
The Heidelberg University English-German translation system for IWSLT 2015

Laura Jehl, Patrick Simianer, Julian Hitschler, Stefan Riezler

Department of Computational Linguistics
Heidelberg University, Germany

{jehl, simianer, hitschler, riezler}@cl.uni-heidelberg.de

Abstract

We describe Heidelberg University’s system for English-
to-German translation of transcribed TED talks. Our system
follows the hierarchical phrase-based paradigm [1]. We only
used data allowed within the constrained track. Consistent
gains were found using our in-house implementation of au-
tomatic source-side reordering, as well as large-scale tuning
with a large, lexicalized feature set. We also confirm the suc-
cess of large class-based language-models.

1. Introduction

We describe the Heidelberg University (hdu) submission to
the IWSLT 2015 evaluation. We submitted a system for
translating transcribed English TED talks into German, using
only data permitted within the constrained track. We focus
on improving a hierarchical phrase-based system by adding
large language models and thousands of sparse, lexicalized
features tuned on a large in-domain data set. We further in-
corporated syntactic knowledge through source-side reorder-
ing and k-best rescoring with language models based on syn-
tactic annotations.

The paper is organized as follows: Our baseline setup is
described in Section 2. Section 3 then explains our training
pipeline and evaluates the contributions of each step. In Sec-
tion 4, we show that scaling up the feature set and training
a parallelized pairwise ranking optimizer on a larger devel-
opment set further improves our system. We also conduct
ablation experiments for different feature templates. Sec-
tion 5 describes the integration of various external knowledge
sources via k-best rescoring.

2. SMT system

All our systems use the cdec1 tools for phrase extraction
and decoding [2]. Our language models are estimated using
KenLM [3]. For parameter tuning we use our in-house pair-
wise ranking optimizer dtrain, which is available in the
cdec repository [4]. This section describes data preparation
and the baseline system.

1https://github.com/redpony/cdec

2.1. Data

We used all provided bilingual training data. Prior to train-
ing, we filtered out empty lines and any pairs containing
sentences longer than 150 words. For the common crawl
data, we applied an additional filtering step by running
langid.py [5] on both sides to filter out sentences in the
wrong source or target language. Datasets were tokenized
with cdec’s tokenize-anything.sh and truecased
using the truecaser available in the Moses toolkit.2 All sys-
tems described in Sections 2 and 3 were tuned on the IWSLT
dev2010 development set with tst2012 and tst2013
used as progress test sets. We then added tst2011-13 to
our tuning data (Section 4), leaving tst2010 as a held-out
set for tuning our k-best reranker (Section 5). tst2014 was
treated as a blind test set.

2.2. Baseline

Our baseline model includes 21 features, namely bidirec-
tional lexical phrase pair and word pair probabilities, seven
pass-through features, three arity penalty features, a 4-gram
language model built from the target side of the training data
and count features for word penalty, glue rules, and language
model OOVs.

3. Training Pipeline
We now describe our training pipeline and feature set and
evaluate their performance of each step. The results are listed
in Table 1. All tables report cased, detokenized BLEU scores
obtained via the evaluation server provided by the task orga-
nizers.

3.1. Source-side reordering

To account for differences in word order, we re-arranged all
source-sentences to match the syntax of the target language
by applying a variation of the approach described in [6]. This
approach works by permuting nodes in a dependency tree.
During training, the reorderer generates all possible reorder-
ing rules within a window of three nodes governed by the
same parent nodes. It then selects the rule which reduces the
number of crossing alignments most on a randomly selected

2http://www.statmt.org/moses/



validation set. This rule is applied to the training data and the
procedure is repeated. Through this repeated permutation,
the algorithm is able to generate long-range reorderings. A
reordering rule stores part-of-speech and dependency label
information of nodes, and a permutation order. If a matching
configuration is found at test time, the permutation is applied.
In order to reduce training time and to learn rules specific
to spoken language, we trained the reorderer on in-domain
data only. We used the Stanford parser for English3, but our
implementation can also be applied to the output of other
parsers, e.g. in CoNLL format. The code will be made avail-
able.4 We reordered and re-aligned all training data. Source-
side reordering produced small but consistent improvements
of 0.1 - 0.37 BLEU (experiment 1).

3.2. Domain adaptation

For domain adaptation, we added a 4-gram language model
trained on the target side of the WIT3 data only to the log-
linear model. In addition to that, we annotated each hierar-
chical phrase with binary features indicating which corpora
it came from, allowing the model to learn a log-linear scaling
weight for this phrase. This approach is similar to the work
of [7]. Domain adaptation improved the model by 0.3 BLEU
points (experiment 2).

3.3. Sparse alignment features

We included lexicalized alignment indicator features which
model word alignment, deletion and insertion in source and
target, as described in [8]. Even when tuned on a small devel-
opment set, these features produced consistent gains of 0.16
to 0.29 BLEU points (experiment 3). More sparse features
are described in Section 4.

3.4. Large and class-based language models

Previous work has shown the effectiveness of class-based
language models (e.g. [9]). We used brown-cluster5 to
infer word classes from the language model training data.
Since the KenLM implementation of class-based language
models uses as an additional feature the probability p(w|c)
of a class c generating a word w, we normalized the raw fre-
quencies returned by brown-cluster. We first trained a
7-gram class-based language model using 50 classes on the
target side of the training data (experiment 4), but observed
only a small improvement on tst2012, and no improve-
ment on tst2013.

However, when increasing the size of the monolingual
training data for word- and class-based language models to
26.8 million sentences, we were able to improve by 1.4 -
2 BLEU points (experiments 5a and 5b). We first added

3http://nlp.stanford.edu/software/lex-parser.
shtml

4http://www.cl.uni-heidelberg.de/statnlpgroup/
software.mhtml.

5https://github.com/percyliang/brown-cluster

300 thousand sentences from German political speeches to
the language modelling data. We then applied cross-entropy
based data selection using an in-domain language model to
select 50% of the sentences from newscrawl, as described in
[10]. To avoid the selection bias for shorter sentences, we
only selected sentences with 5 words or longer. After de-
duplication, we obtained 26.8 million sentences. We then
built a 5-gram word-based language model, and a 7-gram
class-based language model using 200 classes. We also in-
creased the order of our in-domain language model from 4 to
5.

3.5. Comparing fast align and GIZA++

To allow faster development, we first trained models using
the re-parametrized IBM Model 2 implementation in cdec
(fast align6). However, our experiments confirmed that
training alignments with GIZA++ [11] (we used the par-
allel implementation in mgiza++ [12]) gave a significant
boost in performance of 1.01 up to 1.6 BLEU (experiment
6), similar to the discrepancies observed in [13]. In par-
ticular, we observed that GIZA++-alignments substantially
increased the number of extracted phrases: On dev2010,
GIZA++-alignments produced 3.2 times as many phrases as
fast align.

4. Large-scale tuning with sparse features
Due to the successful results with the sparse alignment fea-
tures we experimented with a wider range of sparse features
(all implemented in cdec):

• rule identity features: one binary feature per rule

• rule shape features: generalized rules, by mapping to
sequences of terminal and non-terminals

• rule bigram features: all bigrams of terminal and non-
terminals inside rules, in both source and target sides

In addition to the plain rule shape features, in which ter-
minals are replaced by a single terminal token, we also apply
a variant where terminals are replaced by their word class.

While the rule identity features virtually allow to re-train
the full grammar in tuning by assigning individual weights to
every rule, rule shape and bigram features assess the quality
of certain extraction patterns.

In total, the number of potential features is extremely
high, several magnitudes larger than the total size of the
grammar.

4.1. Online pairwise ranking optimization

Pairwise ranking optimization for SMT [14, 15, 4] allows
tuning of a large number of features, in contrast to the tra-
ditional minimum error rate training [16]. We employ an
online variant of this training scheme [4] with data sharding,

6https://github.com/clab/fast_align



exp model tst2012 ∆ tst2013 ∆ tst2014 ∆
0 baseline 19.78 – 21.38 – 18.86
1 + source-side reordering 20.15 +0.37 21.48 +0.1 19.03 +0.17
2 + domain adaptation 20.46 +0.31 21.76 +0.28 19.32 +0.29
3 + lexical alignment indicators 20.63 +0.17 22.05 +0.29 19.48 +0.16
4 + class-based 7-gram (small, c=50) 20.91 +0.28 22 -0.05 19.59 +0.09
5a + large word-based LM (26.8M sentences) 21.34 +0.43 23.28 +1.28 20.28 +0.69
5b + large class-based LM (c=200) 22.05 +0.71 24.07 +0.79 20.64 +0.36
6 + GIZA++ 23.06 +1.01 25.59 +1.52 22.24 +1.6

Table 1: Components of the training pipeline.

feature selection by `1`2 regularization and randomization of
the training input [17].

Sharding of the data greatly improves efficiency, as the
tuning and optimization may run on several parts of the data
at once. The models of different shards can then be mixed via
simple averaging. Additionally, we use `1`2 regularization
with a simple cut-off at 100,000 features per iteration. The
input is randomized to counter-act potential effects which
would depend on the order of the data. The shard size was
chosen to reflect the typical tuning set size of about 1,000
segments.

The final model is an average of the weight vectors of all
(15) training iterations. Longer training time neither lead to
further improvements, nor did the model overfit. As the algo-
rithm is a (margin) perceptron at its core, it has a single meta-
parameter η which can be interpreted as a learning rate. Its
optimal value 10−4 was found by a simple grid search. Note,
that starting from 0, a fixed learning rate has no effect on the
final model. With the margin perceptron however, it serves
as a scaling factor which implicitly controls the number of
pairs considered for each k-best list.

An ablation test, concatenating dev2010, tst2011
and tst2012 for tuning and validating on tst2013 is
given in Table 2. The baseline (experiment 8a) uses 27 fea-
tures, including a single language model and the domain fea-
tures. Isolating features shows some notable results (exper-
iments 8b, 8c): While rule identifiers slightly degrade be-
low the baseline (8b) and bigram and shape features show
only little improvement (8c), the combination of bigram and
shape features can be improved using ids by about 0.4 points
(8d). A similar behavior can be observed with the lexical
alignment indicators. When combining more sparse feature
templates (experiment 8d), the final model sizes are very sim-
ilar, as are the results on the validation set, which implies
no or just a small additivity of lexical and rule id features.
Improvements however are best at 0.74 points combining
all features (experiment 8e). For the baseline system three
runs were carried out to test the effect of the randomization –
the standard derivation of the final score is quite low at 0.06
points.

When applying large-scale tuning with all features to our
best setup from Section 3, we obtained a further improve-
ment of 0.5 - 0.92 BLEU points (Table 3, experiment 9).

Exp. feature set tst2013 ∆ model size
8a baseline 23.14±0.06 27
8b bigram 23.44 ∆+0.30 150,514

lexical 23.49 ∆+0.35 69,105
id 22.99 ∆−0.15 224,685
shape 23.30 ∆+0.16 202,777

8c lex., id 23.15 ∆+0.01 227,743
bigram, shape 23.37 ∆+0.23 204.537

8d lex., id, shape 23.56 ∆+0.42 272,061
bigram, id, shape 23.73 ∆+0.59 265,316
bigram, lex., shape 23.77 ∆+0.63 228,929
bigram, lex., id 23.81 ∆+0.67 280,830

8e all 23.88 ∆+0.74 260,697

Table 2: Ablation test for sparse features (the baseline used
GIZA++ alignments, but only one target-side 4-gram lan-
guage model).

5. k-best rescoring with syntactic and neural
network language models

We incorporated more knowledge sources via k-best rescor-
ing. We used three in-domain language models built from
target side syntactic annotation, namely part-of-speech, mor-
phology and lemma. The annotations were obtained by
running the German dependency parser parzu7. We also
trained an in-domain and a target-side feed-forward neural
language model using the NPLM toolkit [18]. All experi-
ments used k = 100.8

Weights for the different language models were learned
using a pairwise ranking approach as described in [19], with
an SGD classifier from scikit-learn [20]. We did not
re-tune the SMT model features, but instead used the model
score as a single feature to be tuned.

Results for rescoring are given in Table 3. The first two
entries (experiment 4 and 7) show results for the best small-
scale system described in Section 3 (no large language mod-
els, word alignments from fast align). For this system,
we observed gains on tst2012 and tst2013, but a small

7https://github.com/rsennrich/parzu
8We experimented with k = 1000, but did not see an improvement.



loss on tst2014. The two bottom entries (experiment 9 and
10) show the effect of k-best rescoring on our best system,
including large language models, GIZA++ alignments and
large-scale tuning as described in the previous section. With
this seutp, rescoring did improve BLEU. However, we con-
ducted a small-scale human evaluation by having four raters
express pairwise preferences for 30 randomly chosen sen-
tences. The translation pairs were permuted and presented in
different order to each rater. In total, we observed a prefer-
ence for the rescored system in 61.67 percent of the cases,
with an average pairwise agreement of 0.36 between anno-
tators. This lead us to still submit the rescored system as
our primary submission with the system without rescoring as
contrastive submission.

6. Conclusions
We built a hierarchical phrase-based translation system for
English-German translation using source and target side syn-
tactic information, large-scale class- and word-based lan-
guage models, and large-scale tuning with sparse features.
On the small scale, combining source-side reordering, do-
main adaptation, sparse lexicalized alignment features, and a
class-based language model, yielded 0.62 - 1.13 BLEU over
our baseline. We were able to gain 1.14 - 2.07 BLEU points
by adding large language models. Using slower, but more
reliable, GIZA++ training, another 1.01 - 1.52 BLEU points
were gained. Large-scale tuning with sparse features gave a
further 0.5 - 0.92 BLEU points. For k-best reranking we ob-
served gains on the held-out sets for the smaller model, but
no additional gains in BLEU over the large model. However,
human evaluation indicated a preference for the reranked out-
puts. Our final results are stated in Table 3 (experiment 9 and
10). They exceed the official baseline by 4.73 - 5.88 BLEU.

7. References
[1] D. Chiang, “Hierarchical phrase-based translation,”

Computational Linguistics, vol. 33, no. 2, 2007.

[2] C. Dyer, A. Lopez, J. Ganitkevitch, J. Weese, F. Ture,
P. Blunsom, H. Setiawan, V. Eidelman, and P. Resnik,
“cdec: A decoder, alignment, and learning framework
for finite-state and context-free translation models,” in
Proceedings of the ACL 2010 System Demonstrations,
Uppsala, Sweden, 2010.

[3] K. Heafield, I. Pouzyrevsky, J. H. Clark, and P. Koehn,
“Scalable modified Kneser-Ney language model esti-
mation,” in Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics, Sofia,
Bulgaria, 2013.

[4] P. Simianer, S. Riezler, and C. Dyer, “Joint Feature Se-
lection in Distributed Stochastic Learning for Large-
Scale Discriminative Training in SMT,” in Proceedings
of the 50th Annual Meeting of the Association for Com-
putational Linguistics, Jeju, Korea, 2012.

[5] M. Lui and T. Baldwin, “langid.py: An off-the-
shelf language identification tool,” in Proceedings of
the ACL 2012 System Demonstrations, Jeju Island, Ko-
rea, 2012.

[6] D. Genzel, “Automatically learning source-side re-
ordering rules for large scale machine translation,” in
Proceedings of the 23rd international conference on
Computational Linguistics, Beijing, China, 2010.

[7] J. Niehues and A. Waibel, “Domain adaptation in sta-
tistical machine translation using factored translation
models,” in Proceedings of EAMT, Stroudsburg, PA,
USA, 2010.

[8] F. Hieber and S. Riezler, “Bag-of-Words Forced De-
coding for Cross-Lingual Information Retrieval,” in
Proceedings of the Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics - Human Language Technologies, Denver, Col-
orado, 2015.

[9] J. Wuebker, S. Peitz, A. Guta, and H. Ney, “The RWTH
Aachen Machine Translation Systems for IWSLT
2014,” in Proceedings of the Int. Workshop on Spoken
Language Translation, South Lake Tahoe, CA, USA,
2014.

[10] A. Axelrod, X. He, and J. Gao, “Domain adaptation via
pseudo in-domain data selection,” in Proceedings of the
Conference on Empirical Methods in Natural Language
Processing, Edinburgh, Scotland, 2011.

[11] F. J. Och and H. Ney, “A systematic comparison of var-
ious statistical alignment models,” Computational Lin-
guistics, vol. 29, no. 1, 2003.

[12] Q. Gao and S. Vogel, “Parallel implementations of word
alignment tool,” in Software Engineering, Testing, and
Quality Assurance for Natural Language Processing,
Columbus, Ohio, USA, 2008.

[13] C. Ding, M. Utiyama, and E. Sumita, “Improving
fast align by reordering,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language
Processing, Lisbon, Portugal, 2015.

[14] L. Shen, A. Sarkar, and F. J. Och, “Discriminative
reranking for machine translation,” in HLT-NAACL,
2004, pp. 177–184.

[15] T. Watanabe, J. Suzuki, H. Tsukada, and H. Isozaki,
“NTT statistical machine translation for IWSLT 2006,”
in 2006 International Workshop on Spoken Language
Translation, IWSLT 2006, Keihanna Science City, Ky-
oto, Japan, November 27-28, 2006, 2006, pp. 95–102.

[16] F. J. Och, “Minimum error rate training in statistical
machine translation,” in Proceedings of the 41st Annual
Meeting on Association for Computational Linguistics,
Sapporo, Japan, 2003.



exp model tst2012 ∆ tst2013 ∆ tst2014 ∆
4 no rescoring 20.91 – 22 – 19.59 –
7 + rescoring 21.25 +0.34 22.86 +0.86 19.4 -0.19
9 Contrastive (large-scale, no rescoring) 23.98† – 26.09 – 23.24 –
10 Primary (large-scale + rescoring) 23.93† -0.05 25.97 -0.12 23.22 -0.03

Table 3: Reranking experiments. † indicates different tuning sets: This experiment was tuned on dev2010, tst2011 and
tst2013, leaving out tst2012.

[17] P. Simianer and S. Riezler, “Multi-task learning for im-
proved discriminative training in SMT,” in Proceedings
of the Eighth Workshop on Statistical Machine Transla-
tion, Sofia, Bulgaria, 2013.

[18] A. Vaswani, Y. Zhao, V. Fossum, and D. Chiang, “De-
coding with large-scale neural language models im-
proves translation,” in Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, Seattle, Washington, USA, 2013.

[19] M. Hopkins and J. May, “Tuning as ranking,” in Pro-
ceedings of the 2011 Conference on Empirical Methods
in Natural Language Processing, Edinburgh, Scotland,
UK., 2011.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine learning in Python,” Jour-
nal of Machine Learning Research, vol. 12, 2011.


