesof grammar (in
luding transformational grammar and minimalist grammars),we have adopted the framework and stru
tures of Lexi
al-Fun
tional Grammar(LFG) in our resear
h. LFG has several properties that make it espe
ially well-suited for resear
h involving linguisti
ally-oriented probabilisti
 grammars. Theformal de�nition of LFGs and the stru
tures they generate is 
lear and pre
ise(Kaplan, 1995), and LFG provides simple, 
lean des
riptions of a wide rangeof typologi
ally diverse linguisti
 phenomena (Bresnan, 1982). There is also asubstantial amount of existing 
omputational resear
h on LFG, in
luding oneÆ
ient parsing with large grammars (Maxwell III and Kaplan, 1993), whi
hwe exploit in our resear
h.An LFG stru
ture of a senten
e 
onsists of a small number of distin
t 
ompo-nents, su
h as the phonologi
al stru
ture, the synta
ti
 stru
ture, the semanti
interpretation, et
. To keep things simple in this paper, however, we will onlyuse a subset of these 
omponents and simplify them where appropriate. Forexample, we take the phonologi
al 
omponent of a senten
e to be just a stringof words, and ignore prosody and other phonologi
al details. Similarly, we takethe semanti
 interpretation of a senten
e to be its predi
ate-argument stru
ture(roughly, \who did what to whom"), and ignore mood, tense, et
. We makeextensive use of two 
omponents in this paper. The 
onstituent or 
-stru
tureof a senten
e shows the temporal arrangement of words, phrases and 
lausesorganized as a tree stru
ture. The fun
tional or f-stru
ture of a senten
e is anattribute-value stru
ture that shows the grammati
al fun
tion relationships be-tween the phrases and 
lauses of a senten
e, abstra
ting away from details oflinear order. The parti
ular grammati
al fun
tion relationship involved (e.g.,subje
t, obje
t, et
.) is represented by the attribute name, and f-stru
tures alsoen
ode the argument-adjun
t distin
tion. Although it probably deserves to bea 
omponent in its own right, for simpli
ity we follow early work in LFG thaten
odes the predi
ate-argument stru
ture of a phrase or senten
e as the valueof the predi
ate attribute in an f-stru
ture. Figure 1 depi
ts the 
-stru
tureand f-stru
ture of the English senten
e Sandy wants to drink wine.One of the reasons for adopting an attribute-value representation of f-stru
turein LFG is that su
h stru
tures 
an des
ribe the multiple fun
tional roles that asingle 
onstituent 
an play in a single senten
e. For example, in Sandy wants2



SNPSandy VPVwants VPVto VPVdrink NPwine
26666666666666664
predi
ate want(Sandy ; drink(Sandy ;wine))subje
t 24predi
ate Sandyperson 3rd1 number singular35
omplement 2666664predi
ate drink(Sandy ;wine)subje
t 1obje
t 24predi
ate wineperson 3rdnumber singular353777775

37777777777777775Figure 1: The 
-stru
ture and the f-stru
ture for the English senten
e Sandywants to drink wine.to drink wine the NP Sandy fun
tions both as the subje
t of the verb wantsand the verb drink (
f., Sandy wants Sam to drink wine). This is indi
ated bya re-entran
y in the f-stru
ture, depi
ted by the shared index \ 1 " in Figure 1.Similiar re-entran
ies are used to indi
ate the fun
tional roles played in rel-ative 
lauses and wh-questions, where a fun
tional dependen
y may span anunbounded distan
e in the 
onstituent stru
ture. For example, in the questionWhi
h bottle did Sandy want Sam to open?, thewh-phrase whi
h bottle fun
tionsas the obje
t of the verb open even though the two elements are dis
ontinuousin 
-stru
ture terms. As explained in se
tion 3, lexi
al dependen
ies betweengovernor-governee pairs play an important role in our probabilisti
 model, andtheir expli
it representation in LFG's f-stru
ture makes the 
onstru
tion of ourprobabilisti
 model mu
h easier.F-stru
tures also make expli
it other important linguisti
 information. Forexample, the f-stru
ture in Figure 1 en
odes person and number features onnoun phrases (important for subje
t-verb and pronoun agreement); although notshown here, f-stru
tures also en
ode verb tense and other semanti
ally importantinformation. Noti
e that the f-stru
ture makes expli
it dependen
ies that maybe non-lo
al or only indire
tly marked in the 
-stru
ture, and represents thesein a relatively language-independent way. This gives LFG the power to providesimple des
riptions of phenomena su
h as 
rossed serial dependen
ies, whi
h
annot be des
ribed using 
ontext-free grammars (Bresnan et al., 1982; Shieber,1985; Kaplan and Zaenen, 1995).An a

ount of language a
quisition should explain how the properties thatdi�erentiate the language being learnt from other possible human languages area
quired. Sin
e one of the goals of this resear
h is to determine the extentto whi
h language learning 
an be viewed as a statisti
al parameter estimationproblem, the restri
tions or 
onstraints imposed on possible linguisti
 stru
turesshould be universal, i.e., satis�ed by all possible human languages. Thus theset of 
andidate linguisti
 stru
tures (whi
h we 
all 
 below) should in
ludeall stru
tures possible in any human language. Unfortunately, su
h \universalgrammars" are not yet available: indeed, there are still major 
on
eptual issues3



to be resolved before su
h a universal grammar (for any linguisti
 theory) 
anbe 
onstru
ted. Be
ause of the la
k of any reasonable 
andidate for a universalgrammar, our 
omputational experiments to date have utilized grammars forspe
i�
 languages su
h as English (Johnson et al., 1999; Johnson and Riezler,2000) and German (Riezler et al., 2000). Thus the statisti
al models developedin these experiments in e�e
t learn how likely ea
h grammati
al linguisti
 stru
-ture of the parti
ular language are: thus these models are 
apable of interpretingand disambiguating phonologi
al forms in 
omprehension, but do not dire
tlymodel language learning per se.3 Probability distributions over linguisti
 stru
-turesThis se
tion explains how we de�ne a probability distribution over a set ofpossible linguisti
 stru
tures 
. In a model of language learning, 
 shouldbe the set of all stru
tures that 
ould appear in any human language, but formodels of parsing of a single language we take 
 to be the set of grammati
alstru
tures of that language. In either 
ase, 
 is a 
ountably in�nite set, even ifit is highly 
onstrained by innate, language-spe
i�
 
onstraints.The probability distribution over 
 is de�ned in terms of a �nite ve
torof features f = (f1; : : : ; fm), where ea
h fj is a fun
tion mapping a linguisti
stru
ture x 2 
 to a real number fj(x). (The term `feature' is used both instatisti
s and linguisti
s; we follow the standard usage in statisti
s here, anduse the term `attribute' to refer to 
omponents of attribute-value stru
turesor node labels). While the mathemati
s impose few 
onstraints on what thefeatures 
an be, we generally take fj(x) to be the number of times that a given
onstru
tion appears in the linguisti
 stru
ture x 2 
, whi
h means that fj(x)is a non-negative integer.The features 
an be lexi
alized, i.e., they 
an make referen
e to a spe
i�
words or word 
lasses, but they need not be. For an example of a non-lexi
alizedfeature, let f1(x) be the number of times that a dire
t obje
t immediatelypre
edes its governing verb in x; this is presumably almost always zero forsenten
es of English, but is often non-zero for a head-�nal language like German.For an example of a lexi
alized feature, let f2(x) is the number of times the verbeat appears with a dire
t obje
t in the stru
ture x; if this is 
lose to numberof times eat appears in x then presumably eat is a primarily transitive verb.The sele
tion of features is presumably an empiri
al linguisti
 issue (just as thesele
tion of 
onstraints in an Optimality Theory grammar or of parameters ina Prin
iples and Parameters model are empiri
al issues).In our experiments with probabilisti
 LFGs we use a wide variety of fea-tures (see Johnson et al. (1999) for a more detailed des
ription). Inspired byprobabilisti
 
ontext-free grammars, we introdu
ed a feature fA for ea
h 
ate-gory A that 
an label a 
-stru
ture node, and de�ne fA(x) to be the numberof times a node labelled A appears in the 
-stru
ture of x. Additionally, the4



probabilisti
 LFGs evaluated below used the following kinds of features, whosesele
tion was guided by the prin
iples proposed by Hobbs and Bear (1995).Adjun
t and argument features indi
ate adjun
t and argument atta
hment re-spe
tively, and permit the model to 
apture a general argument atta
hmentpreferen
e. In addition, there are spe
ialized adjun
t and argument features
orresponding to ea
h grammati
al fun
tion used in LFG (e.g., subje
t, ob-je
t, 
omplement, adjun
t, et
.) There are features indi
ating both highand low atta
hment (determined by the 
omplexity of the phrase being atta
hedto). Another feature indi
ates non-right-bran
hing nonterminal nodes. There isa feature for non-parallel 
oordinate stru
tures (where parallelism is measuredin 
onstituent stru
ture terms). Ea
h f-stru
ture attribute-atomi
 value pairwhi
h appears in any feature stru
ture is also used as a feature. We also usea number of features identifying synta
ti
 stru
tures that seem parti
ularly im-portant in the parti
ular 
orpora we used in our experiments, su
h as a featureidentifying NPs that are dates (it seems that date interpretations of NPs arepreferred if they are available).Ideally we would like to in
lude lexi
al features dire
tly in our experimentsto 
apture the dependen
ies between governors and the heads of the phrasesthat they govern, but we did not have enough training data to estimate thesedire
tly in our experiments. However, probabilisti
 models of su
h dependen
ies
an be 
onstru
ted by other means, and we 
an in
lude information from su
h\auxiliary" models in our model as follows (Johnson and Riezler, 2000; Riezleret al., 2000). Suppose we have an auxiliary model R whi
h assigns a positivenumeri
al preferen
e s
ore R(x) to ea
h x 2 
. (R might de�ne a probabilitydistribution over 
, but need not). Then we de�ne a new feature fR(x) =logR(x), and treat it otherwise just as another feature in our model. In e�e
t,the preferen
e information from the auxiliary model R is treated as anothersour
e of information that will be taken into a

ount in the model we 
onstru
t.This provides a general me
hanism whereby a range of 
omplex preferen
es(possibly in
luding innate ones) 
an be in
luded in a statisti
al model, whi
hgeneralizes the \referen
e distribution" approa
h des
ribed in Jelinek (1997).We now explain how the probability of a parti
ular linguisti
 stru
ture x isde�ned in terms of its feature values f(x) = (f1(x); : : : ; fm(x)). While there aremany ways in whi
h this 
an be done, we use the 
lass of log-linear models inour resear
h (Abney, 1997). We justify our 
hoi
e of log-linear models after wehave explained how they are de�ned.Given a set of linguisti
 stru
tures 
 and a feature ve
tor (f1; : : : ; fm), alog-linear model is de�ned by a parameter ve
tor � = (�1; : : : ; �m), where ea
h�j is a real number. Informally, �j is the \weight" assigned to the 
orrespondingfeature fj . If �j is positive then higher values of fj(x) in
rease the probabilityof x, and if �j is negative then higher values of fj(x) de
rease the probabilityof x (assuming that the values of fj0(x); j0 6= j stay the same).Mathemati
ally, the probability P�(X = x) of x given the parameter ve
tor� is de�ned as follows. We de�ne the weight V�(x) of x as the exponentialof a linear 
ombination of the feature values of x, weighted a

ording to theparameter ve
tor. (Thus the logarithm of V�(x) is a linear 
ombination of the5



feature values, hen
e the name log-linear model).V�(x) = exp( mXj=1 �j fj(x))A probability distribution over linguisti
 stru
tures 
 must satisfy the normal-ization 
onstraint that the sum of probability of the stru
tures in 
 is 1, i.e.,Px2
 P�(X = x) = 1. We 
annot set P�(X = x) = V�(x) be
ause in general V�does not satisfy the normalization 
onstraint. However, we 
an make P�(X = x)proportional to V�(x) by dividing the latter by a normalization fa
tor known asthe partition fun
tion Z� (the name 
omes from statisti
al physi
s, whi
h wasthe �rst major appli
ation of log-linear models).Z� = Xx2
V�(x) (1)P�(X = x) = V�(x)Z� (2)Unlike probabilisti
 
ontext free grammars and related models, log-linear modelspermit essentially arbitrary dependen
ies between features, whi
h makes themideal for de�ning probability distributions over linguisti
ally realisti
 stru
tures(Abney, 1997). Additionally, there are information-theoreti
 reasons for prefer-ring log-linear models over other model 
lasses. The 
lass of log-linear modelsis also the 
lass of maximum entropy models; roughly speaking, these are themodels whi
h 
ontain the minimum additional information over and above theinformation 
ontained in the training data (see Jelinek (1997) for a textbookintrodu
tion). Virtually all of the well-known probabilisti
 models of languageare sub
lasses of the 
lass of log-linear models (e.g., probabilisti
 
ontext-freegrammars, hidden Markov models, et
.). Finally, even though one might sus-pe
t that the restri
tion to linear 
ombinations of the feature values is undulyrestri
tive, be
ause no restri
tions are pla
ed on the features themselves, we 
ande�ne a feature whi
h is a nonlinear 
ombination of other features, so the 
lassof log-linear models is mu
h less restri
tive than it may �rst seem.4 Learning grammarsThe previous se
tion des
ribed how we de�ne a log-linear probability distribu-tion over linguisti
 stru
tures 
. We now turn to the problem of determiningthe parameter ve
tor � from some observational data D. In our experimentswe use maximum likelihood estimators (but see the dis
ussion of regularizationin se
tion 5). A maximum likelihood estimator sele
ts a parameter ve
tor �whi
h makes the data D as likely as possible, i.e., it ignores the prior termand maximizes the log-likelihood LD(�) = log P(Dj�) of the training data in �.Under very general 
onditions, maximum likelihood estimation is unbiased (the6



xn
x1
 � : : : �Figure 2: Maximum likelihood estimation from fully observed (parsed) dataexpe
ted value of the parameter estimate is its true value), 
onsistent (as thesize of the data grows, the estimated parameters 
onverge on the true value) andasymptoti
ally eÆ
ient (there is no other estimation pro
edure whose parame-ter estimates have uniformly lower varian
e). Further, given the independen
eassumptions below the maximum likelihood estimator for a log-linear modelsele
ts the 
losest model to the training data distribution in terms of Kullba
k-Leibler divergen
e (an information-theoreti
 measure of the distan
e betweentwo distributions).More formally, suppose that D 
onsists of a sequen
e of fully observed parsesD = (x1; : : : ; xn); xi 2 
. (\Fully observed" means that the learner has a

essto the 
omplete linguisti
 stru
tures; we 
onsider the problem of learning fromphonologi
al forms alone below). We make the standard statisti
al assumptionsthat ea
h observation xi is independent of the other observations xi0 ; i0 6= i,and that ea
h xi is identi
ally distributed a

ording to P� for some unknown� (these assumptions are undoubtedly in
orre
t, but we hope that they areapproximately true). Given these assumptions, the likelihood LD of the data Dand the 
orresponding maximum likelihood estimate �̂ of � are:LD(�) = nYi=1P�(X = xi) (3)�̂ = argmax� LD(�)Figure 2 graphi
ally depi
ts this maximum likelihood estimation. Informally,maximum likelihood estimation adjusts � to make the weight V�(xi) of ea
htraining datum as large as possible relative to the partition fun
tion Z� (thesum of the weights of all linguisti
 stru
tures 
).It is straight forward to show that LD has a unique maximum value, andat this maximum the expe
ted value E�̂(fj) of ea
h feature under the distribu-tion P�̂ is equal to its expe
ted value under the \empiri
al distribution" of thetraining data D, i.e.,:E�̂(fj) = 1n nXi=1 fj(xi); j = 1; : : : ;m:Thus maximum likelihood estimation sele
ts a parameter ve
tor �̂ so that theexpe
ted value of ea
h feature under the estimated distribution P�̂ is the same7




 
(wn)
 
(w1)� : : : �Figure 3: Maximum likelihood estimation from partially visible (phonologi
alform) dataas the average value of that feature in the training data, whi
h intuitively seemsto be a reasonable thing to do.Now we turn to the 
ase where the training data is partially hidden and
onsists of phonologi
al forms alone, i.e., D0 = (w1; : : : ; wn), where ea
h wi isa phonologi
al form (here taken to be a string of words). In this situation thetraining data does not uniquely identify the linguisti
 stru
ture 
orrespondingto ea
h phonologi
al form wi; all we know is that it lies somewhere inside theset 
(wi) = fx : W (x) = wig of linguisti
 stru
tures whose phonologi
al formis wi. Making the same independen
e assumptions as before, the likelihood L0D0of the data D0 is now a produ
t of the marginal probability of ea
h wi, wherethe marginal probability of w is the sum of the probability of ea
h x 2 
(w).P�(W = w) = Xx2
(w)P�(X = x)L0D0(�) = nYi=1P�(W = wi) (4)�̂ = argmax� L0D0(�)Figure 3 graphi
ally depi
ts the quantity being maximized during estimationfrom phonologi
al forms alone. Noti
e that the maximum likelihood estimatorsele
ts the � that pla
es maximum weight on the 
(wi) as 
ompared to thewhole of 
.There is a standard te
hnique known as the Expe
tation-Maximization (EM)algorithm whi
h redu
es the optimization required in maximum likelihood es-timation from partially hidden data to a series of optimizations of the kindinvolved in maximum likelihood estimation from fully visible data (Dempster,Laird, and Rubin, 1977). The te
hnique requires an initial guess �(0) of theparameter ve
tor as well as the partially observed data D0, and it produ
es asequen
e of estimates �(1); �(2); : : :. This sequen
e has the property that ea
hadditional estimate typi
ally in
reases, and provably does not de
rease, the like-lihood of the partially observed data, i.e., L0D0(�(k+1)) � L0D0(�(k)). Informally,the te
hnique involves treating ea
h partial observation wi as a set of fully ob-served data 
onsisting of ea
h x 2 
(wi), with ea
h full observation x weighteda

ording to P�(k)(x), where �(k) is the estimate of � at the kth iteration. Thus8



EM \pays most attention to" the x 2 
(wi) that its 
urrent estimate of � assignsthe highest probability to.Unlike the fully visible 
ase, there is no guarantee that the likelihood fun
tionfor partially hidden data has only a single lo
al maximum, and the EM algo-rithm 
an get \trapped" in su
h lo
al maxima. Indeed, there is no guaranteethat estimation is possible at all: the parameter ve
tor � may simply be non-identi�able from the kind of data available. For example, it is logi
ally possiblethat universal grammar permits two di�erent languages with exa
tly the samemarginal distribution over phonologi
al forms, even though the two languagesasso
iate ea
h phonologi
al form with di�erent semanti
 interpretations.5 Pseudo-likelihood estimationThe previous se
tion introdu
ed maximum likelihood estimation of � for bothfully visible and partially hidden data. Unfortunately, it seems that dire
tlymaximizing the likelihood (3) is 
omputationally infeasible even for fully visibledata (and sin
e the EM te
hnique redu
es the partially hidden data 
ase tothe fully visible data 
ase, it too is infeasible). The standard algorithms formaximizing this likelihood are iterative, and require the 
al
ulation of the ex-pe
ted value of ea
h feature E�(fj) for a variety of di�erent parameter ve
tors� (see Berger, Della Pietra, and Della Pietra (1996) and Jelinek (1997) for anintrodu
tion to these algorithms). Informally, the 
ause of the infeasibility isthat maximum likelihood estimation requires us to sele
t the parameter ve
tor �that maximizes the weight V�(xi) on the observed datum xi relative to the sumZ� of the weights on all possible linguisti
 stru
tures x 2 
 (see Figure 2 andequations 1, 2 and 3). Be
ause 
 is in�nite, we 
annot 
al
ulate the partitionfun
tion Z� or the feature expe
tations E�(fj) by dire
tly enumerating 
. In-deed, even 
al
ulating the probability P�(X = x) of a single linguisti
 stru
turex seems infeasible, sin
e it too 
ru
ially involves Z� (see equation 2).If 
 and the feature ve
tor f have a suitably simple stru
ture, then it maybe the 
ase that Z� and E�(fj) 
an be 
al
ulated analyti
ally. For example, if 
is the set of trees generated by a 
ontext free grammar and the feature fi mapsan x 2 
 to the number of times the ith produ
tion is used in a derivation ofx, then Z� and E�(fj) 
an be 
al
ulated without an expli
it enumeration of 
(Abney, M
Allester, and Pereira, 1999; Chi, 1999). However, this 
al
ulationdepends 
ru
ially on the 
ontext free or Markovian independen
e properties ofProbabilisti
 Context Free Grammars. It seems that su
h 
ontext free systems
annot des
ribe the true set 
 of possible linguisti
 stru
tures (Shieber, 1985),yet these 
ontext free properties are what makes the dire
t 
al
ulation of Z�and E�(fj) feasible. Indeed, pre
isely be
ause the Lexi
al Fun
tional Grammarsused in this resear
h are 
apable of 
apturing the non-lo
al, 
ontext-sensitivedependen
ies of natural language, the methods that 
an be used to 
al
ulate Z�and E�(fj) for PCFGs do not extend to LFGs.Never the less, we believe that there may be te
hniques for 
al
ulating or ap-proximating Z� for LFGs that avoid expli
it enumeration. Abney (1997) points9



out that E�(fj) 
an be approximated using Monte Carlo sampling te
hniquesthat do not enumerate all of 
. While this is in prin
iple 
orre
t, a \ba
k ofthe envelope" 
al
ulation suggests that the parti
ular Hastings Metropolis sam-pling s
heme that Abney proposes is 
omputationally impra
ti
al for all butsmall grammars (see Johnson et al. (1999) for further dis
ussion).However, note that the full joint distribution over phonologi
al forms andtheir parses is not a
tually required for natural language pro
essing tasks. Forexample, as explained above, 
omprehension and parsing only requires the 
on-ditional distribution P(X jW ) of linguisti
 stru
tures given their phonologi
alforms. Cru
ially, estimating these 
onditional distributions is often 
omputa-tionally feasible, even though estimation of the joint distribution is infeasible.Consider the 
ase where the data is fully observed: D 
onsists of parsesD = (x1; : : : ; xn); xi 2 
 as above. Ea
h parse is asso
iated with a phonologi
alform wi = W (xi). Making the same independen
e assumptions as before, the
onditional likelihood or pseudo-likelihood PLD of the data D and the 
orre-sponding maximum likelihood estimate �̂ of � are:Z�(w) = Xx2
(w)V�(x)P�(X = xjW = w) = V�(x)Z�(w)PLD(�) = nYi=1P�(X = xijW = wi) (5)�̂ = argmax� PLD(�)Whereas the likelihood LD is a produ
t of (un
onditional) probabilities (3),the pseudo-likelihood PLD is a produ
t of 
onditional probabilities (5). Ulti-mately, pseudo-likelihood di�ers from likelihood in that pseudo-likelihood onlyinvolves Z�(w) in pla
e of the infeasible Z� in the likelihood. It is straightforward to show that at the maximum of (5), the sum of the 
onditional expe
-tations of ea
h feature must be same as the sum of their empiri
al values, whereE�(f jW ) is the expe
tation of f with respe
t to the 
onditional distributionP�(X jW ): nXi=1 E�̂(fj jW = wi) = nXi=1 fj(xi); j = 1 : : :m:Moving to pseudo-likelihood makes a 
ru
ial di�eren
e in the kinds of expe
-tations that must be 
omputed in the standard algorithms for maximizing �;they now involve the generally feasible 
onditional expe
tations E�(fj jW ) ratherthan the infeasible un
onditional expe
tations E�(fj).It turns out that this idea of dire
tly estimating a 
onditional distribution(rather than the joint) has been independently dis
overed at least twi
e. Besag(1975), who 
oined the name `pseudo-likelihood', uses it in a 
omputational vi-sion setting in whi
h one part of an image serves as the 
onditioning environment10
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(w1)� : : : �Figure 4: Maximum pseudo-likelihood estimation from fully observed datafor another part of the image (here, the phonologi
al form 
orresponds to onepart of the linguisti
 stru
ture, and everything else in the stru
ture 
orrespondsto the other part). Berger, Della Pietra, and Della Pietra (1996) and Jelinek(1997) both des
ribe optimizations in their algorithms whi
h repla
e joint prob-abilities with 
onditional probabilities in exa
tly the manner des
ribed here(but they do not a
knowledge that this means they are estimating a 
onditionalrather than a joint distribution).Figure 4 graphi
ally depi
ts maximum pseudo-likelihood estimation. In-formally, maximum pseudo-likelihood estimation adjusts � to make the weightV�(xi) of ea
h training datum as large as possible relative to Z�(wi), i.e., thesum of the weights of all parses 
(wi) of the phonologi
al form wi. As re-marked earlier, 
(wi) is �nite and of managable size for LFGs, so Z�(wi) andthe 
onditional expe
tations required for maximizing the pseudo-likelihood 
anbe 
al
ulated using dire
t enumeration of 
(wi).While pseudo-likelihood estimation is 
onsistent for the 
onditional distribu-tion, it is not hard to see that maximizing PLD will not always 
orre
tly estimatethe joint P�(X) (Chi, 1998). Suppose there is a feature fj whi
h depends solelyon the phonologi
al form W (x) of a linguisti
 stru
ture x, i.e., fj(x0) = fj(x)for all x 2 
 and x0 2 
(W (x)); we 
all su
h features pseudo-
onstant. (Foran example of a pseudo-
onstant feature, let fj(x) be the number of times theword eat o

urs in x). If fj is pseudo-
onstant, then it is easy to show thatthe pseudo-likelihood does not depend on the value of the parameter �j asso-
iated with fj , so maximum pseudo-likelihood estimation provides no basis for
hoosing a value for �j . In fa
t, in this 
ase any value of �j gives the same
onditional distribution P�(X jW ), so �j is irrelevant to the problem of 
hoosinggood parses.Informally, the relationship between maximum likelihood and pseudo-likelihoodestimation is the same as the relationship between the joint P(X;W ) and the
onditional P(X jW ), whi
h are related by the marginal P(W ):P(X;W ) = P(X jW ) P(W ):The parameter ve
tors estimated by maximum likelihood estimation model thejoint; they des
ribe both the 
onditional distribution of parses given phonologi-
al forms as well as the marginal distribution of phonologi
al forms P(W ), whilepseudo-likelihood estimation fo
uses on the 
onditional P(X jW ) and ignores themarginal. 11



Interestingly, from a 
ognitive modularity perspe
tive, the 
onditional andthe marginal distributions seem to 
orrespond to two di�erent kinds of informa-tion. As noted above, the 
onditional distribution P(X jW ) is pre
isely the in-formation required for disambiguation in senten
e 
omprehension, whi
h seemsto be purely linguisti
 knowledge. The marginal distribution P(W ), on theother hand, des
ribes the distribution of phonologi
al forms, whi
h seems toinvolve world knowledge and 
ontextual information at least as mu
h as it in-volves linguisti
 knowledge. Thus pseudo-likelihood estimation may be more
ompatible with a modular view of language, sin
e it seems to fo
us on morepurely linguisti
 knowledge than does maximum likelihood estimation.We now brie
y des
ribe some of the more pra
ti
al details of pseudo-likelihoodestimation. Despite the assuran
e of 
onsisten
y, pseudo-likelihood estimationis prone to over �tting when a large number of features is mat
hed against amodest-sized 
orpus of training data. One parti
ularly troublesome manifesta-tion of over �tting results from the existen
e of features whi
h, relative to thetraining data, we 
all \pseudo-maximal". A feature f is pseudo-maximal for aphonologi
al form w if and only if for all x0 2 
(w) f(x) � f(x0) where x isany 
orre
t parse of w, i.e., the feature's value on every 
orre
t parse x of wis greater than or equal to its value on any other parse of w. Pseudo-minimalfeatures are de�ned similarly. It is easy to see that if fj is pseudo-maximal onea
h senten
e of the training 
orpus then the parameter assignment �j = 1maximizes the 
orpus pseudo-likelihood. (Similarly, the assignment �j = �1maximizes pseudo-likelihood if fj is pseudo-minimal over the training 
orpus).Su
h in�nite parameter values indi
ate that the model treats pseudo-maximalfeatures 
ategori
ally; i.e., any parse with a non-maximal feature value is as-signed a zero 
onditional probability.Of 
ourse, a feature whi
h is pseudo-maximal over a �nite training 
orpusis not ne
essarily pseudo-maximal for all phonologi
al forms in those language.This is an instan
e of over �tting, and it 
an be addressed, as is 
ustomary,by adding to the obje
tive fun
tion a regularization term that promotes smallvalues of �. In Johnson et al. (1999) we added a quadrati
 to the log pseudo-likelihood, whi
h 
orresponds to multiplying the pseudo-likelihood itself by anormal distribution. Spe
i�
ally, we multiplied the pseudo-likelihood by a zero-mean normal in � with diagonal 
ovarian
e and with standard deviation �j for�j equal to 7 times the maximum value of fj found in any parse in the trainingdata. Thus instead of 
hoosing �̂ to maximizing the pseudo-likelihood (5), in theexperiments reported in Johnson et al. (1999) and Johnson and Riezler (2000)we a
tually sele
ted �̂ to maximize:logPLD(�̂)� mXj=1 �2j2�2j (6)Interestingly, this way of regularizing has a Bayesian interpretation. In Bayesianestimation one seeks a parameter ve
tor � that maximizes the posterior proba-bility P(�jD) of the parameter ve
tor � given the training data D. A

ording toBayes theorem, this 
an be done by maximizing the produ
t of the prior proba-12




 
(wn)
 
(w1)� : : : �Figure 5: A straight forward appli
ation of maximum pseudo-likelihood estima-tion from partially visible (phonologi
al form) data failsbility P(�) of the parameter ve
tor and the likelihood P(Dj�) of the data giventhe parameter ve
tor. If one sets the prior probability P(�) to be proportional toexp(�Pmj=1 �2j=2�2j ) and makes the same independen
e assumptions 
on
erningthe data as above, then it is possible to show that the Bayesian estimate for �is pre
isely the � that maximizes (6).In these experiments, the set of possible linguisti
 stru
tures 
 was de�nedby a hand-written LFG for English, whi
h was spe
i�
ally designed at XeroxPar
 to generate the senten
es in two 
orpora of business appointment dialogsand \Home
enter" printer/
opier do
umentation, 
onsisting of 500 and 1000parsed senten
es respe
tively. Even though the grammar in
luded all standardlinguisti
 
onstraints, the senten
es in the 
orpora were often highly ambiguous,with an average of 8 parses per senten
e. The training data 
onsisted of the
orre
t parse for ea
h senten
e (whi
h was identi�ed manually) together withthe set of all alternative (i.e., in
orre
t) parses of the senten
e generated bythe grammar. Using a 
ross-validation framework, we showed that a modeltrained by maximum pseudo-likelihood 
orre
tly disambiguated approximately58% of the ambiguous test senten
es, whereas a model that treated ea
h parseas equally likely would 
orre
tly disambiguate only 25% of the ambiguous testsenten
es.We now turn to the more realisti
 situation (in terms of language a
quisition)where the training data 
onsists of phonologi
al forms alone. Whereas maxi-mum likelihood estimation from partially visible data is 
on
eptually straightforward|one adjusts � to maximize the likelihood of the phonologi
al forms that
onstitute the training data D|it turns out that a similiar approa
h based onpseudo-likelihood fails. Spe
i�
ally, 
onditioning the marginal P(W = wi) in thelikelihood (4) on the phonologi
al form results in a 
onstant-valued likelihoodthat does not vary with � or D, so estimation fails.Intuitively, the problem is that we are trying to maximize the sum of theweights V�(x) pla
ed on the x 2 
(wi) relative to the sum of the weights ofexa
tly the same set 
(wi), as depi
ted in Figure 5. Standard maximum likeli-hood estimation from partially visible data (as performed by the EM algorithm)maximizes the sum of the weights pla
ed on 
(wi) relative to the sum Z� of theweights pla
ed on all possible linguisti
 stru
tures 
.We noted earlier that maximum likelihood estimation is infeasible be
ausethe partition fun
tion Z� and the expe
tations E�(fj) involve summing over all13
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(wn)Sni=1 
(wi)� : : : �Figure 6: An 
onditional approa
h to estimation from partially visible (phono-logi
al form) datapossible linguisti
 stru
tures 
. In Riezler et al. (2000) we developed a methodfor maximum likelihood estimation from partially visible data that exploits a
onditional approximation to Z� and E�(fj) in whi
h we repla
e the summationover 
 with a summation over the �nite set 
(D0) 
onsisting of all possible parsesof the phonologi
al forms that 
onstitute the training data D0 = (w1; : : : ; wn).More pre
isely, the likelihood fun
tion L00D0 maximized in these experiments is:
(D0) = n[i=1
(wi)Z�(D0) = Xx2
(D0)V�(x)P�(W = wjW 2 D0) = Z�(wi)Z�(D0)L00D0(�) = nYi=1P�(W = wijW 2 D0)Figure 6 depi
ts the likelihood fun
tion that this 
onditional approa
h max-imizes. Unlike with standard maximum likelihood estimation, 
omputation ofthe 
onditional partition fun
tion Z�(D0) and the 
orresponding expe
tationsis feasible. The 
onditional approa
h 
an be viewed as a version of pseudo-likelihood in the following way. Re
all the key idea behind pseudo-likelihood:namely, that one 
an de�ne a likelihood fun
tion by 
onditioning one part ofthe stru
ture on another part of that stru
ture. In pseudo-likelihood estimationfrom fully visible (parsed) data we take ea
h senten
e to be an observation and
ondition ea
h linguisti
 stru
ture on its phonologi
al form. In this 
onditionalapproa
h, we take the entire data set D0 to be an observation, and 
onditionea
h phonologi
al form on the fa
t that it o

ured in D0.Sin
e the above des
ribed estimation pro
edure does not require manuallyannotated data for training but merely data 
onsisting of phonologi
al formsalone, large sets of training data 
an easily be provided. In our experimentswe parsed a large 
orpus of newspaper text with a German LFG grammar (de-veloped in the ParGram proje
t at the University of Stuttgart), and extra
tedall parses for senten
es whi
h were assigned at most 20 parses by the gram-14



mar. This resulted in a training 
orpus of approximately 36,000 senten
es and250,000 parses. The rationale behind the employed restri
tion of the ambiguityof the training data is to simplify the estimation problem by restri
ting theentropy of the distribution over the training parses. A further attempt to reg-ularize the estimation pro
edure is an initial regularization of parameter valueswith the e�e
t of fo
ussing the sear
h in maximization on a proper subspa
e ofthe parameter spa
e. Together, these regularization te
hniques serve to makeEM a manageable estimation tool for highly pre
ise statisti
al disambiguation.An evaluation of disambiguation performan
e on LFG parsed newspaper sen-ten
es with on average 25 parses per senten
e showed the following results: Thetask of mat
hing full 
/f-stru
ture pairs to the manually sele
ted pair 
ouldbe performed 
orre
tly in over 60% of the test 
ases; a disambiguation of thepredi
ate-argument stru
tures of the parses of the test senten
es (whi
h is suÆ-
ient for many appli
ation purposes) 
ould be performed 
orre
tly in over 90%of test 
ases.6 Con
lusion and further dire
tionsBe
ause log-linear models make no assumptions about relationships betweenfeatures, they provide a general framework for de�ning probability distributionsover linguisti
 stru
tures from virtually any linguisti
 theory (Abney, 1997).Maximum likelihood estimation is an optimal method for estimating the param-eter ve
tors for su
h models from data, but pre
isely be
ause log-linear modelsare so general, maximum likelihood estimation is typi
ally 
omputationally in-feasible be
ause it requires us to 
al
ulate expe
tations over all possible linguis-ti
 stru
tures. This lead us to develop te
hniques based on pseudo-likelihood(Besag, 1975) for estimating parameter ve
tors from fully visible (parsed) data(Johnson et al., 1999; Johnson and Riezler, 2000) and partially visible (phono-logi
al form) data (Riezler et al., 2000).This work is still in its infan
y, and many interesting avenues remain tobe explored. We believe there is interesting empiri
al linguisti
 resear
h to bedone in investigating the trade-o� between the \hard" grammati
al 
onstraintsin
orporated in the grammar that determines 
 and the \soft" preferen
es that
an be en
oded using features fj in the statisti
al model. The grammars weused in our experiments were not written with our statisti
al models in mind,and we might obtain a more robust system with broader 
overage by removingsome of the grammati
al 
onstraints from the grammar and re-expressing themas features in the statisti
al model.Turning to more mathemati
al issues, it would be valuable to investigateother ways for estimating the partition fun
tion and the expe
tations requiredfor maximum likelihood estimation from both parsed and phonologi
al formdata. Te
hniques for approximating these quantities have been developed inother �elds (e.g., mean �eld approximations), and it may be possible to applythem in 
omputational linguisti
s as well (Saul and Jordan, 1999).A problem left unaddressed in our appli
ations is eÆ
ient sear
hing for most15



probable parses. This question be
omes 
ru
ial if higher 
overage is desired andtraded in for more super�
ial parses and for higher ambiguity. Clearly, for su
h
ases it is desirable to adapt te
hniques su
h as Viterbi's algorithm (Viterbi,1967) to sear
hing eÆ
iently for most probable parses in probabilisti
 LFGgrammars. Here a 
loser look at generalized dynami
-programming te
hniquesas developed for graphi
al models (Frey, 1998) seems promising.Finally, we believe that there may be other ways of applying pseudo-likelihoodto language learning besides the ways des
ribed in this paper. The pseudo-likelihood estimation approa
h from visible (parsed) data it seems highly un-realisti
 in one respe
t: su
h a learner learns nothing from unambiguous sen-ten
es in its training data, even though su
h senten
es are intuitively mostinformative of all. This is be
ause the pseudo-likelihood we used 
onditionedon phonologi
al form; i.e., P(X jW ). Suppose instead we adopt a \generation-oriented" pseudo-likelihood, where we 
ondition on the semanti
 interpretationS(x) of ea
h linguisti
 stru
ture x, so the likelihood is the produ
t of termsP(X = xijS = si). Su
h a learner would learn from ea
h senten
e in its train-ing data whose semanti
 interpretation 
an be expressed in more than one wayuniversally.Referen
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