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Abstract. Statistical machine translation of patents requires large a-
mounts of sentence-parallel data. Translations of patent text often exist
for parts of the patent document, namely title, abstract and claims. How-
ever, there are no direct translations of the largest part of the document,
the description or background of the invention. We document a twofold
approach for extracting parallel data from all patent document sections
from a large multilingual patent corpus. Since language and style differ
depending on document section (title, abstract, description, claims) and
patent topic (according to the International Patent Classification), we
sort the processed data into subdomains in order to enable its use in
domain-oriented translation, e.g. when applying multi-task learning. We
investigate several similarity metrics and apply them to the domains of
patent topic and patent document sections. Product of our research is
a corpus of 23 million parallel German-English sentences extracted from
the MAREC patent corpus and a descriptive analysis of its subdomains.

1 Introduction

Statistical machine translation (SMT) requires large amounts of parallel data
on the sentence level to train translation and language models of high coverage.
Best results are obtained if parallel data are available for the specific domain
in question. Patent translation is particularily dependent on the availability of
large in-domain parallel data sets for several reasons: Patent translation deals
with documents that exhibit a highly specialized vocabulary, consisting of tech-
nical terms specific to the field of invention the patent relates to and legal jargon
(“patentese”) that is not found in everyday language. To maximize their cover-
age, patents are often intentionally vague and ambiguous. Furthermore, patents
exhibit a complex textual structure of differently designated text fields. Some
patent documents contain translations; however, in most cases only parts of the
patent, namely titles and abstracts or claims, are multilingual, while for the
largest document section, the description, no direct translation is available. This
poses a potential data sparsity problem for patent translation.

In this paper we investigate possibilities for building resources for patent
translation by extracting large amounts of parallel data from a multilingual
patent document corpus, MAREC, and preparing the data for domain-oriented
translation. Multi-task learning, for example, aims to enhance machine learning



performance by learning tasks on several separate but similar domains at the
same time. Patents differ with respect to vocabulary – e.g. patents assigned to
IPC section C (chemistry) tend to contain a large amount of chemical formula
– and style – the patent title consists of a single noun phrase, while claims
exhibit a complex phrasal structure. This induces different subdomains that can
be viewed as tasks in multi-task translation. First experiments on multi-task
patent translation on tasks defined by patent topic and document sections have
been presented by [1].

The focus of this paper lies on the corpus construction and description, so
we employ patent translation as a tool for similarity analysis. We train separate
translation models on every subdomain and evaluate across domains in order
to investigate similarities and differences between domains. Furthermore, we
apply several information-theoretic similarity metrics to the topic dimension of
IPC patent classification. While in general, every subdomain is best translated
with a model trained on the respective domain, we find a correlation between
similarity of IPC domains as measured by information-theoretic metrics and
Bleu evaluation in cross-domain translation over IPC domains. This shows that
information-theoretic measures can be used to select appropriate patent texts
from related domains for augmenting training data. Furthermore, we show that
due to particularities of the patent data language-specific preprocessing, such as
German compound splitting, can be a key technique for German-English patent
translation, especially for the translation of titles.

Product of our research is a corpus of over 23 million parallel German-English
sentences from all IPC domains and text sections, sorted accordingly. Together
with the descriptive analysis given in this paper, this forms an enabling resource
for research on patent translation and tasks that build on translation, such as
cross-lingual patent retrieval.

2 Related Work

Patent translation is an active research area that is fueled by benchmark testing
workshops such as CLEF1 and NTCIR2. NTCIR features a patent translation
task for Japanese-English and Chinese-English patent documents. The data for
the former task contains about 2 million sentence pairs that were automatically
extracted from the description sections. The extraction method is described in
[2]. It involves a pipeline architecture where in a first step length-based alignment
scores ([3]) are used to propose sentence alignment candidates, which are then
filtered using dictionary-based word translation scores. [2] also report results on
patent translation experiments across IPC sections, showing that MT results are
best when training and test sections coincide. Furthermore, pooling data from
all sections for a maximum amount of training data achieved best results overall.
[4] extract 160,000 Chinese-English sentence pairs using a pipeline of candidate

1 Cross-Language Experiment Forum, http://www.clef-campaign.org
2 National Institute for Informatics Test Collection for IR Systems, http://research.
nii.ac.jp/ntcir/



sentence alignments that are filtered based on lexical translation scores. They
do not report cross-section MT experiments.

The MAREC dataset is a superset of the patent retrieval data used in the
CLEF-IP tracks, and has been deployed for stand-alone patent translation by
[5], [6], and [7]. Again, an extraction procedure combining a candidate sentence
alignment with a word-based translation filter is used. For example, [6] com-
bines Gargantua ([8]) for sentence alignment with GIZA++ ([9]) for word align-
ment. Cross-section MT experiments for IPC domains are reported in [5] and [7],
where the maximum-sized pool of combined data from all sections yields the best
results, especially for language modeling. The sentence-parallel data extracted
from MAREC for the experiments in [5], [6], and [7] is not publicly available.
Furthermore, only data from abstracts and claims sections was extracted.

3 Structural and Topical Dimensions in Patent Text

We analyze patents with respect to the domain dimensions of both topic – the
technical field covered by the patent – and structure – a patent’s text sections –
with respect to their influence on machine translation performance.

The topic dimension of patents is given by the International Patent Classifica-
tion (IPC)3 which categorizes patents hierarchically into 8 sections, 120 classes,
600 subclasses, down to 70,000 subgroups at the leaf level. Table 1 shows the 8
top level sections. A patent can be assigned to multiple IPC classes.

Table 1. IPC top level sections.

A Human Necessities
B Performing Operations, Transporting
C Chemistry, Metallurgy
D Textiles, Paper
E Fixed Constructions
F Mechanical Engineering, Lighting,

Heating, Weapons
G Physics
H Electricity

In addition to the patent classification, we argue that patents can be sub-
categorized along the dimension of textual structure. Exemplary, the European
Patent Convention (EPC) lays out the structure of a patent4 in Article 78.1:

“A European patent application shall contain:
(a) a request for the grant of a European patent;
(b) a description of the invention;

3 http://www.wipo.int/classifications/ipc/en/
4 Highlights by the authors.



(c) one or more claims;
(d) any drawings referred to in the description or the claims;
(e) an abstract,
and satisfy the requirements laid down in the Implementing Regula-
tions.”

The textual elements of a patent are the title, which is specified in the request
for grant, description, claims, and abstract. Examples for each text type can be
found in table 2. The title is a short descriptive noun phrase, while the claim
exhibits a particular sentence structure.

Table 2. Sample sentences from patent text sections.

title Contact lense forming machine

abstract Parameters for mold materials and important dimensions
are also disclosed.

description FIGS. 7 and 8 illustrate the final curvatures of a finished
plus and minus lense, respectively.

claim The machine as set forth in claim 2, wherein said lense
holding element is secured to the fixed support and the
cooperating tool element is mounted on the first pivotal
support means.

4 Extraction of Parallel Text

Our work is based on the MAREC5 patent data corpus. It contains over 19
million patent applications and granted patents from four patent organizations
(European Patent Office (EP), World Intellectual Property Organization (WO),
United States Patent and Trademark Office (US), Japan Patent Office (JP)),
from 1976 to 2008 in a standardized format. We extract data for our experiments
from the EP and WO subcorpora which contain multilingual patent documents
that feature partial translations of the patent text between German, English
and French (the EPO’s official languages). We assume translated titles to be
sentence-aligned by default, and define multilingual document sections, which
are of similar length in both languages as parallel6. To extract parallel text
sections, we first determine the longest instance of the respective section, if
different document kinds7 exist for a patent. Overall, we extracted 2,204,384

5 http://www.ir-facility.org/prototypes/marec
6 We compute the number of German tokens relative to the number of English tokens

and keep parallel sections with a ratio larger than 0.7.
7 A patent kind code indicates the document stage in the filing process, e.g., A for

applications and B for granted patents, with publication levels from 1-9. See http:

//www.wipo.int/standards/en/part_03.html.



parallel titles, 291,716 parallel abstracts, and 735,667 parallel claims sections for
the German-English language pair. However, there are no parallel descriptions.

The lack of directly translated descriptions poses a serious limitation for
patent translation, since this section constitutes the largest part of the doc-
ument. It has been shown that it is possible to obtain comparable descrip-
tions from related patents that have been filed in different countries and are
connected through the patent family id. [2] introduce this method to collect
Japanese-English patent translations, [4] apply the same technique to Chinese
and English patents. We transfer this approach to German-English patents and
search the US collection of MAREC for documents sharing a family id with EP
patents that feature a German description. We extracted 172,472 patents that
were both filed with the USPTO and the EPO and contain an English and a
German description, respectively. However, data extracted in this way is pre-
sumably less parallel than the directly translated sections. This is due to the
different origination process: translations of document sections are drawn up
during the application process and aim to stay close to the original text. The
filing of an application for the same or a closely related invention in a different
country might occur several years after the first publication, during which the
invention might have been subject to changes. Due to differing regulations and
application procedures there might be further modifications, amendments and
omissions compared to the original document. [2] and [4] use a scoring function
to determine good translations after performing sentence alignment, deploying
an aggregate score of sentence length ratio, IBM Model 1 word translation prob-
abilites and a lexical score using a dictionary. Since we do not have access to a
domain-specific dictionary8, we enforce the first two criteria for the selection of
parallel sentences from descriptions in the sentence alignment process.

For alignment, we used Gargantua9 ([8]), an unsupervised, language pair
independent open source aligner, which implements the idea presented in [11]:
a combination of both sentence-length-based alignment and a lexical transla-
tion model in a two-pass approach. The best alignment is calculated based on
sentence length in the first pass, and recalculated with lexical word translation
probabilities from an IBM Model 1 estimated on the preliminary alignments in
the second pass. The algorithm is robust and can deal with asymmetrical trans-
lations, generating one-to-many/many-to-one and 1-to-0/0-to-1 alignments.

Before running the sentence aligner, we cleaned the extracted data and
removed several forms of noise. Among the problems we observed were mis-
spellings, hyphens left from line breaks, e.g. Wasser-\nverteilungsnetz, formatting
tags such as <IMAGE> or <SEP>, and multiple or missing whitespace.

We eliminated formatting-related problems, such as multiple whitespace, line
breaks, tags and hyphens. We did not attempt to correct misspellings, assuming
that they will not hurt translation performance significantly. Another problem
we observed with MAREC documents are mislabeled language attributes, e.g. a

8 A patent domain dictionary might be created from high-quality multilingual data,
for example titles.

9 http://gargantua.sourceforge.net/



French abstract with English language label EN. We did not perform language
detection and therefore cannot quantify the mislabelings, but they appear to
be very infrequent; we rely on the sentence aligner, which uses lexical word
probabilities, to filter out sentences in the mistaken language.

Sentence aligning requires further preprocessing of the input text, namely
splitting the text into sentences and tokenization. We use language-specific,
heuristic-based tools distributed with Europarl10 ([10]), which resolve punctua-
tion ambiguities11 by using a list of known abbreviations and heuristics for each
language, which we extended to include patent-specific abbreviations.

Table 3. Alignment statistics.

de en

output input percentage input percentage

abstract 720,571 780,161 92.36% 938,117 76.81%
claims 8,346,863 8,533,190 97.82% 8,679,288 96.17%
description 14,082,381 16,330,817 86.23% 17,034,777 82.67%

We aligned the extracted data in batches split by section type and year of
origin, in order to speed up the process by parallelisation. Each extracted text
section was considered to be a document. Table 3 shows the number of sentences
on the source (de) and target (en) side after sentence splitting, compared to the
number of aligned sentences that were output by Gargantua. The text from the
abstract sections exhibits a strong asymmetry, with about 780,000 sentences on
the German corresponding to 940,000 sentences on the English side. Given that
extremely unbalanced sections were already discarded in the extraction process,
this indicates that abstracts are often not literal translations.This asymmetry
also results in a lower input to output ratio of 92.36% in relation to the number
of possible alignments, which is given by the number of source sentences. The
claims are more balanced with 8.5 million sentences on the source and 8.6 million
sentences on the target side and exhibit a high input to output ratio of 97.82%.
This is presumably owing to the nature of patent claims: mapped out as a
numbered list of sentences, they tend to be translated phrase by phrase. Like
the abstracts, the descriptions are quite imbalanced and yield the worst input to
output ratio with 86.00% on the source side. Furthermore, spot tests show that
the aligned data contains some sentence pairs that only partially overlap.

5 Experimental Data

We conduct information-theoretic as well as MT experiments to analyze and
characterize the extracted corpus and gain information that indicates possible

10 http://www.statmt.org/europarl/v6/tools.tgz
11 A full stop can either indicate the end of a sentence or an abbreviation.



use cases for this data. We split the corpus according to the two previously de-
fined dimensions, namely text sections and top-level IPC classification. In this
way, we gain four subcorpora for the structural dimension and eight for the
topical, resulting in 24 possible combinations. We furthermore split the data by
year of publication date and assign documents published between 1979 and 2007
for training and documents published in 2008 for tuning and testing. To ensure
that there is no biasing overlap between training and test data, we compute the
percentage of sentences in the extracted data that are actually unique (table 4).
Abstract, claims and descriptions are unproblematic with a small amount of
duplicates that are partly caused by noise from incorrectly split sentences and
partly by sentences that are used in several patents. For instance, the patent doc-
uments EP 1050190 (A1), titled Active acoustic devices comprising panel members,
and EP 1414266 (A2), titled Active acoustic devices, share four claims word for
word. Both patent applications were filed by the same company and name the
same inventor. EP 1050190 (A1) was published in 2000, EP 1414266 (A2) four
years later. They are obviously related and we can assume that part of the text
has been recycled to save writing time, but there is no connection through cita-
tion or family id. One could try to prevent such duplicates by exploiting company
and inventor metadata, but we argue that these duplicates are a natural char-
acteristic of patent documents and should therefore be kept in the data, if the
effect is not biasing evaluation.

For titles, however, the number of duplicates is considerably higher and origi-
nates from a different source. Since the title must be short and may only contain
technical terms to describe the invention, many patents – from different years
and by different companies and inventors – share the same title. For instance,
there are 53 patents titled Push button switch in the EP corpus. To prevent a
bias, we removed the overlap between test and training set for titles.

Table 4. Percentage of unique sentences relative to the total number of sentences in
the experimental data.

title 75.09%
abstract 93.92%
description 96.58%
claims 94.65%

We create the actual training, development and test sets by sampling from
the subdomains. From every text section subcorpus we sample 500,000 sentences
– distributed across all IPC sections – for training and 2,000 sentences each for
development and test set. Table 5 gives the number of types and tokens in
the resulting training sets. Note that the title set contains considerably fewer
tokens than the other sections – only about 15% of the amount contained in the
abstracts – so models trained on this section might suffer from the disadvantage
of having seen less data than the others. However, the titles still contain a large



amount of types – more than half as many as the abstracts – so the disadvantage
should not weight too heavily. A potentially hurtful property of the German data
is the high type-token-ratio, which is caused by German compounding, especially
for titles. We therefore investigate the influence of compound splitting on the
translation performance on text sections in an additional experiment.

Table 5. Types and tokens on 500k sentences text section training sets.

de en

#tokens #types types
tokens

#tokens #types types
tokens

title 3,267,802 512,773 0.1569 4,038,743 176,293 0.0437
abstract 18,627,983 921,486 0.0495 21,245,542 269,803 0.0127
description 12,836,238 684,190 0.0533 15,961,246 281,053 0.0176
claims 15,646,621 784,978 0.0502 18,355,584 270,013 0.0147

Table 6. Number of sentences per IPC section on claims.

A 1,947,542
B 2,522,995
C 2,263,375
D 299,742
E 353,910
F 1,012,808
G 2,066,132
H 1,754,573

For training the IPC domain models, we chose only sentences from the claims
and abstract domain, since this data is possibly the cleanest and generally used in
IPC cross-domain experiments. We sampled 300,000 sentences from the training
corpus for each IPC section. This is the largest training set possible, since the
smallest section, D, (see table 6 for the distribution of IPC sections across the
claims) contains overall just barely 300,000 sentences in the combined EP and
WO training set12. [7] use only the five largest sections of the IPC for their
experiments, but since we would like to gain a comprehensive view on the data
we include all eight IPC domains in our experiments. The resulting number of
types and tokens are shown in table 7. There is less variance than on the text
sections; still, we can note that section C contains the largest amount of types,
which is likely due to the high number of formulae in this section.

12 To address the problem of patent duplicates across different corpora, we only include
sentences from the WO which came from documents that do not share a family id
with a document in EP.



Table 7. Types and tokens in 300k sentences IPC section training sets.

de en

#tokens #types types
tokens

#tokens #types types
tokens

A 9,843,156 520,839 0.0529 11,242,459 233,266 0.0207
B 10,726,633 508,943 0.0474 12,561,139 151,601 0.0121
C 9,514,203 527,609 0.0555 10,942,622 256,932 0.0235
D 13,900,065 440,014 0.0317 16,146,597 160,445 0.0099
E 10,922,892 355,606 0.0326 12,835,170 99,915 0.0078
F 10,941,342 416,113 0.0380 12,941,777 113,498 0.0088
G 10,943,693 578,183 0.0528 12,700,396 180,536 0.0142
H 11,064,367 545,433 0.0493 12,940,731 157,507 0.0122

6 Textual Similarities across IPC Domains

The IPC domains are less well characterized by type-token-ratio, but we ex-
pect them to differ with regard to lexical content. To analyize these domains,
we therefore compute three information-theoretic similarity measures that per-
form a pairwise comparison of the vocabulary probability distribution of each
task-specific corpus. This distribution is calculated on the basis of the 500 most
frequent words in the union of two corpora, normalized by vocabulary size. The
first measure is a computation of Spearman’s rank correlation ([12]) on the
frequency-ranked word lists of two corpora. The second measure is a calcula-
tion of the cross-entropy between the language model probabilities of a model
trained on corpus A when applied to corpus B ([13]). As a third metric we use
the A-distance measure of [14]. If A is the set of measurable subsets on which
the word distributions are defined, then the A-distance is the probability of the
subset on which the distributions differ most. A low distance translates to higher
similarity.

The three measures for corpus similarity based on the corpus vocabulary
are displayed in tables 8, 9 and 10. A low cross-entropy and distance and a
high correlation close to 1 or -1 indicate similarity between the vocabulary of
two sections. The most similar section or sections – apart from the section itself
on the diagonal, highlighted in italic font – is indicated in bold face. All three
measures support a pairwise similarity of A and C, B and F, G and H. Further-
more, a close similarity between E and F is indicated. G and H (electricity and
physics, respectively) are very similar to each other but not close to any other
section apart from B. This makes sense intuitively, since physics and electricity
probably play a more important role in transportations and constructions than,
for example, chemistry. Semantically, the two fields are closely related; in fact,
the latter can be viewed as a subfield of the former.

The cross-entropy also gives a measure for the homogeneity of each IPC
domain on the diagonal; a low perplexity of the language model on a test set
from the same domain corresponds to high homogeneity. According to this, C is
the most homogeneous domain, followed by A, which is interesting, since these



domains have a comparatively large vocabulary. This may indicate that the
cross-entropy is not the best measure to compare different domains.

Table 8. Pairwise A-distance for 300k IPC training sets.

A B C D E F G H

A 0 0.1303 0.1317 0.1311 0.188 0.186 0.164 0.1906
B 0.1302 0 0.2388 0.1242 0.0974 0.0875 0.1417 0.1514
C 0.1317 0.2388 0 0.1992 0.311 0.3068 0.2506 0.2825
D 0.1311 0.1242 0.1992 0 0.1811 0.1808 0.1876 0.201
E 0.188 0.0974 0.311 0.1811 0 0.0921 0.2058 0.2025
F 0.186 0.0875 0.3068 0.1808 0.0921 0 0.1824 0.1743
G 0.164 0.1417 0.2506 0.1876 0.2056 0.1824 0 0.064
H 0.1906 0.1514 0.2825 0.201 0.2025 0.1743 0.064 0

Table 9. Pairwise Spearman’s rank correlation for 300k IPC training sets.

A B C D E F G H

A 1 0.5335 0.5372 0.5067 0.333 0.3293 0.3192 0.2093
B 0.5333 1 0.1539 0.5496 0.6132 0.6618 0.4476 0.366
C 0.5373 0.1539 1 0.3338 -0.0719 -0.0539 0.0756 -0.0226
D 0.5067 0.5496 0.3337 1 0.2585 0.2648 0.2636 0.1645
E 0.3329 0.6131 -0.0719 0.2585 1 0.6027 0.1928 0.1933
F 0.3293 0.6618 -0.0539 0.2648 0.6027 1 0.2645 0.2684
G 0.319 0.4477 0.0756 0.2636 0.1936 0.2646 1 0.751
H 0.2091 0.3661 -0.0226 0.1645 0.1933 0.2683 0.7509 1

7 Cross-Domain Translation

We conducted a first investigation of the performance of our corpus in MT. We
view these experiments as an expansion of the similarity analysis and there-
fore only look at cross-domain evaluation. We deliberately do not compare the
domain-specific translation models to a model pooled from all data, since previ-
ous work has already shown that this outperforms smaller individual models.

We used the phrase-based, open-source SMT toolkit Moses13 [15] with the
standard feature set. We computed 5-gram language models on the target side
of the training set with IRSTLM14 [16] and queried the model with KenLM [17].

13 http://statmt.org/moses/
14 http://sourceforge.net/projects/irstlm/



Table 10. Cross-entropy: pairwise 300k language model perplexity on 2k IPC test set.

test

train A B C D E F G H

A 210.8 320.5 275.7 413.4 438.4 417.2 295.6 374.9
B 260.3 230.0 332.0 346.5 329.6 293.5 273.3 294.6
C 220.8 308.8 181.0 362.6 490.3 456.6 281.5 378.2
D 252.3 248.6 281.1 239.8 356.1 332.8 303.3 332.7
E 267.0 254.3 375.9 374.3 258.0 290.3 299.7 312.9
F 267.1 239.3 355.3 361.0 308.6 233.8 277.9 288.1
G 360.6 367.1 472.9 565.3 539.3 467.5 255.7 303.5
H 402.7 386.5 529.5 606.8 546.4 469.5 280.7 257.7

The cross-domain evaluation15 on the IPC classes (table 11) shows that ev-
ery subdomain is best translated with a model trained on the respective section:
the Bleu scores on the diagonal are the highest in every column. For assessing
similarities, we are therefore interested in the runner-up on each section (indi-
cated in bold font). Note that best section scores vary considerably, ranging
from 0.5719 on C to 0.4714 on H, indicating classes that are easier to translate.
C, the Chemistry section, presumably benefits from the fact that the data con-
tains chemical formulae, which are language-independent and do not have to be
translated. [7] show similar variations on the five largest IPC classes with scores
ranging from 0.609 on C to 0.5518 on G for the PLuTO data. The higher overall
scores and smaller variance are due to the larger amounts of training data used
in these experiments; we have opted for a reduced training set in favour of in-
cluding the smaller sections D, E, and F in our experiments, which were omitted
from the PLuTO experiments. Again, for determining the relationship between
the domains, we examine the best runner-up on each section, considering the
Bleu score, although asymmetrical, as a kind of measure of similarity between
domains. We can establish symmetric relationships between sections A and C, B
and F as well as G and H, which means that the models are mutual runner-up on
the other’s test section. This shows that the same relationships can be inferred
from Bleu scores as from the information theoretic measures evaluated before.

To ensure that these effects are not solely caused by the overlap between
IPC classes, table 12 shows the relative pairwise document overlap between IPC
sections, i.e. the percentage of documents in A that are also classified as B,
C, D etc. in column A. We observe a large overlap of roughly 30% in both
directions between A and C, accounting for the mutual runner-up result in the
cross-section evaluation; the same holds for G and H. However, the amount of
overlap is not the sole factor for the mutual translation performance on sections.
C and B share over 20% of their documents, but C performs worst on B and vice
versa. The relationship between sections is also not necessarily symmetrical: the
smaller sections D, E, and F each share about 30% of their documents with B,

15 We computed Bleu4 [18] on lowercased data.



Table 11. Bleu scores for 300k individual IPC section models.

test

train A B C D E F G H

A 0.5349 0.4475 0.5472 0.4746 0.4438 0.4523 0.4318 0.4109
B 0.4846 0.4736 0.5161 0.4847 0.4578 0.4734 0.4396 0.4248
C 0.5047 0.4257 0.5719 0.462 0.4134 0.4249 0.409 0.3845
D 0.47 0.4387 0.5106 0.5167 0.4344 0.4435 0.407 0.3917
E 0.4486 0.4458 0.4681 0.4531 0.4771 0.4591 0.4073 0.4028
F 0.4595 0.4588 0.4761 0.4655 0.4517 0.4909 0.422 0.4188
G 0.4935 0.4489 0.5239 0.4629 0.4414 0.4565 0.4748 0.4532
H 0.4628 0.4484 0.4914 0.4621 0.4421 0.4616 0.4588 0.4714

which is mirrored in the translation score of B on all three sections where it is
always runner-up. In the other direction, the influcence of these sections on B is
only small, but there seems to be a strong similarity between B and F which is
significantly stronger than the relationship of B to the other small sections. We
conclude that the document overlap between two sections is an indicator but not
the determining parameter for similarity and mutual translation performance.

Table 12. Percentage document IPC overlap: |X∩Y |
|Y | .

Y

X A B C D E F G H

A 100.0% 9.7% 31.5% 15.4% 6.0% 5.9% 10.0% 2.5%
B 13.0% 100.0% 24.5% 32.0% 23.6% 30.3% 17.3% 11.7%
C 36.2% 21.0% 100.0% 28.4% 7.8% 8.2% 14.4% 8.9%
D 2.4% 3.8% 3.9% 100.0% 1.7% 1.5% 0.7% 0.5%
E 1.2% 3.5% 1.3% 2.1% 100.0% 5.0% 1.4% 0.9%
F 3.3% 12.6% 4.0% 5.2% 14.2% 100.0% 4.6% 5.0%
G 10.7% 13.8% 13.4% 5.0% 7.9% 8.9% 100.0% 30.3%
H 2.3% 8.0% 7.1% 2.9% 4.1% 8.3% 26.0% 100.0%

Evaluation results for separately trained individual models across text do-
mains are shown in table 13 and exhibit patterns similar to the evaluation of
the IPC models. Again, each section is best translated with a model trained
on data from the same section. The results on abstracts suggest that this sec-
tion most strongly resembles the claims; the model trained on claims achieves
a respectable score. On claims, abstract and description models yield an almost
equal score, but the score drops substantially from the best result, supporting
the notion that claims possess a very distinct structure and wording that is only
captured by a model that is able to learn these characteristics from the data.
With this data available, however, claims seem to be easiest to translate, yielding



the highest overall Bleu score of 0.4879. On the other hand, all models score
considerably lower on title data, which is no surprise considering the fact that
titles consist only of noun phrases and translation quality depends highly on vo-
cabulary coverage. Given the high type-token-ratio of this section, we discuss a
method to expand coverage in the next section. The parallel data obtained from
the descriptions presumably lacks in quality compared to the other sections due
to its origin. Overall, the scores on descriptions are lower than on abstracts and
claims but still higher than on titles. The abstract model again scores best on
this section. Altogether, the abstract model seems to be the most robust and
varied model, yielding the runner-up score on all other sections. The title model,
in contrast, performs worst across all other sections. We attribute these results
to the limited variety of grammatical structure observed in the training data –
titles only consist of noun phrases – as well as the smaller amount of training
data with regard to the absolute number of tokens.

Table 13. Bleu scores for 500k text domain models.

test

train title abstract description claims

title 0.3196 0.2839 0.1743 0.3512
abstract 0.2681 0.3737 0.2812 0.4076
description 0.2342 0.32189 0.3347 0.403
claims 0.2623 0.3416 0.2420 0.4879

8 Compound Splitting on Textual Domains

We hypothesize that the high type-token-ratio on the German source side stems
from a large number of compound words, due to the fact that inventions have
to be described accurately and no proper names may be used. We therefore
investigated the effect of German compound splitting as a preprocessing step on
the text section dimensions. We trained and applied a compound splitting model
on the German part of the training sets for abstract, claims and titles and the
respective test sets. Predictably, the splitting raises the token count and average
type frequency while lowering the type count.

We apply a simple empirical compound splitting method by [19], which is
distributed as a script in the Moses toolkit. It considers all possible splittings
of a compound word into known words, taking possible fillers, such as the s in
Rotationsverdämpfer, and dropped letters into account. The vocabulary of known
words is derived from a monolingual training corpus. The decision, if and how a
word will be split, is based on word frequency estimates made on the same corpus.
Given the word count in the corpus, the model picks the split S with the highest
geometric mean of word frequencies of its parts pi: argmaxS(

∏
pi∈S

count(pi))
1
n .



This approach has the effect that if a compound word appears more fre-
quently than its parts, it is left intact, ensuring that common compounds are not
unnecessarily broken up. A phrase-based translation model will learn a correct
translation even when an incorrect split is done consistently, if the compounds
in the training data are split as well.

The effects of compound splitting for German-English translation are dis-
played in table 14. Compound splitting improves the score on all four sections
but most substantially on the titles with an improvement of 0.0439 Bleu. This
shows that the translation of titles is strongly influcenced by a large percent-
age of compound words and suffers mostly from a sparse data problem. Table 15
shows the influence of compound splitting on two translation samples. The split-
ting does not always result in a perfect translation, e.g. producing air jet instead
of air nozzle, but it considerably reduces the out-of-vocabulary (OOV) rate.

Table 14. Compound splitting on training and test set.

Bleu score OOV rate

raw split raw split

title 0.3196 0.3635 10.00% 5.44%
abstract 0.3737 0.3827 3.35% 1.20%
description 0.3347 0.3385 3.90% 1.60%
claims 0.4879 0.5022 4.58% 2.42%

Table 15. Sample compound splitting on titles.

source Luftdüsenspinnmaschinen Druckluftversorgungssystems
split source luft düsen spinnmaschinen druck luft versorgung systems

baseline system OOV OOV
compound split system air jet spinning machine compressed air supply system

reference air nozzle spinning machine compressed air supply system

9 Discussion

Statistical machine translation is highly dependant on the availability of sentence-
parallel data for diverse domains. We documented a twofold approach to ex-
tract large amounts of parallel data from the MAREC patent corpus, namely a
straight-forward method, where we align translated document sections, i.e. ti-
tle, abstract and claims, and an indirect approach, where we find approximate
translations of a whole document via the patent family id connection. The full



statistics for the resulting German-English parallel corpus can be found in ta-
ble 16, containing the number of unique parallel sentences and number of tokens
on English and German side. The large amount of clean, parallel data consitutes
a valuable resource for patent translation. Based on this, we plan to explore
advanced topics such as cross-lingual patent retrieval.

Table 16. Full sentence-parallel corpus: number of unique sentences, number of tokens.

sentences tokens en tokens de

title 2,204,384 18,159,477 14,798,306
abstract 715,735 30,830,602 26,606,213
description 11,912,840 446,229,748 322,282,966
claims 8,181,791 496,421,795 431,568,084

total 23,014,750 991,641,622 795,255,569

We further analysed the corpus by exploring two different subdomain di-
mensions in terms of their relatedness, both with corpus similarits measures
and machine translation evaluation. We find that both the IPC and the docu-
ment structure domains are well-delimitated and showed that pairwise domain
similarity and translation performence correlate. Furthermore, we identify and
adress one particular structural problem for German-English patent translation,
namely the high type-token-ratio, which stems from the large amount of new
terms produced by German compounding.

We plan a similar extraction of parallel data for French-English and French-
German patent translation in the future. These resources will enable us to further
identify and investigate topics in automated patent translation.
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