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This problem has successfully been addressed by the use of weighted gram-mars for disambiguation in regular and context-free grammars. Weighted gram-mars assign numerical values, or weights, to the structure-building componentsof the grammars and calculate the weight of an analysis from the weights of thestructural features that make it up. The correct analysis is chosen from amongthe in-principle possible analyses by assuming the analysis with the greatestweight to be the correct analysis. This approach also allows parsing to be speededup by pruning low-weighted subanalyses.The idea of weighted grammars recently has been transferred to highly ex-pressive weighted CLGs by [8, 9] and [7]. The approaches of Erbach and Eiseleare based on the feature-based constraint formalism CUF ([5, 4]), which canbe seen as an instance of the constraint logic programming (CLP) scheme of[11]. These approaches extend the underlying formalism by assigning weightsto program clauses, but di�er with respect to an interpretation of weights in apreference-based versus probabilistic framework. Erbach calculates a preferencevalue of analyses from the preference values of the clauses used in the analyses,whereas Eisele assigns application probabilities to clauses from which a proba-bility distribution over analyses is calculated.There is an obvious problem with these approaches, however. Even if theformal foundation of the underlying framework is clear enough, there is no well-de�ned semantics for the weighted extensions. This means that these extralogicalextensions of the deduction scheme of the underlying constraint logic programare not related to the model-theoretic counterpart of this operational seman-tics, i.e., they do not come with a formal semantics at all. This is clearly anundesirable state of a�airs. Rather, in the same way as CLGs allow for a clearmodel-theoretic characterization of linguistic objects coupled with the opera-tional parsing system, one would prefer to base a quantitative deduction systemon a clear quantitative model-theory in a sound and complete way.The aim of this paper is to present a clear formal semantics for weightedCLGs, which abstracts away from speci�c interpretations of weights, but givesinsight into the parsing problem for weighted CLGs. Building on the formal-ization of CLGs in the CLP scheme of [11], this formal semantics will be givenby a quantitative version of CLP. Such a quantitative CLP scheme can also bevaluable for CLP tasks independent of grammars.Previous work on related topics has been con�ned to quantitative extensionsof conventional logic programming. A quantitative deduction scheme based on a�xpoint semantics for sets of numerically annotated conventional de�nite clauseswas �rst presented by van Emden in [26]. In this approach numerical weights areassociated with de�nite clauses as a whole. The semantics of such quantitativerule sets is based upon concepts of fuzzy set algebra and crucially deals with thetruth-functional �propagation� of weights across de�nite clauses. Van Emden'sapproach initialized research into a now extensively explored area of quantitativelogic programming. For example, annotated logic programming as introduced by[25] extends the expressive power of quantitative rule sets by allowing variablesand evaluable function terms as annotations. Such annotations can be attached



to components of the language formula and come with more complex mappingsas a foundation for a multivalued logical semantics. Such extended theories areinterpreted in frameworks of lattice-based logics for generalized annotated logicprogramming ([15]), possibilistic logic for possibilistic logic programming ([6])or logics of subjective probability for probabilistic logic programming ([20, 21])and probabilistic deductive databases ([17, 18]).Aiming at a formal foundation of weighted CLGs in a framework of quan-titative CLP, we can start from the ideas developed in the simple and elegantframework of [26], but transfer them to the general CLP scheme of [11]. Thismeans that the form of weighted CLGs under consideration allows us to restrictour attention to numerical weights associated with CLP clauses as a whole. Fur-thermore, the simple concepts of fuzzy set algebra can also provide a basis for anintuitive formal semantics for quantitative CLP. Such a formal semantics will besu�ciently general in that it is itself not restricted by a speci�c interpretation ofweights. Further extensions should be straightforward, but have to be deferredto future work. Our scheme will straightforwardly transfer the nice properties ofthe CLP scheme of [11] into a quantitative version of CLP.2 Constraint Logic Programming and Constraint LogicGrammarsBefore discussing the details of our quantitative extension of CLP, some wordson the underlying CLP scheme and grammars formulated by these means arenecessary. In the following we will rely on the CLP scheme of [11], which gener-alizes conventional logic programming (see [19]) and also the CLP scheme of [12]to a scheme of de�nite clause speci�cations over arbitrary constraint languages.A very general characterization of the concept of constraint language can begiven as follows.De�nition 1 (L ). A constraint language L consists of1. an L -signature, specifying the non-logical elements of the alphabet of thelanguage,2. a decidable in�nite set VAR whose elements are called variables,3. a decidable set CON of L -constraints which are pieces of syntax with un-known internal structure,4. a computable function V assigning to every constraint � 2 CON a �nite setV(�) of variables, the variables constrained by �,5. a nonempty set of L -interpretations INT, where each L -interpretation I 2INT is de�ned w.r.t. a nonempty set D, the domain of I , and a set ASS ofvariable assignments VAR! D,6. a function [[�]]I mapping every constraint � 2 CON to a set [[�]]I of variableassignments, the solutions of � in I .7. Furthermore, a constraint � constrains only the variables in V(�), i.e., if� 2 [[�]]I and � is a variable assignment that agrees with � on V(�), then� 2 [[�]]I .



To obtain constraint logic programs, a given constraint language L has to beextended to a constraint language R(L) providing for the necessary relationalatoms and propositional connectives.De�nition 2 (R(L) ). A constraint language R(L) extending a constraint lan-guage L is de�ned as follows:1. The signature of R(L) is an extension of the signature of L with a decidableset R of relation symbols and an arity function Ar : R ! IN.2. The variables of R(L) are the variables of L .3. The set of R(L)-constraints is the smallest set s.t.� � is an R(L)-constraint if � is an L-constraint,� r(x) is an R(L)-constraint, called an atom, if r 2 R is a relation symbolwith arity n and x is an n-tuple of pairwise distinct variables,� ;, F & G, F ! G are R(L)-constraints, if F and G are R(L)-constraints,� � & B1 & : : : & Bn ! A is an R(L)-constraint, called a de�niteclause, if A;B1; : : : ; Bn are atoms and � is an L-constraint. We maywrite a de�nite clause also as A � & B1 & : : : & Bn.4. The variables constrained by an R(L) -constraint are de�ned as follows: If� is an L -constraint, then V(�) is de�ned as in L ; V(r(x1; : : : ; xn)) :=fx1; : : : ; xng; V(;) := ;; V(F & G) := V(F ) [ V(G); V(F ! G) := V(F ) [V(G).5. For each L -interpretation I , an R(L)-interpretation A is an extension of anL-interpretation I with relations rA on the domain D of A with appropriatearity for every r 2 R and the domain of A is the domain of I.6. For each R(L) -interpretation A , for each L -interpretation I , [[�]]A is afunction mapping every R(L) -constraint to a set of variable assignmentss.t.� [[�]]A = [[�]]I if � is an L-constraint,� [[r(x)]]A = f� 2 ASSj �(x) 2 rAg,� [[;]]A = ASS,� [[F & G]]A = [[F ]]A \ [[G]]A,� [[F ! G]]A = (ASS n [[F ]]A) [ [[G]]A.A constraint logic program then is de�ned as a de�nite clause speci�cationover a constraint language.De�nition 3 (de�nite clause speci�cation). A de�nite clause speci�cationP over a constraint language L is a set of de�nite clauses from a constraintlanguage R(L) extending L .Relying on terminology well-known for conventional logic programming, Höh-feld and Smolka's generalization of the key result of conventional logic program-ming can be stated as follows:1 First, for every de�nite clause speci�cation P1 Further conditions for this generalization to hold are decidability of the satis�abilityproblem, closure under variable renaming and closure under intersection for theconstraint languages under consideration.



in the extension of an arbitrary constraint language L , every interpretation ofL can be extended to a minimal model of P . Second, the SLD-resolution methodfor conventional logic programming can be generalized to a sound and completeoperational semantics for de�nite clause speci�cations not restricted to Horntheories. In contrast to [12], in this scheme constraint languages are not requiredto be sublanguages of �rst order predicate logic and do not have to be inter-preted in a single �xed domain. This makes this scheme usable for a wider rangeof applications. Instead, a constraint is satis�able if there is at least one interpre-tation in which it has a solution. Moreover, such interpretations do not have tobe solution compact. This was necessary in [12] to provide a sound and completetreatment of negation as failure, which is not addressed in [11].The term constraint logic grammars expresses the connection between CLPand constraint-based grammars. Constraint-based grammars allow for a clearmodel-theoretic characterization of linguistic objects by stating grammars assets of axioms of suitable logical languages. However, such approaches do notnecessarily provide an operational interpretation of their purely declarative spec-i�cations. This may lead to problems with an operational treatment of declara-tively well-de�ned problems such as parsing. CLP provides one possible approachto an operational treatment of various such declarative frameworks by an em-bedding of arbitrary logical languages into constraint logic programs. CLGs thusare grammars formulated by means of a suitable logical language which can beused as a constraint language in the sense of [11].2For example, for feature based grammars such as HPSG ([23]), a quite directembedding of a logical language close to that of [24] into the CLP scheme of [11] isdone in the formalism CUF ([5, 4]). This approach directly o�ers the operationalproperties of the CLP scheme by simply rede�ning grammars as constraint logicprograms, but is questionable in losing the connection to the model-theoreticspeci�cations of the underlying feature-based grammars. A di�erent approachis given by [10] where a compilation of a logical language close to that of [16]into constraint logic programs is de�ned. This translation procedure preservesimportant model-theoretic properties by generating a constraint logic programP(G) from a feature-based grammar G in an explicit way.The parsing/generation problem for CLGs then is as follows. Given a programP (encoding a grammar) and a de�nite goal G (encoding the string/logical formwe want to parse/generate from), we ask if we can infer an answer ' of G (whichis a satis�able L -constraint encoding an analysis) proving the implication '! Gto be a logical consequence of P .2 Clearly, a direct de�nition of an operational semantics for speci�c constraint-basedgrammars is possible and may even better suit the particular frameworks. However,such approaches have to rely directly on the syntactic properties of the logical lan-guages in question. Under the CLP approach, arbitrary constraint-based grammarscan receive a unique operational semantics by an embedding into de�nite clause spec-i�cations. The main advantage of this approach is the possibility to put constraint-based grammar processing into the well-understood paradigm of logic programming.This allows the resulting programs to run on existing architectures and to use well-known optimization techniques worked out in this area.



3 Quantitative Constraint Logic Programming3.1 Syntax and Declarative Semantics of Quantitative De�niteClause Speci�cationsBuilding upon the de�nitions in [11], we can de�ne the syntax of a quantitativede�nite clause speci�cation PF very quickly. A de�nite clause speci�cation Pin R(L) can be extended to a quantitative de�nite clause speci�cation PF inR(L) simply by adding numerical factors to program clauses.The following de�nitions are made with respect to implicit constraint lan-guages L and R(L) .De�nition 4 (PF ). A quantitative de�nite clause speci�cation PF in R(L) isa �nite set of quantitative formulae, called quantitative de�nite clauses, of theform: � & B1 & : : : & Bn f ! A, where A, B1; : : : ; Bn are R(L) -atoms, � isan L -constraint, n � 0, f 2 (0; 1]. We may write a quantitative formula also asA f � & B1 & : : : & Bn.Such factors should be thought of as abstract weights which receive a concreteinterpretation in speci�c instantiations of PF by weighted CLGs.In the following the notation R(L) will be used more generally to denoterelationally extended constraint languages which possibly include quantitativeformulae of the above form.To obtain a formal semantics for PF , �rst we have to introduce an ap-propriate quantitative measure into the set-theoretic speci�cation of R(L) -interpretations. One possibility to obtain quantitative R(L) -interpretations isto base the set algebra of R(L) -interpretations on the simple and well-de�nedconcepts of fuzzy set algebra (see [27]).Relying on Höhfeld and Smolka's speci�cation of base equivalent R(L) -interpretations, i.e., R(L) -interpretations extending the same L -interpretation,in terms of the denotations of the relation symbols in these interpretations, wecan �fuzzify� such interpretations by regarding the denotations of their relationsymbols as fuzzy subsets of the set of tuples in the common domain.Given constraint languages L and R(L) , we interpret each n-ary relationsymbol r 2 R as a fuzzy subset of Dn, for each R(L) -interpretation A with do-main D. That is, we identify the denotation of r under A with a total function:�(_; rA) : Dn ! [0; 1], which can be thought of as an abstract membership func-tion. Classical set membership is coded in this context by membership functionstaking only 0 and 1 as values.Next, we have to give a model-theoretic characterization of quantitative def-inite clauses. Clearly, any monotonous mapping could be used for the model-theoretic speci�cation of the interaction of weights in quantitative de�nite clausesand accordingly for the calculation of weights in the proof-theory of quantitativeCLP. For concreteness, we will instantiate such a mapping to the speci�c caseof De�nition 5 resembling [26]'s mode of rule application. This will allow us tostate the proof-theory of quantitative CLP in terms of min/max trees which in



turn enables strategies such as alpha/beta pruning to be used for e�cient search-ing. However, this choice is not crucial for the substantial claims of this paperand generalizations of this particular combination mode to speci�c applicationsshould be straightforward, but are beyond the scope of this paper.The following de�nition of model corresponds to the de�nition of model inclassical logic when considering only clauses with f = 1 and mappings Dn !f0; 1g.De�nition 5 (model). An R(L) -interpretation A extending some L -interpre-tation I is a model of a quantitative de�nite clause speci�cation PF i� for each� 2 ASS , for each quantitative formula r(x) f � & q1(x1) & : : : & qk(xk) inPF : If � 2 [[�]]I , then �(�(x); rA) � f �minf�(�(xj); qAj )j 1 � j � kg.Note that the notation of an R(L) -interpretation A will be used more gen-erally to include interpretations of quantitative formulae. R(L) -solutions of aquantitative formula are de�ned as [[r(x) f � & q1(x1) & : : : & qk(xk)]]A =f� 2 ASS j If � 2 [[�]]I , then �(�(x); rA) � f �minf�(�(xj); qAj )j 1 � j � kgg.The concept of logical consequence is de�ned as usual.De�nition 6 (logical consequence). A quantitative formula r(x)  f � isa logical consequence of a quantitative de�nite clause speci�cation PF i� foreach R(L) -interpretation A , A is a model of PF implies that A is a model offr(x) f �g.Furthermore, we have that r(x) f � is a logical consequence of PF implies thatr(x) f 0 � is a logical consequence of PF for every f 0 � f .A goal G is de�ned to be a (possibly empty) conjunction of R(L) -atomsand L -constraints. We can, without loss of generality, restrict goals to be of theform r(x) & �, i.e., a (possibly empty) conjunction of a single relational atomr(x) and an L -constraint �. This is possible as for each goal G = r1(x1) & : : :& rk(xk) & � containing more than one relational atom, we can complete theprogram with a new clause C = r(x1; : : : ;xk)  1 r1(x1) & : : : & rk(xk) & �with G as antecedent and a new predicate with all variables in G as argumentsas consequent. Submitting the new predicate r(x1; : : : ;xk) as query yields thesame results as would be obtained when querying with the compound goal G.Given some PF and some goal G, a PF -answer ' of G is de�ned to bea satis�able L -constraint ' s.t. ' f ! G is a logical consequence of PF . Aquantitative formula ' f ! r(x) & � is de�ned to be a logical consequence ofPF i� every model of PF is a model of f' f! r(x) & �g. AnR(L) -interpretationA is de�ned to be a a model of f' f ! r(x) & �g i� [[']]A � [[�]]A and A is amodel of fr(x) f 'g.Aiming to generalize the key result in the declarative semantics of CLP�the minimal model semantics of de�nite clause speci�cations over arbitrary con-straint languages�to our quantitative CLP scheme, �rst we have to associatea complete lattice of interpretations with quantitative de�nite clause speci�ca-tions.



Adopting Zadeh's de�nitions for set operations, we can de�ne a partial order-ing on the set of base equivalent R(L) -interpretations. This is done by de�ningset operations on these interpretations with reference to set operations on thedenotations of relation symbols in these interpretations. We get for all baseequivalent R(L) -interpretations A; A0:� A � A 0 i� for each n-ary relation symbol r 2 R , for each � 2 ASS , foreach x 2 VARn: �(�(x); rA) � �(�(x); rA0 ),� A = SX i� for each n-ary relation symbol r 2 R , for each � 2 ASS , foreach x 2 VARn: �(�(x); rA) = supf�(�(x); rA0 )j A 0 2 Xg,� A = TX i� for each n-ary relation symbol r 2 R , for each � 2 ASS , foreach x 2 VARn: �(�(x); rA) = inff�(�(x); rA0 )j A 0 2 Xg,� sup ; = 0, inf ; = 1.Clearly, the set of all base equivalentR(L) -interpretations is a complete latticeunder the partial ordering of set inclusion.Next we have to apply the syntactic notions of renaming and variant tothe quantitative case. A renaming is a bijection VAR ! VAR which is theidentity except for �nitely many exceptions and VAR is a decidable in�nite setof variables.A quantitative formula �0 is a �-variant of a quantitative formula � under arenaming � i� V(�0) = �(V(�)), where V is a computable function assigning toevery quantitative formula � the set V(�) of variables occurring in �; �0 = ��,i.e., �0 is the quantitative formula obtained from � by simultaneously replacingeach occurrence of a variable X in � by �(X) for all variables in V(�); and[[�]]A = [[�0]]A� := f� � �j � 2 [[�0]]Ag for each interpretation A .A quantitative formula �0 is a variant of a quantitative formula � if there existsa renaming � s.t. �0 is a �-variant of �.Using these de�nitions, we can state the central equations which link thedeclarative and procedural semantics of PF .De�nition 7. Let PF be a quantitative de�nite clause speci�cation in R(L) ,I be an L -interpretation. Then the countably in�nite sequence hA0;A1;A2; : : :iof R(L) -interpretations extending I is a PF -chain i� for each n-ary relationsymbol r 2 R , for each � 2 ASS , for each x 2 VARn:�(�(x); rA0 ) := 0,�(�(x); rAi+1 ) := maxff �minf�(�(xj); qAij )j 1 � j � ng j there is a variantr(x) f � & q1(x1) & : : : & qn(xn) of a clause in PF and � 2 [[�]]Aig.Before stating the central theorem concerning the declarative semantics ofquantitative de�nite clause speci�cations, we have to prove the following usefullemma (cf. [26], Lemmata 2.10', 2.11'):Lemma 1. For each PF , for each PF -chain hA0;A1;A2; : : :i, for each n-aryrelation symbol r 2 R , for each � 2 ASS , for each x 2 VARn, there exists somen 2 IN s.t. �(�(x); rSi�0 Ai) = �(�(x); rAn).



Proof. We have to show that the supremum v = supf�(�(x); rAi)j i � 0g canbe attained for some n 2 IN.v = 0: For v = 0, we have n = 0.v > 0: For v > 0, we have to show for any real �, 0 < � < v: f�(�(x); rAi )j i �0 and �(�(x); rAi ) � �g is �nite.Let F be the �nite set of real numbers of factors of clauses in PF , m bethe greatest element in F s.t. m < 1 and let q be the smallest integer s.t.mq < �.Then, since each real number �(�(x); rAi ) is a product of a sequence ofelements of F , the number of di�erent products � � is not greater than jF jq(in combinatorics' talk, the permutation of jF j di�erent things taken q at atime with repetitions) and thus �nite.Hence, the supremum is the maximum attained for some n 2 IN. utNow we can obtain minimal model properties for quantitative de�nite clausespeci�cations similar to those for the non-quantitative case of [11]. Theorem 1states that we can construct a minimal model A of PF for each quantitative def-inite clause speci�cation PF in the extension of an arbitrary constraint languageL and for each L -interpretation. This means that�due to the de�niteness ofPF �we can restrict our attention to a minimal model semantics of PF .Theorem 1 (de�niteness). For each quantitative de�nite clause speci�cationPF in R(L) , for each L -interpretation I , for each PF -chain hA0;A1;A2; : : :iof R(L) -interpretations extending some L -interpretation I :(i) A0 � A1 � : : :,(ii) the union A := Si�0Ai is a model of PF extending I ,(iii) A is the minimal model of PF extending I .Proof. (i)We have to show that Ai � Ai+1. We prove by induction on i showingfor each constraint language L , for each quantitative de�nite clause speci�cationPF in R(L) , for each L -interpretation I , for each PF -chain hA0;A1;A2; : : :i ofR(L) -interpretations extending some L -interpretation I , for each n-ary rela-tion symbol r 2 R , for each � 2 ASS , for each x 2 VARn, for each i 2 IN:�(�(x); rAi) � �(�(x); rAi+1 ).Base: �(�(x); rA0 ) = 0 � �(�(x); rA1 ).Hypothesis: Suppose �(�(x); rAn�1) � �(�(x); rAn).Step: �(�(x); rAn) = v > 0=) there exists a variant r(x)  f � & q1(x1) & : : : & qk(xk) of a clausein PF s.t. v = f �minf�(�(x1); q1An�1); : : : ; �(�(xk); qkAn�1)g and � 2[[�]]An�1 , by De�nition 7=) �(�(x1); q1An) � �(�(x1); q1An�1);: : : ; �(�(xk); qkAn) � �(�(xk); qkAn�1) and � 2 [[�]]An , by the hypothe-sis



=) �(�(x); rAn+1) � v, by de�nition of �(�(x); rAi+1)=) �(�(x); rAn) � �(�(x); rAn+1).For v = 0 follows immediately �(�(x); rAn) � �(�(x); rAn+1).Claim (i) follows by arithmetic induction.(ii) We have to show that A := Si�0Ai is a model of PF extending I . Weprove that for each clause r(x)  f � & q1(x1) & : : : & qk(xk) in PF , for each� 2 ASS : If � 2 [[�]]A, then �(�(x); rA) � f �minf�(�(xj); qjA)j 1 � j � kg.Note that since every Ai is an R(L) -interpretation extending I , A is an R(L) -interpretation extending I .Now let r(x)  f � & q1(x1) & : : : & qk(xk) be a clause in PF s.t. for some� 2 ASS : � 2 [[�]]A and �(�(xi); qiA) = minf�(�(xj); qjA)j 1 � j � kg = v.Then there exists some n 2 IN s.t. v = �(�(xi); qiAn) = minf�(�(xj); qjAn)j1 � j � kg, by Lemma 1 and since for all j s.t. 1 � j � k : �(�(xj); qjA) =supf�(�(xj); qjAi)j i � 0g=) �(�(x); rAn+1) � f � v, by De�nition 7=) �(�(x); rA) � �(�(x); rAn+1), since �(�(x); rA) =supf�(�(x); rAi)j i � 0g=) �(�(x); rA) � f �minf�(�(xj); qjA)j 1 � j � kg.This completes the proof for claim (ii).(iii)We have to show that A is the minimal model of PF extending I . We provefor every base equivalent model B of PF : Ai � B, which gives A � B, by induc-tion on i showing for each constraint language L , for each quantitative de�niteclause speci�cation PF in R(L) , for each L -interpretation I , for each PF -chainhA0;A1;A2; : : :i of R(L) -interpretations extending some L -interpretation I ,for each n-ary relation symbol r 2 R , for each � 2 ASS , for each x 2 VARn, foreach i 2 IN: �(�(x); rAi) � �(�(x); rB).Base: �(�(x); rA0 ) = 0 � �(�(x); rB).Hypothesis: Suppose �(�(x); rAn�1) � �(�(x); rB).Step: �(�(x); rAn) = v > 0=) there exists a variant r(x)  f � & q1(x1) & : : : & qk(xk) of a clausein PF s.t. v = f �minf�(�(x1); q1An�1); : : : ; �(�(xk); qkAn�1)gand � 2 [[�]]An�1 , by De�nition 7=) �(�(x1); q1B) � �(�(x1); q1An�1);: : : ; �(�(xk); qkB) � �(�(xk); qkAn�1) and � 2 [[�]]B , by the hypothesis=) �(�(x); rB) � v, since B is a model of PF=) �(�(x); rAn) � �(�(x); rB).



For v = 0 follows immediately �(�(x); rAn) � �(�(x); rB).Claim (iii) follows by arithmetic induction. utProposition 1 allows us to link the declarative description of the desiredoutput from PF and a goal, i.e., a PF -answer, to the minimal model semanticsof PF . This is done by connecting the concept of logical consequence with theconcept of minimal model.Proposition 1. Let PF be a quantitative de�nite clause speci�cation in R(L) ,' be an L -constraint and G be a goal. Then ' v! G is a logical consequence ofPF i� every minimal model A of PF is a model of f' v! Gg.Proof. if: For each minimal model A of PF : A is a model of f' v! Gg=) for every base equivalent model B of PF : B is a model of f' v! Gg,since A � B by Theorem 1, (iii)=) ' v! G is a logical consequence of PF .only if: ' v! G is a logical consequence of PF=) every model of PF is a model of f' v! Gg, by De�nition 6=) A is a model of f' v! Gg. utThe following toy example will illustrate the basic concepts of the declarativesemantics of quantitative de�nite clause speci�cations.Example 1. Consider a simple program PF consisting of clauses 1, 2 and 3. Letfor the sake of the example be [[X = � & X =  ]]I = ; for each L -interpretationI . 1 p(X) :7 X = �.2 p(X) :5 X = �.3 p(X) :9 X =  .A PF -chain for predicate p and an object �(X) allowed by the L -constraintX = � is constructed as follows.�(h�(X)i ; pA0) = 0,�(h�(X)i ; pA1) = maxf:7�min ;; :5�min ;g = :7,�(h�(X)i ; pA2) = maxf:7�min ;; :5�min ;g = :7,...The membership value of this object in the denotation of p under the minimalmodel A of PF is attained in step 1 and calculated as follows.�(h�(X)i ; pSi�0 Ai) = supf0; :7; :7; : : :g = :7 .Clearly, A is a model of clauses 1 and 2. A similar calculation can be donefor clause 3.



3.2 Operational Semantics of Quantitative De�nite ClauseSpeci�cationsThe proof procedure for quantitative CLP is a search of a tree, corresponding tothe search of an SLD-and/or tree in conventional logic programming and CLP.Such a tree is de�ned with respect to the inference rules r�! and c�! of [11] anda speci�c calculation of node values. The structure of such a tree exactly re�ectsthe construction of a minimal model and thus may be de�ned as a min/max tree.In the following we will assume implicit constraint languages L and R(L) and agiven quantitative de�nite clause speci�cation PF in R(L) . Furthermore, V willdenote the �nite set of variables in the query and the V-solutions of a constraint� in an interpretation I are de�ned as [[�]]IV := f�jV j � 2 [[�]]Ig and �jV is therestriction of � to V.The �rst inference rule is given by a binary relation r�! , called goal reduc-tion, on the set of goals.A & G r�! F & G if A F is a variant of a clause in Ps.t. (V [ V(G)) \ V(F ) � V(A).A second rule takes care of constraint solving for the L-constraints appearingin subsequent goals. The rule takes the conjunction of the L-constraints fromthe reduced goal and the applied clause and gives, via the black box of a suitableL- constraint solver, a satis�able L-constraint in solved form if the conjunctionof L-constraints is satis�able. The constraint solving rule can then be de�ned asa total function c�! on the set of goals.� & �0 & G c�! �00 & G if [[� & �0]]IV[V(G) = [[�00]]IV[V(G)for each L-interpretation I and for all L -constraints �; �0 and �00.De�nition 8 (min/max tree). A min/max tree determined by a query G1and a quantitative de�nite clause speci�cation PF has to satisfy the followingconditions:1. Each max-node is labeled by a goal. The value of each nonterminal max-nodeis the maximum of the values of its descendants.2. Each min-node is labeled by a clause from PF and a goal. The value of eachnonterminal min-node is f �m, where f is the factor of the clause and mis the minimum of the values of its descendants.3. The descendants of every max-node are all min-nodes s.t. for every clauseC with r�! -resolvent G0 obtained by C from goal G in a max-node, there isa min-node descendant labeled by C and G0.4. The descendants of every min-node are all max-nodes s.t. for every R(L) -atom r(x) in goal G&�&�0 in a min-node with c�! -resolvent G&�00, thereis a max-node descendant labeled by r(x) & �00.5. The root node is a max-node labeled by G1.6. A success node is a terminal max-node labeled by a satis�ableL -constraint. The value of a success node is 1.



7. A failure node is a terminal max-node which is not a success node. The valueof a failure node is 0.De�nition 9 (proof tree). A proof tree for goal G1 from PF is a subtree of amin/max supertree determined by G1 and PF and is de�ned as follows:1. The root node of the proof tree is the root node of the supertree.2. A max-node of the proof tree is a max-node of the supertree and takes oneof the descendants of the supertree max-node as its descendant.3. A min-node of the proof tree is a min-node of the supertree and takes all ofthe descendants of the supertree max-node as its descendants.4. All terminal nodes in the proof tree are success nodes �; �0; : : :s.t. � & �0 & : : : c�! ' and ' is a satis�able L -constraint, called answerconstraint.5. Values are assigned to proof tree nodes in the same way as to min/max treenodes.To prove soundness and completeness of this generalized SLD-resolutionproof procedure, some further concepts have to be introduced.First, we have to take care of renaming closure of the generalized constraintlanguage R(L) . A constraint language is said to be closed under renaming i�every constraint has a �-variant for every renaming �. Clearly, R(L) is closedunder renaming if the underlying constraint languageL is closed under renaming.Furthermore, for eachR(L) closed under renaming, for eachR(L) -interpretationA : A is a model of an R(L) -constraint i� A is a model of each of its variants.Next, we have to rede�ne a complexity measure for goal reduction forthe quantitative case. This measure is crucial in proving termination of goalreduction and works by keying steps of the minimal model construction to stepsof the goal reduction process.� The complexity of a variable assignment � for an atom r(x) in the mini-mal model A s.t. �(�(x); rA) > 0 is de�ned as comp(�; r(x);A ) := minfij�(�(x); rA) = �(�(x); rAi )g.� The complexity of � for goal G = r1(x1) & : : : & rk(xk) & � in A s.t.� 2 [[�]]A and �(�(xi); riA) > 0 for all i : 1 � i � k is de�ned ascomp(�;G;A ) := fcomp(�; ri(xi);A )j 1 � i � kg where f: : :g is a mul-tiset.� The V-complexity of � for goal G = r1(x1) & : : : & rk(xk) & � in A s.t.� 2 [[�]]AV and �(�(xi); riA) > 0 for all i : 1 � i � k is de�ned ascompV (�;G;A ) := minfcomp(�;G;A )j � 2 [[�]]A, �(�(xi); riA) > 0 forall i : 1 � i � k and � = �jV g where the minimum is taken with respect toa total ordering on multisets s.t. M � M 0 i� 8x 2 M nM 0; 9x0 2 M 0 nMs.t. x < x0.Clearly, the constraint solving part of the deduction scheme does not a�ect thedenotation or complexity of subsequent goals.The following proofs show that the quantitative proof procedure is sound andcomplete with respect to the above stated semantic concepts. Again, there is a



close similarity to the corresponding statements for the non-quantitative case of[11].Theorem 2 (soundness). For each quantitative de�nite clause speci�cationPF , for each goal G, for each L -constraint ': If there is a proof tree for Gfrom PF with answer constraint ' and root value v, then ' v! G is a logicalconsequence of PF .Proof. The result is proved by induction on the depth d of the proof tree, whereone unit of depth is from max-node to max-node.Base: We know that proof trees of depth d = 0 have to take the form of a singlemax-node labeled by a satis�able L -constraint  with root value 1. Then  1!  is a logical consequence of PF .Hypothesis: Suppose the result holds for proof trees of depth d < n.Step: Let G0 = r(x) & � be a goal labeling a proof tree of depth d = n withanswer constraint  and root value h,let G00 = q1(x1) & : : : & qk(xk) & � & �0 be a goal labeling the min-nodeobtained from G0 via r�! using the variant C 0 = r(x) f �0 & q1(x1) & : : :& qk(xk) of a clause C in PF ,and let G1 = q1(x1) & �00; : : : ; Gk = qk(xk) & �00 be goals labeling max-nodes obtained from G00 via c�! .Then each goal G1; : : : ; Gk labels a proof tree of depth d < n with re-spective answer constraint  1; : : : ;  k and root value g1; : : : ; gk s.t. h =f �minfg1; : : : ; gkg and for each model A of PF : [[ ]]A = [[ 1 & : : : &  k]]A,by de�nition min/max tree=)  1 g1 ! G1; : : : ;  k gk ! Gk are logical consequences of PF , by thehypothesis=) for each model A of PF , for each � 2 ASS : [[ ]]A � [[�00]]A and if � 2[[ ]]A, then �(�(x1); q1A) � g1; : : : ; �(�(xk); qkA) � gk, by de�nition oflogical consequence=) for each model A of PF , for each � 2 ASS : [[ ]]A � [[�0]]A and if � 2[[ ]]A, then �(�(x); rA) � f � minf�(�(x1); q1A); : : : ; �(�(xk); qkA)g,since each model A of PF is a model of C 0 i� A is a model of C=) for each model A of PF , for each � 2 ASS : [[ ]]A � [[�]]A and if � 2[[ ]]A, then �(�(x); rA) � h=)  h! r(x) & � is a logical consequence of PF .The result follows by arithmetic induction. utTheorem 3 (completeness). Let PF be a quantitative de�nite clause speci�-cation in R(L) , L be closed under renaming, A be a minimal model of PF , Gbe a goal of the form r(x) & �, � 2 [[�]]AV and �(�(x); rA) = v s.t. v > 0 and� = �jV . Then there exists a proof tree for G from PF with answer constraint 'and root value v and � 2 [[']]AV .



Proof. The result is proved by induction on c = compV (�;G;A ).Base: We know that goals with complexity c = ; have to take the form of a satis-�able L -constraint �. Then there exists a proof tree for � from PF consistingof a single max-node labeled with � and root value 1.Hypothesis: Suppose the result holds for goals with complexity c < N .Step: Let G0 = q(x) &  , �0 2 [[ ]]AV , �00 2 [[ ]]A, �0 = �00jV , compV (�0; G0;A )= comp(�00; G0;A ) = N , comp(�00; q(x);A ) := i, �(�00(x); qA) = h andh > 0.First we observe, that �(�00(x); qAi) = h, since comp(�00; q(x);A ) := i=) there exists a variant q(x) f  0 & q1(x1) & : : : & qk(xk) s.t.h = f �minf�(�(x1); q1Ai�1); : : : ; �(�(xk); qkAi�1)gand �00 2 [[ 0]]Ai�1 and (V[V( ))\V( 0 & q1(x1) & : : : & qk(xk)) �V(q(x)), by de�nition 7 and renaming closure of R(L) , �nite V andin�nitely many variables in VAR=) G0 r;c�! G00 s.t. G00 = q1(x1) & : : : & qk(xk) &  00and [[ 00]]AV = [[ &  0]]AV , by de�nition of the inference rules.Next, �0 2 [[ 00]]AV , since �00 2 [[ ]]A, �00 2 [[ 0]]Ai�1 � [[ 0]]A,�00 2 [[ &  0]]A, [[ &  0]]AV = [[ 00]]AV and �0 = �00jV .Finally, compV (�0; G00;A ) < N , since compV (�0; G00;A )� comp(�00; G00;A ) < fig = fcomp(�00; q(x);A )g = comp(�00; G0;A ) =compV (�0; G0;A ) = N .Now we can obtain goalsG1 = q1(x1) &  00; : : : ; Gk = qk(xk) &  00 from G00s.t. �0 2 [[ 00]]AV , �(�00(x1); q1A) = g1 > 0; : : : ; �(�00(xk); qkA) = gk > 0,�0 = �00jV and compV (�0; G1;A ) < N;. . . ; compV (�0; Gk;A ) < N .=) for each goal G1; : : : ; Gk, there exists a proof tree from PF withrespective answer constraint �1; : : : ; �k and respective root valueg01 = g1; : : : ; g0k = gk and �0 2 [[�1 & : : : & �k]]AV = [[�]]AV , by thehypothesis=) there exists a proof tree for G0 from PF with answer constraint � and rootvalue h0 = f �minfg01; : : : ; g0kg = f �minfg1; : : : ; gkg = h and �0 2 [[�]]AV .The result follows by arithmetic induction. utReturning to our toy example, the proof procedure for quantitative de�niteclause speci�cations can be illustrated as follows.Example 2. Starting from the simple program of Example 1, a min/max tree forquery p(X) & X = � and PF is constructed as follows.



X = �1c1; X = �&X = �:7�minf1g X = �1c2; X = �&X = �:5�minf1g ?0c3; X =  &X = �:9�minf0gr r rp(X) &X = �maxf:7; :5;0g
This tree contains two success branches and one failure branch (from left toright). The proof trees obtained from this min/max tree are as follows.

X = �1c1; X = �&X = �:7�minf1grp(X) &X = �maxf:7g

X = �1c2; X = �&X = �:5�minf1grp(X) &X = �maxf:5g
Clearly, X = � :7! p(X) & X = � is a logical consequence of PF .As proposed by [26], search strategies such as alpha-beta pruning (see [22])can be used quite directly to de�ne an interpreter for quantitative rule sets. Thesame techniques can be applied to a min/max proof procedure in quantitativeCLP. In general, the amount of search needed to �nd the best proof for a goal,i.e., the maximal valued proof tree for a goal from a program, will be reducedremarkably by controlling the search by the alpha-beta algorithm.4 Quantitative CLP and Weighted CLGsTo sum up, the quantitative CLP scheme presented above allows for a de�nitionof the parsing problem (and similarly of the generation problem) for weighted



CLGs in the following way: Given a program PF (coding some weighted CLG)and a query G (coding some input string), we ask if we can infer a PF -answer' of G (coding an analysis) at a value � (coding the weight of the analysis)proving ' �! G to be a logical consequence of PF . The concept of weightedlogical consequence thus can be seen as a model-theoretic counterpart to theoperational concept of weighted inference.We showed soundness and completeness results for a general proof procedurefor quantitative constraint logic programs with respect to a simple declarativesemantics based on concepts of fuzzy set algebra. These terms in turn allow fora deeper characterization of the concept of weighted logical consequence: A PF -answer to a query G = r(x) & � at value � is a satis�able L -constraint ' suchthat for each model A of PF holds: If ' is satis�able, then � is satis�able andall objects assigned to x by a solution of ' are in the denotation of r(x) at amembership value of at least �.Considering concrete instantiations and applications of this formal scheme,the remaining question is how to give the concept of weight an intuitive inter-pretation. In the following we will brie�y discuss two possible interpretations ofweighted CLGs each of which is determined by the speci�c aims of a speci�capplication.One interpretation of weights is as a correlate to the degree of grammaticalityof an analysis. In [8, 9], Erbach attempts to calculate the degree of grammat-icality of an analysis from the application probabilities of clauses used in theanalysis and additional user-de�ned weights.3 Regardless of the motivation forthis speci�c determination of degrees of grammaticality, the choice to interpretweights in correspondence to degrees of grammaticality severely restricts thepossible applications of such weighted CLGs.Considering for example the problem of ambiguity resolution which is alsoaddressed by Erbach, we think that the concepts of preference value and degreeof grammaticality should be clearly di�erentiated. As discussed in [1], the prob-lem of ambiguity resolution cannot be reduced to some few unrealistic examples.Instead, when describing a nontrivial part of natural language, grammars of theusual sort will produce massive arti�cial ambiguity where we can �nd grammati-cal readings even for the most abstruse analyses. Suppose for example a grammarwhich licenses, among many others, analyses such as 1) John believes [Peter sawMary]S and 2) John believes [New Y orkN taxiN driversN ]NP . Such a gram-mar would also license the analysis 3) John believes [PeterN sawN MaryN ]NP(provided a noun entry for the noun reading of saw), which is clearly less pre-ferred than 1). Analysis 3) otherwise is not less grammatical, as we can �ndan acceptable reading (where the NP refers to the Mary associated with somekind of saw called a Peter saw). Degrading the weight of the rule NP ! N3 Erbach sketches a calculation scheme which employs a restricted summation overclause weights instead of a minimization as is done in our quantitative CLP scheme.This calculation scheme could easily be captured by our quantitative CLP schemeby replacing min by a restricted sum in the relevant de�nitions of the declarativesemantics and accordingly of the procedural semantics of our scheme.



N N (licensing multiple nominal modi�cations) would on the other hand alsodegrade the weight of 2), which prevents a disambiguation by an interpretationof weights in terms of degrees of grammaticality.Considering the problem of graded grammaticality, it seems necessary toemploy richer models for a determination of degrees of grammaticality. A �rstattempt to incorporate degrees of grammaticality investigated by psycholinguis-tic experiments into CLGs is presented in [13, 14].4 Weighted CLGs interpretedin a serious framework of graded grammaticality then could provide a valuableframework for a clear procedural and declarative treatment of graded grammat-icality in CLGs.Another interpretation of weighted CLGs is possible from the viewpoint ofprobabilistic grammars. This approach has been shown to be fruitful, e.g., for theproblem of ambiguity resolution. The simple but useful approximation adoptedhere is to assume the most plausible analysis of a string to be the most probableanalysis of that string.An attempt to transfer the techniques of probabilistic context-free grammars(see [3]) to CLGs was presented in [7]. In this approach the derivation process ofCLGs is de�ned as a stochastic process by the following stochastic model: Eachprogram clause gets assigned an application probability and the probabilities ofall clauses de�ning one predicate have to sum to 1. The probability of a prooftree is calculated as the product of the probabilities of the rules used in it.5 Inorder to make the probabilities of proof trees as de�ned by the stochastic modelconstitute a proper probability distribution, an additional normalization withrespect to the overall probability of proof trees has to be made.6What is interesting about probabilistic language models is their ability toestimate the probabilistic parameters of the model in accord to empirical prob-ability distributions. Eisele attempts to estimate the probability of clauses pro-portional to the expected frequency of clauses in derivations. Unfortunately,this approach to parameter estimation is incorrect when applied to the proba-bilistic CLG model of Eisele. This means that the probability distribution overproof trees as de�ned by a probabilistic CLG model estimated by the expectedclause frequency method is not in accord with the frequency of the proof treesin the training corpus. Similarly, when dealing with unparsed corpora, the EM-algorithm used for parameter estimation optimizes the wrong function whenapplied to this model. The reason for this incorrectness is that the set of treesgenerated from such a probabilistic CLG model is constrained in a way whichviolates basic assumptions made in the applied parameter estimation method.In other words, the probabilistic CLG model de�ned by Eisele could be said to4 Keller concentrates on experimental investigation of degrees of grammaticality andsketches a model of graded grammaticality based on ranked constraints. Such a modelshould easily be given a formal basis in terms of our quantitative CLP scheme.5 This calculation scheme also could easily be captured by our quantitative CLPscheme by replacing min by a product accordingly in the relevant de�nitions ofthe declarative and procedural semantics of our scheme.6 [3] discuss further conditions on consistency of probabilistic grammars which wouldhave to be satis�ed also by a probabilistic CLG model.



be incorrect, in the sense that it makes an independency assumption for clauseapplications which is violated by the languages generated from such probabilisticCLGs.Since the proposed parameter estimation method is only provably correct forthe context-free case, the probabilistic language model of Eisele faces a severerestriction. The only approach we know of to present a correct parameter esti-mation algorithm for probabilistic grammars involving context-dependencies isthe model of stochastic attribute-value grammars of [2], a discussion of which isbeyond our present scope.5 ConclusionWe presented a simple and general scheme for quantitative CLP. Our quanti-tative extension straightforwardly transferred the nice properties of the CLPscheme of [11] into close analogs holding for a quantitative version of CLP. Withrespect to related approaches to quantitative extensions of conventional logicprogramming, our extension raises ideas from this area to the general frame-work of CLP.We showed soundness and completeness results with respect to a declarativesemantics based on concepts of fuzzy set algebra. This approach to a declarativesemantics was motivated by the aim to give a clear and simple formal semanticsfor weighted CLGs.Clearly, more expressive quantitative extensions of CLP are possible and willbe addressed in future work. Regarding the interest in computational linguisticsproblems such as ambiguity resolution, however, a necessary prerequisite for amore sophisticated semantics for probabilistically interpreted quantitative CLPis the development of a probabilistic model for CLP which allows for correctparameter estimation from empirical data.References1. Steven Abney. Statistical methods and linguistics. In Judith Klavans and PhilipResnik, editors, The Balancing Act. The MIT Press, Cambridge, MA, 1996.2. Steven Abney. Stochastic attribute-value grammars. Computational Linguistics,23(4):597�618, 1997.3. Taylor L. Booth and Richard A. Thompson. Applying probability measures toabstract languages. IEEE Transactions on Computers, C-22(5):442�450, 1973.4. Jochen Dörre and Michael Dorna. CUF - a formalism for linguistic knowledgerepresentation. In Jochen Dörre, editor, Computational Aspects of Constraint-Based Linguistic Description I, pages 3�22. DYANA-2 Deliverable R1.2.A, 1993.5. Jochen Dörre and Andreas Eisele. A comprehensive uni�cation-based grammarformalism. Technical report, DYANA Deliverable R3.1.B, 1991.6. Didier Dubois, Jérôme Lang, and Henri Prade. Towards possibilistic logic program-ming. In Proceedings of the 8th International Conference on Logic Programming(ICLP '91), Paris, 1991.
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