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Abstract

This paper reports on the use of two distinct evaluation icefor assessing a stochastic parsing model consistindafad-coverage
Lexical-Functional Grammar (LFG), an efficient constrddased parser and a stochastic disambiguation model. BtesGialuation
metric measures matches of predicate-argument relandrisG f-structures (henceforth the LFG annotation scheme)gold standard
of manually annotated f-structures for a subset of the UREalh Street Journal treebank. The other metric maps prasti@ayument
relations in LFG f-structures to dependency relations ¢éarth DR annotations) as proposed by Carroll et al. (Qsetal., 1999). For
evaluation, these relations are matched against Carrall’®gold standard which was manually annnotated on a swlfske Brown

corpus. The parser plus stochastic disambiguator givesrapdsure of 79% (LFG) or 73% (DR) on the WSJ test set. This shibat

the two evaluation schemes are similar in spirit, althoutgueacy is impaired systematically by mapping one anrmagtheme to the
other. A systematic loss of accuracy is incurred also byusr@riation: Training the stochastic disambiguation nhodé/NSJ data and
testing on Carroll et al.'s Brown corpus data yields an Feaf 74% (DR) for dependency-relation match. A variant o theasure
comparable to the measure reported by Carroll et al. yieids-measure of 76%. We examine divergences between aromsatiemes
aiming at a future improvement of methods for assessingparslity.

1. Introduction Our parser plus stochastic disambiguator gives an F-

measure of 79% (LFG) or 73% (DR) on the WSJ test

Recent rs hav n incr interest in parsin . : .
ecent years have see creased interes pars s%t, showing that the two evaluation schemes are similar

systems that capture predicate-argument relations shstea_ ' . . . i : i
: L in spirit. However, accuracy is systematically impaired by

of mere phrase-structure representations. In aiming for . ; .
: . mapping one annotation scheme to the other. A systematic
this goal, considerable progress has been made by conls

bining svstems of hand-coded. linquistically fine-arained oss of accuracy is incurred also by corpus variation: Frain
ram?na¥s with robustness tec,hni gues andystochgstic dim-g the stochastic disambiguation model on WSJ data and
gram : he ?esting on Carroll et al.'s Brown corpus data gives a DR F-
ambiguation models. However, it can reasonably be ar- . ;
, measure of 74% for matching dependency relations. For a
gued that the standard evaluation procedure for stochasti . . i
irect comparison of our results with Carroll et al.'s syste

parsing—precision and recall of matching labeled braCkWe also computed an F-measure that does not distinguish

eting to section 23 of the UPenn Wall Street Joumaldifferenttypes of dependency relations. Under this measur

(WSJ) treebank (Marcus et al., 1994)—is not approprlateWe obtain 76% E-measure.

for assessing the quality of parsers on matching predicate- . . o . .
argument relations. A new standard for evaluation on One goal of this paper is to highlight possible pitalls

predicate-argumentrelations and for annotating a gofd sta and error sources in translating between different annota-
dard is needed tion schemes and gold standards. We believe that a thor-

. ) , ugh investigation of divergences in annotation schemes
In this paper we present a stochastic parsing mod

. f 2 broad Lexical-F ional G ill facilitate a future standard for predicate-argumeratie
consisting of a broad-coverage Lexical-Functional Gramy,-+on and annotation.

mar (LFG), a constraint-based parser and a stochastic dis- This paper is organized as follows. After introducing the

ambiguation model, and discuss the evaluation of th';t]rammar and parser used in this experiment, we describe

system on two distinct evaluation metrics for assessin h section 2. the robustness techniques employed to reach

the quality of the stocha_stic parsing model on matChin.ng% grammar coverage on unseen WSJ text (in the sense
predicate-argument relations. The first evaluation metric ¢, proportion of sentences for which at least one anal-

::neasures ma;tchesfof Eridlclit:%argumer!t relatlr?ns in LF sis is found). Furthermore, we give in section 3. a short
-structures (henceforth the annotation scheme) to ccount of the stochastic model used for disambiguating

gold standard of manually annotated f-structures for a rep[ £ parses. Experiments on evaluating the combined sys-

resentative subset of the WSJ treebank. The evaluatiof, . parser and stochastic disambiguator on the two dis-

measure counts the number of predlcate-argumentrelatlo_qﬁ]ct evaluation measures and corpora are described in sec-
in the f-structure of the parse selected by the stochastlﬁOn 4

model that match those in the gold standard annotation.

The other ' metric we employed maps predicate- 2. Robust Parsing using LFG
argument relations in LFG f-structures to the dependency . i
relations (henceforth the DR annotation scheme) propose&l- A Broad-CoverageL exical-Functional Grammar
by Carroll et al. (Carroll et al., 1999). Evaluation withghi The grammar used for this project has been developed
metric measures the matches of these relations to Carroll @ the ParGram project (Butt et al., 1999). It uses LFG as
al.’s gold standard corpus. a formalism, producing c(onstituent)-structures (treexs)



f(unctional)-structures (attribute value matrices) agpati  2.2. Robustness Techniques

The c-structures encode constituency. Each c-structwre ha g increase robustness, the standard grammar has been
at least one corresponding f-structure. F-structures@co gygmented with &RAGMENT grammar. This grammar
predicate-argument relations and other grammaticalinforparses the sentence as well-formed chunks specified by the
mation, e.g., number, tense. The XLE parser (Maxwell ar‘(grammar, in particular as Ss, NPs, PPs, and VPs. These
Kaplan, 1993) was used to produce packed representationgaunks have both c-structures and f-structures correspond
specifying all possible grammar analyses of the input.  jng to them, just as in the standard grammar. Any substring
that cannot be parsed as one of these chunks is parsed as a

The grammar has 314 rules with regular expression o, -\ chunk. Therokens are also recorded in the c- and

right-hand sides which compile into a collection of finite- f-structures. The grammar has a fewest-chunk method for
state machines with a total of 8,759 states and 19,695 arcaetermining the correct parse. For example, if a string can

The grammar uses several lexicons and two guessers: 0 & parsed as two NPs and a VP or as one NP and an S, the

guesser for words recognized by the morphological anagp_g option is chosen.

lyzer but not in the other lexicons and one for those not rec- A final capability of XLE that increases coverage of

anlzed. As such, most common gnd Proper nouns, adj?‘fhe standard plus fragment grammar on the WSJ corpus is
tives, and adverbs have no explicit lexical entry. The main, o\« o technique. Skimming is used to avoid time-
verb lexicon contains 9,652 verb stems and 23,525 SchaB'uts and memory proﬁlems when parsing unusually diffi-
egorization frame-verb stem entries; there are also lesico

for adiecti d ith subcat i ation f a}ult sentences in the corpus. When the amount of time or
or adjectives and nouns with subcategorization frames an emory spent on a sentence exceeds a threshhold, XLE
for closed class items such as prepositions.

goes into skimming mode for the constituents whose pro-

For estimation and testing purposes using the WSJ tre¢€SSing has not been completed. When XLE skims these
bank, the grammar was modified to parse part of speecf?mam'ng const.|tuents, it does a bounde.d.amount of wqu
tags and labeled bracketing. A stripped down version of th&€r Subtree. This guarantees that XLE finishes processing
WSJ treebank was created that used only those POS tafsSeNtence in a polynomial amount of time, although it
and labeled brackets relevant and reliable for determining©€S Not necessarily rezurn the complete set of analyses. In
grammatical relations. The WSJ labels are given entries i >'d se(r:]tlonkZ_S, 7%”’ of the sentenclesdvyere ﬁklmmed,
a special LFG lexicon, and these entries constrain both thé?]',ll/o of E e skimmed sentences resulted in full parses,
c-structure and the f-structure of the parse. For exarripe, t While 73.9% were fragment parses. - _
WSJ's ADJP-PRD label must correspond to an AP in the c- The final grammar coverage achieved 100% of section
structure and arcoMmp in the f-structure. In this version of 23 as unse%n unlabeled data: 74.7% of those were full
the corpus, all WSJ labels with -SBJ are retained and are r7S€S, 25.3%RAGMENT and/OrSKIMMED parses.
stricted to phrases correspondingtoBJin the LFG gram- T . _— . .
mar; in addition, it contains NP under VB#&J andoBah 3. Dlscrlmlnatlvg Statistical Estimation
in the LFG grammar), all -LGS tag®6L-AG), all -PRD from Partially L abeled Data
tags kcomp), VP under VP xcomp), SBAR- (comp), 3.1. Exponential Probability Modelson LFG Parses

and verb POS tags under VP (V in the c-structure). For  The probability model we employed for stochastic dis-
example, our labeled bracketing version of W8§05.mrg  ambiguation is the well-known family of exponential mod-

is [NP-SBJ His credibility] is/VBZ also [PP-PRD on the ¢|s. These models have already been applied successfully
line] in the investment community. for disambiguation of various constraint-based grammars

. LFG (Johnson et al., 1999), HPSG (Bouma et al., 2000),
Some mismatches between the WSJ labeled brackeECG (Osborne, 2000)).

ing .and the LFG grammar remain. '_Fhese oftgn arise when In this paper we are concerned with conditional expo-
a given constituent fills a'g.rammatlcal rqle in more thannential models of the form:

one clause, usually when it issuBJor OBJin one clause

and also thesuBJ of an xcomP complement. For exam- palzly) = Za(y) ' e* I

ple, in wsj1303.mrgJlapan’s Daiwa Securities Co. named

Masahiro Dozen presidentthe noun phraséMasahiro Where X(y) is the set of parses for sentenag

Dozenis labeled as an NP-SBJ, presumably because it i€x(y) = -, c x(y) e*7(*) is a normalizing constandy, =

the subject of a small clause complement. However, thé\,,... ,)\,) € IR" is a vector of log-parameterg, =
LFG grammar treats it also as tbeJ of the matrix clause. (f1, ..., f») is a vector of property-functiong : X —» R
As a result, the labeled bracketed version of this sentenclri = 1, ... ,n on the set of parse¥, and\ - f(z) is the

does not receive a full parse, even though the LFG outvector dot produc}_;_, \; fi(z).

put from parsing its unlabeled, string-only counterpart is  In our experiments, we employed around 1000 com-
well-formed. Some other bracketing mismatches remairplex property-functions comprising information about c-
between this stripped down WSJ corpus and the LFG gramstructure, f-structure, and lexical elements in parses|ai

mar; these are usually the result of adjunct attachmenh Sudo the properties used in Johnson et al. (1999). For exam-
mismatches occur in part because, besides minor modificgle, there are property functions for c-structure nodesand
tions to match the bracketing for special constructiong, e. structure subtrees, indicating attachment preferendagb. H
negated infinitives, the grammar was not altered to mirroversus low attachment is indicated by property functions
the WSJ bracketing. counting the number of recursively embedded phrases.



n

Other property functions are designed to refer to f-stngctu B i ;
attributes, corresponding to grammatical functions in LFG = ~log H Pa(z3ly;) + Z 202
or to atomic attribute-value pairs in f-structures. Morenco =1 =

plex property functions are designed to indicate, for ex- L Xy T I a2
ample, the branching behaviour of c-structures and the *ZIOg S iy e T@ Z 2052
(non)-parallelism of coordinations on both c-structurd an =1 (vs)

f-structure levels. Furthermore, properties referingex- | _ i log Z A F (@)
ical elements based on an auxiliary distribution approach i Xiares)
as presented in Riezler et al. (2000) are included in the N Yira .
model. Here tuples of head words, argument words, and - A-f(z) ~ A}
. . X L lo 2 .
grammatical relations are extracted from the training sec- * ; & Xz(:) ¢ * ; 207
— v —

tions of the WSJ, and fed into a finite mixture model for
clustering grammatical relations. The clustering model it Intuitively, the goal of estimation is to find model param-

self is then used to yield smoothed probabilities as valuesters which make the two expectations in the last equation
for property functions on head-argument-relation tuples oequal, i.e. which adjust the model parameters to put all the

LFG parses. weight on the parses consistent with the partial annotation
modulo a penalty term from the Gaussian prior for too large
3.2. Discriminative Estimation or too small weights.

Discriminative estimation techniques have recently re- Since a closed form solution for such parameters is not

ceived great attention in the statistical machine Iearnin%ava'lable' nu'merlcal optimization methqu have to *?e used.
community and have already been applied to statistical Ul €xperiments, we adapted a conjugate gradient rou-

parsing (Johnson et al., 1999; Collins, 2000; Collins and'ne to our ta_sk (see Rress (1992)), y‘e'd"ﬁg afast converg-
Duffy, 2001). In discriminative estimation, only the condi N9 OPtimization algorithm where at each iteration the neg-
tional relation of an analysis given an example is consig-2tVe l0g-likelihoodP(X) and the gradient vector have to
ered relevant, whereas in maximum likelihood estimatiorrbe evaluated. For our task the gradient takes the form:

the joint probability of the training data to best describe o OP(X\) 9P(N) dP(N)

servations is maximized. Since the discriminative task-is d VP(A) = < CIVERE)Y > , and
rectly kept in mind during estimation, discriminative meth ! ?
ods can yield improved performance. In our case, discrim-

P

inative criteria cannot be defined directly with respect to  OP(X) - eI @) f(x)

“correctlabels” or “gold standard” parses sincethe WSJan- — ). - Z( S X F(z)
. .. . . 2 =1 z€X(y;.2;) z€X (yj,25)

notations are not sufficient to disambiguate the more com- 3%

plex LFG parses. However, instead of retreating to unsu- B Z e*F(@) f;(z) )+ Ai

pervised estimation techniques or creating small LFG tree- e\ F(x) o2

Zx : -
banks by hand, we use the labeled bracketing of the WSJ meX(y;) TrEX W)

training sections to guide discriminative estimation. Tha The derivatives in the gradient vector intuitively are agai
is, discriminative criteria are defined with respecttoske  jyst a difference of two expectations
of parses consistent with the WSJ annotattons

The objective function in our approach, denoted by - - i
P()), is the joint of the negative log-likelihood L(\) and B pr filysr 231+ Zpk[fi\yj] + o2
a Gaussian regularization termG()) on the parameters = =
A. Let{(y;,2;)}7~, be a set of training data, consisting of Note also that this expression shares many common terms
pairs of sentenceg and partial annotations, let X (y,z)  with the likelihood function, suggesting an efficient imple
be the set of parses for sentenceonsistent with annota- mentation of the optimization routine.
tion z, and X (y) be the set of all parses produced by the
grammar for sentence. Furthermore, lep[f] denote the 4. Experimental Evaluation
expectation of functiorf under distributiorp. ThenP(\)
can be defined for a conditional exponential mqgadlz|y)
as:

Training: The basic training data for our experiments
are sections 02-21 of the WSJ treebank. As a first step,
all sections were parsed, and the packed parse forests un-
packed and stored. For discriminative estimation, thia dat
set was restricted to sentences which receive a full parse
(in contrast to &RAGMENT or SKIMMED parse) for both

An earlier approach using partially labeled data for estinga.  its partially labeled and its unlabeled variant. Furthereno
stochastics parsers is Pereira and Schabes (1992) workioimgy ~ only sentences which received at most 1,000 parses were
PCFG from partially bracketed data. Their approach diffeven
the one we use here in that Pereira and Schabes take an EMl-base 2An alternative numerical method would be a combination of
approach maximizing the joint likelihood of the parses anidgs iterative scaling techniques with a conditional EM aldumit (Je-
of their training data, while we maximize the conditionaelii- bara and Pentland, 1998) However, it has been shown experime
hood of the sets of parses given the corresponding strings in tally that conjugate gradient techniques can outperfoerative
discriminative estimation setting. scaling techniques by far in running time (Minka, 2001).



taken under consideration. From this set, sentences from Table 1 gives results for 700 examples randomly se-
which a discriminative learner cannot possibly take addected from section 23 of the WSJ treebank, using both LFG
vantage, i.e. sentences where the set of parses assignedattd DR measures. The effect of the quality of the parses on
the partially labeled string was not a proper subset of the

parses assigned the unlabeled string, were removed. These

successive selection steps resulted in a final training sef2P!€ 1: Disambiguation results for 700 examples randomly

consisting of 10,000 sentence each with parses for pars_elected from section 23 of the WSJ treebank using LFG

tially labeled and unlabeled versions. Altogether thersewe and DR measures.

150,000 parses for partially labeled input and 500,000 for LFG | DR
unlabeled input. _ _ upper bound | 84.7 | 80.7

For estimation, a simple property selection procedure stochastic | 78.7 1 72.9
was applied to the full set of around 1000 properties. This lowerbound | 75.0 | 68.8

procedure is based on a frequency cutoff on instantiations
of properties for the parses in the labeled training set. The
result of this procedure is a reduction of the property vec-
tor to about half of its size. Furthermore, a held-out data se ,. : . :
was created from section 24 of the WSJ treebank for exghsamblguatlon performance can be illustrated by break-

: . . . ing down the F-measures according to whether the parser
perimental selection of the variance parameter of the prlorields full DArSES OFRAGMENT Of SKIMMED DArsSes or
distribution. This set consists of 150 sentences which re¥ b b

. i . both for the test sentences. The percentages of test exam-
ceived only full parses, out of which the most plausible one . : :
was selected by manual inspection ples which belong to the respective classes of quality are

Testing: Two different sets of te.st data were used: (i) listed in the first row of Table 2. F-measures broken down

: according to classes of parse quality are recorded in the
700 sentences randomly extracted from section 23 of th'1aollowing rows. The first column shows F-measures for all

:Aéii ggf:rzn:: atgdog'rvfg gzgzﬁgdaa;d df?)trgggu;irig:zfgarses in the test set, as in Table 1, the second column shows
! ng u ! ! est F-measures when restricting attention to examples

from the Brown corpus given gold s?andard annotat|on§ b3(/vhich receive only full parses. The third column reports F-
Carroll etal. (1999) according to their dependency refetio measurs for examples which receive only non-full parses
(DR) schem& Both the LFG and DR annotation schemes, = o o NT OF SKIMMED Darses OSKIMMED FRAG- '

are discussed in more detail bglow, as IS a mapping fronﬂ/lENT parses. Columns 4-6 break down non-full parses ac-
LFG f-structures to DR annotations.

. cording to examples which receive orHRAGMENT, only
Gold standard annotation of the WSJ test set was b°°t§K|MMED or only SKIMMED FRAGMENT parses. Since

strapped by parsing the test sentences using the LFG 9rafost results on predicate-argument matching have been re-

mar and also checking for consistency with the Penn Treeﬁ)orted for length-restricted test sets (20-30 words), we al

bank annotation. Starting from the (sometimes fragmen;

| d th bank ) movideforcomparison results for a subset of 500 sentences
tary) parser analyses and the Treebank annotations, go our sample which had less than 25 words. These results

standard parses were created by manual cor.rections and e reported in Table 3.
tensions of the LFG parses. Manual corrections were nec-
essary in about half of the cases.

Performance on the LFG-annotated WSJ test set wasable 3: Disambiguation results on 500 examples restricted
measured using both the LFG and DR metrics, thanks t¢0 < 25 words randomly selected from section 23 of the
the LFG-to-DR annotation mapping. Performance on theNSJ treebank using LFG and DR measures.
DR-annotated Brown test set was only measured using the

| error reduction] 38 [ 35 |

DR metric, owing to the absence of an inverse map from LFG | DR
DR to LFG annotations. upper bound | 88.0 | 85.4
Results: In our evaluation we report F-measures for the stochastic | 82.8 | 77.5
respective types of annotation, LFG or DR, and for three lower bound | 78.0 | 72.6
types of parse selection, ([@wer bound random choice | error reduction| 42 | 38 |

of a parse from the set of analyses, (ipper bound se-
lection of the parse with the best F-measure according to
the annotation scheme used, and @ipchasticthe parse Results of the evaluation on Carroll et al.'s Brown test
selected by the stochastic disambiguator. €hver reduc-  set are given in Tables 4 and 5. Table 4 presents an analysis
tion row lists the reduction in error rate relative to the up- of evaluation results according to parse-quality for the DR
per and lower bounds obtained by the stochastic disanmeasure applied to the Brown corpus test set. In Table 5
biguation model. F-measures is definedasprecision x we show the DR measure along with an evaluation measure
recall [ (precision + recall). which facilitates a direct comparison of our results to thos
of Carroll et al. (1999). Following Carroll et al. (1999) we
3Both corpora are available online. The WSJ f-structureCOUNt a depedency relation as correct if the gold standard
bank atwww.parc.com/istl/groups/nitt/fsbank/ . has a relation with the same governor and dependent but
and Carroll et al.’s corpus atww.cogs.susx.ac.uk/ perhaps with a different relation-type. This dependency-
lab/nlp/carroll/greval.html . only (DO) measure thus does not reflect mismatches be-




Table 2: LFG F-measures broken down according to parsetgé@alithe 700 WSJ test examples.

all | full | non-full | fragments| skimmed| skimmed fragments
% of testset| 100 | 74.7| 25.3 20.4 14 3.4
upper bound 84.7 | 91.3| 69.8 72.0 73.1 60.5
stochastic | 78.8| 84.6| 65.2 67.4 67.8 55.9
lower bound| 75.0| 80.1| 63.9 65.9 66.2 55.3

Table 4: DR F-measures broken down according to parse géalithe 500 Brown test examples.

all | full | non-full | fragments| skimmed| skimmed fragments
% of testset| 100 | 79.6 | 20.4 20.0 2.0 1.6
upper bound 79.6 | 84.0| 65.2 65.2 55.5 52.9
stochastic | 73.7| 77.6| 61.1 61.0 52.3 49.4
lower bound| 70.8 | 74.4| 58.8 58.7 50.8 48.3

tween arguments and modifiers in a small number of casesalue of itsPRED attribute.pay is the predicateil5 is a
lexical id, [n5,n3] a list of f-structure nodes serving as
thematic arguments, aiffd an (empty) list of non-thematic
arguments. The grammatical roles associated with thematic
and non-thematic arguments are identified by the corre-
spondingsubj , obj , etc., predicates. In this experiment,

Table 5: Disambiguation results on 500 Brown corpus ex
amples using DO measure and DR measures.

DO | DR we measured precision and recall by matching at the gran-
upper bound | 81.6| 79.6 ularity of these individual features.
stochastic | 75.8| 73.7 The matching algorithm attempts to find the maximum
lowerbound | 7291 70.8 number of features that can be matched between two struc-

tures. It proceeds in a stratified manner, first maximizing
the matches between attributes ligeed , adjunct and

in _set , and then maximizing the matches of any remain-
ing attributes.

| error reduction] 33 | 34 |

5. Comparison of Evaluation Metrics 52. Comparison with DR Metric

Tables 1 and 3 point to systematically lower F-scores As a brief review (see Carroll et al. (1999) for more de-

Enflhe.r tg.e [:R mei\sure(;[hatr? underthe LF? rgeasturet, thr?quil), the DR annotation for our example sentence (obtained
othindicate similar reductions in error rate due to steeha . ."\ mapping described below) is

tic disambiguation.

(aux_ pay will) (subj pay Meridian)
51. LFEG Evaluation Metric (detmod_ p_rgmium a) (mod miIIion_30.5)
. o ] (mod_ $ million) (mod of premium $)
The LFG evaluation metric is based on the compari- (dobj pay premium)  (mod._ billion 2)
son of ‘preds-only’ f-structures. A preds-only f-struatur (mod_ $ billion) (mod in $ deposit)
is a subset of a full f-structure that strips out grammat- (dobj assume $) (mod to pay assume)

ical attributes (e.g. tense, case, number) that are not di- Some obvious points of comparison with the f-structure
rectly relevant to predicate-argument structure. More prefeatures are: (i) The DR annotation encodes some informa-
cisely, a preds-only f-structure removes all paths throughion, e.g. the ‘detmod’ relation, that is not encoded in gred
the f-structure that do not end inFeRED attribute. Figures only f-structures (though it is encoded in full f-structsjye
1 and 2 illustrate the difference between the full and preds¢ii) Different occurrences of the same word (e.g. “$") are
only f-structures for one parse of the senteliegidian will distinguished via different lexical ids in the LFG represen
pay a premium o$30.5 million to assume a deposit&  tation but notin the DR annotations so that correctly match-
billion. As this example shows, the preds-only f-structureing DR relations can be problematic. (iii) The DR annota-
lacks some semantically important information present irtion has 12 relations instead of the 34 feature-specifioatio
the full f-structure, e.g. the marking of future tense, theThis is because a given predicate-argument relation in the
marking of a purpose clause, and the attribute showing thdtstructure is broken down into several different feature-
a deposiis an indefinite. specifications. For example, the DR ‘mod’ relation involves
Figure 2 also shows the set of individual feature specan f-structure path through axbJuNCT, IN_SET and two
ifications that define the preds-only f-structure. The firstPRED attributes; the DR ‘subj’ relation is a combination of
property indicates that the f-structure denotednflyhas  an f-structureeREDandsuBJattribute. Thus the LFG met-
the semantic forrsf(pay,i1l5,[n5,n3],[])) asthe ric is more sensitive to fine-grained aspects of predicate-



“Meridian will pay a premium of $ 30.5 million to assume $ 2 billion in deposits.”

[PRED  ’pay<[454:Meridian] [11:premium}’
[PRED ‘assume<[23-SUBJ:pro} [30:$}>'
[PRED &

PRED 'in<[40:depositp’
PRED 'deposit
IADJUNCT: oBJ {NTYPE [GRAIN count ] }
40 [CASE acc, NUM pl, PCASE in, PERS 3
37 [ADJUNCT-TYPEnominal, PSEM locative, PTYPE sem

NTYPE [CURRENCY]
{PRED “billiory

IADJUNCT

RED '2'
SPEC NUMBER ADJUNCT{:«B [IF\’IUM pl. NUI ORMdigit, NU TYPEcard }}}

35 [NUM pl, NUMBER-FORMnumber, NUMBER-TYPEcard
30|CASE acc, NUM pl, PERS 3

RED *pro’
SUBJ B;RON—TYPE-nuII }
23|ADV-TYPE sadv—final INF-FORMto, PASSIVE —, STMT-TYPE purpose, VTYPE main

[PRED  ’premiunt
PRED 'of<[16:$}’
RED '$’
INTYPE [CURRENCY]

RED ‘million’
IADJUNCT oBJ PRED '30.5
SPEC  INUMBER ADJUNCT{lQ [NUM pl, NUMBER-FORMdigit, NUMBER-TYPEcard }}
21 [NUM pl, NUMBER-FORMnumber, NUMBER-TYPEcard

16 |CASE acc, NUM pl, PCASE of, PERS 3
13 [ADJUNCT-TYPEnominal, PSEM unspecified PTYPE sem

NTYPE  [GRAIN count ]

SPEC g[DET [PET-FORMa, DET-TYPEindef ]|
11 pASE acc, NUM sg, PERS 3

RED 'Meridian
suBJ NTYPE [PROPERIocation ]
454 [CASE nom, NUM sg, PERS 3
'TNS—ASP [MOOD indicative, TENSE fut ]
2|PASSIVE —, STMT-TYPEdecl, VTYPE main

Figure 1: Full f-structure

[PRED  ’pay<[-6-SUBJ:Meridian] [-6-OBJ:premiump’

PRED assume<[~1-SUBJ:pro] [-1-OBJ:Sp pred(n0,sf(pay,i15,[n5,n3],[])) pred(n5,sf(Meridiah,[],[]))

RED '§ pred(n3,sf(premium,il8,[],[1)) pred(nl19,sf('2",i7Q]))
RED ‘in<[-2-0BJ deposit} pred(n28,sf('30.5',i26,[.[1)  pred(n7,sf(assume.ji¥8,n9],[1))
ADJUNCT{_ZEBJ [PRED'deposit ] ]} pred(n8,sf(pro,i107,[1.[)) pred(n9,sf($,i67,[.0))
ADJUNCT; OB en bl pred(n17,sf(billion,i71,[,[)) pred(nll,sf(in,i84L2].[0)
SPEC [NUMBEF{ADJUNCT{_3[PRED,2, ]}]] pred(n12,sf(deposit,i86,[],[I))  pred(n4,sf(milliod7,[],[1))
pred(n23,sf(of,i21,[n24],[])) pred(n24,sf($,i23,])X
_1|SUBJ PRED'prO’ ] adjunct(n0,n2) imset(n7,n2)

PRED ‘premiunt adjunct(n9,n14) irset(n11,n14)

RED 0i<[-4-0BJ$p' adjunct(n17,n18) irset(n19,n18)
PRED'$ adjunct(n3,n20) irset(n23,n20)
80 laowunet! | PRED miliort adjunct(n4,n31) irset(n28,n31)
SPEC NUMBEF{ADJUNCT{-s[PRED’30.5‘ ]}]‘ subj(n0,n5) subj(n7,n8)
4 obj(n0,n3) obj(n7,n9) obj(n1l,n12) obj(n23,n24)
_6/SUBJ  [PRED 'Meridian ] number(n16,n17) number(n26,n4) spec(n9,n16) spec(d@y,n

Figure 2: Preds-only f-structure: graphical & clausal esggntation as produced by XLE

argument relations. However, it imposes a greater penaltiems that may use the same metric (at this point, perhaps
than DR on a modifier that is misattached to somethingonly the Carroll et al. grammar/parser). The DR metric also
that does not have any other modifiers. The LFG measurenables a cross-validation assessment of the LFG-derived
counts both an extraDJUNCT feature and an extrial_SET  predicate-argument measure.

feature as mismatches, whereas DR only counts a single Carroll and Briscoe provide conveniently down-

mismatchedwoD. Conversely, LFG gives more credit for |, 4ape files containing the raw input sentences and the

getting the singleton attachments correct. Similarly fer a o esn0nding sets of gold standard dependency relations.
gument structure. The LFG metric penalizes getyng argUiyve assumed it would be relatively straightforward to run
ments wrong, counting bothrreband a grammatical re- o sentences through our system and extract dependency
lation mismatch, *?“t conver;ely gives more creditif the arelations that could be compared to the gold standard. But
gument structure is exactly right. for reasons that ranged from the ridiculous to the sublime,

this turned out to be a surprisingly difficult task. One of
5.3. Mapping F-structuresto DR Annotations the lessons learned from this experiment is that even at the
devel of abstract dependencies it is still very hard to ereat
standard that does not incorporate unintended framework-
specific idiosyncracies.

The DR evaluation metric matches the dependency r
lations provided by the Carroll et al. gold standard with re-
lations determined from information contained in the LFG
representations. This enables us to measure the accuracy of One set of problems arose from the way the sentences
our system with a separately defined predicate-argumen&re recorded in the input file. The ‘raw’ sentences are not
oriented standard and to compare our results to other sy$ermed as they would appear in natural text. They are pro-



vided instead as pre-tokenized strings, with punctuationations that represent the left-to-right order in whitéve
split off by spaces from surrounding words. Thus commasandbe appeared in the original sentence. To obtain the in-
and periods stand as separate tokenslandcandclients’  tuitively correct matches, our mapping routine in effea ha
guilt show up asd 'm andclients ' guilt This preprocessed to simulate a small part of an English generator that de-
format may be helpful for parsing systems that embody thisodes our features into their typical left-to-right oraeyi
particular set of tokenizing conventions or that learn (a laln at least one case we simply gave up—it was too hard
tree bank grammars) from the data at hand. But our systerto figure out under which conditions there might have been
includes a hand-written finite-state tokenizer that isttigh  do-support in the original string; instead, we removed the
integrated with our grammar and lexicon, and it is designedew aux-do relations from the gold standard before com-
to operate on text that conforms to normal typographicaparing.
conventions. It provides less accurate guesses when text is There were a number of situations where it was difficult
ill-formed in this way, for example, introducing an ambi- to determine exactly the gold standard coding conventions
guity as to whether the quote olients ' guiltis attached either from the documentation or from the examples in the
as a genitive marker to the left or as an open quote to thgold standard file. Some of the confusions were resolved by
right. Another peculiar and troublesome feature of the rawpersonal communication with Carroll and Briscoe, leading
text is that some non-linguistic elements such as chemicah some cases to the correction of errors in the standard or
formulas are replaced by the meta-symkidbrmul>; our  to the clarification of principles. We discovered for some
tokenizer splits this up at the angle brackets and tries tphenomena that there were simple differences of opinion
guess a meaning for the wofokrmul surrounded by brack- of how a relation should be annotated. The corpus contains
ets. Faced with these low-level peculiarities, our firspste many parentheticals, for example, whose proper attachment
in the evaluation was to edit the raw text as best we coulds generally determined by extrasyntactic, discoursetlev
back into normal English. considerations. The default in the LFG grammar is to asso-
The gold standard file presented another set of relativelgiate parentheticals at the clause-level whereas the [Garro
low-level incompatibilities that resulted in spurious mis Briscoe gold standard tends to associate them with the con-
matches that were somewhat harder to deal with. First, thétituentimmediately to the left—a constituent that we can-
input sentences conform to American spelling conventiongot identify from the f-structure alone. As other examples,
but the head-words in the gold standard relations use Britisthere are still some mysteries about whether and how un-
spelling fieighboris coded asieighbou). Second, in the expressed subjects of open-complements are to be encoded
gold standard the head-words are converted to their citaand whether and how the head of a relative clause appears
tion forms (e.qg. valking’ in the text appears agalkin the  in a within-clause dependency.
relations). Generally these match the head-words that are With considerable effort we solved most but not all of
easily read from the LFG f-structures, but there are manyhese cross-representation mapping problems, as attested
discrepancies that had to be tracked down. For exampldy the relatively high F-scores we have reported. Our cur-
our f-structures do not conveshouldto shall, as the gold  rent results probably understate to a certain extent oer tru
standard does, whereas we do conbértselfto he(witha  degree of matching, but the relative differences between
reflexive feature) while the gold standard leaves ihims- ~ Sentences using the DR measure are quite informative. A
self We ended up creating by trial-and-error a coercion talow F-score is an accurate indication that we did not obtain
ble for this test set so that we could properly match differenthe correct parse. For F-scores above 90 but below 100 itis
manifestations of the same head. often the case that we found exactly the right parse but our

The experiment revealed some higher-level Conceptue{papping routine could not produce all the proper relations.

issues. In LFG itis the f-structure rather than the c-stmect . .

that most closely encodes the properties on which a non- 6. Discussion

tree, dependency-oriented evaluation should be based. So The general conclusion to draw from our results is that
we defined our task to be the construction of a routine fokhe two metrics, LFG and DR, show broadly similar behav-
reading dependenCieS from the f-structure alone. It turnﬁ)r, for the upper boundS, for the lower boundsy and for the
out, however, that the Carroll et al. dependencies encodgduction in error relative to the upper bound brought about
a mixture of superficial phrase-structure properties in adpy the stochastic model. The correlation between the upper
dition to underlying dependencies, and it proved a chalhound F-scores for the LFG and DR measures on the WSJ
lenge to recreate all the information relevant to a matchest set is .89. The lower reduction in error rate relative to
from the f-structure alone. For example, our f'StrUCtUrthe upper bound for DR evaluation on the Brown corpus
do not represent the categories (NP, S) of the phrases thain be attributed to a corpus effect that has also been ob-
correspond to the functions, but the gold standard depenserved by Gildea (2001) for training and testing PCFGs on
dencies make tree-based distinctions between non-claus@de \WSJ and Brown corpofaBreaking down evaluation
(e.g. NP) subjects, clausal (e.g. sentential) subjects, anresults according to parse quality shows that irrespective
open-complement (VP) subjects. We avoided this kind ofof evaluation measure and corpus around 5% overall per-
discrepancy by neutralizing these distinctions in the gold

standard prior to making any comparisons. As another ex- 4giidea reports a decrease from 86.19%/86.6% recall/peisi
ample, our English grammar decodes English auxiliary sepn |abeled bracketing to 80.3%/81% when going from training
quences into features SUChRERFECT PROGRESSIVEand  and testing on the WSJ to training on the WSJ and testing on the
PAssIVEwhile the gold standard provides a setsafx re-  Brown corpus.




formance is lost due to non-full parses, FRAGMENT or
SKIMMED parses or both.

algorithm. InAdvances in Neural Information Process-
ing Systems 11 (NIPS’98)

While disambiguation performance of around 79% F-Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi,

score on WSJ data seems promising, from one perspec- and Stefan Riezler.

tive it only offers a 4% absolute improvement over a
lower bound random baseline. We think that the high lower

1999. Estimators for stochastic
“unification-based” grammars. IRroceedings of the
37th Annual Meeting of the Association for Computa-

bound measure highlights an important aspect of sym- tional Linguistics (ACL'99)College Park, MD.
bolic constraint-based grammars (in contrast to treebankitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz,

grammars): the symbolic grammar already significantly re-
stricts/disambiguates the range of possible analyseisgiv
the disambiguator a much narrower window in which to

Robert Maclintyre, Ann Bies, Mark Ferguson, Karen
Katz, and Britta Schasberger. 1994. The Penn treebank:
Annotating predicate argument structure. ARPA Hu-

operate. As such, it is more appropriate to assess the dis- man Language Technology Workshop
ambiguator in terms of reduction in error rate (38% relativeJohn Maxwell and Ron Kaplan. 1993. The interface be-

to the upper bound) than in terms of absolute F-score. Both tween phrasal and functional constrair@amputational
the DR and LFG annotations broadly agree in their measure Linguistics 19(4):571-589.

of error reduction.

Thomas Minka.

2001. Algorithms for maximum-

Due to the lack of standard evaluation measures and |ikelihood logistic regression. Department of Statistics
gold standards for predicate-argument matching, a compar- Carnegie Mellon University.

ison of our results to other stochastic parsing systems-is di piles Osborne. 2000. Estimation of stochastic attribute-

ficult at the moment. To our knowledge so far the only di-
rect point of comparison is the parser of Carroll et al. (1999

value grammars using an informative sample. Pio-
ceedings of the 18th International Conference on Com-

which is also evaluated on Carroll et al.'s test corpus. They putational Linguistics (COLING 2000%aarbriicken.

report an F-measure of 75.1% for a DO evaluation that igfernando Pereira and Yves Schabes. 1992. Inside-outside
nores predicate labels but counts dependencies only. Un- reestimation from partially bracketed corpora. Rro-

der this measure, our system of parser and stochastic dis- ceedings of the 30th Annual Meeting of the Associa-
ambiguator achieves 75.8% F-measure. A further point of {jon for Computational Linguistics (ACL'92Newark,
comparisonis the parsing system presented by Bouma et al. pgjaware.

(2000). They report comparable relations on lower boundsyjjiam H. Press, Saul A. Teukolsky, Willam T. Vetterling,
and upper bounds for their constraint-based parsing sys- 5nd Brian P. Flannery. 199Numerical Recipes in C:
tems. On test corpora of a few hundred sentences of up to The Art of Scientific Computingcambridge University

20 words an upper bound of 83.7% F-score and a lower prass New York.

bound of 59% is reported; the best disambiguation modelgatan Riezler Detlef Prescher. Jonas Kuhn. and Mark

achieves 75% F-score.
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