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Abstract The advantages of neural machine translation (NMT) have been
extensively validated for offline translation of several language pairs for differ-
ent domains of spoken and written language. However, research on interactive
learning of NMT by adaptation to human post-edits has so far been confined
to simulation experiments. We present the first user study on online adapta-
tion of NMT to user post-edits in the domain of patent translation. Our study
involves 29 human subjects (translation students) whose post-editing effort
and translation quality were measured on about 4,500 interactions of a human
post-editor and a machine translation system integrating an online adaptive
learning algorithm. Our experimental results show a significant reduction of
human post-editing effort due to online adaptation in NMT according to sev-
eral evaluation metrics, including hTER, hBLEU, and KSMR. Furthermore,
we found significant improvements in BLEU/TER between NMT outputs and
professional translations in granted patents, providing further evidence for the
advantages of online adaptive NMT in an interactive setup.

Keywords online adaptation · post-editing · neural machine translation

1 Introduction

The attention-based encoder-decoder framework for neural machine transla-
tion (NMT) (Bahdanau et al, 2015) has been shown to be advantageous over
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the well-established paradigm of phrase-based machine translation immedi-
ately after its inception. For example, significant improvements according to
automatic and manual evaluation metrics could been shown in benchmark
translation competitions for spoken language (Luong and Manning, 2015) and
written language (Jean et al, 2015; Sennrich et al, 2016a). These results have
been investigated in-depth in analyses of the advantages of NMT along linguis-
tic dimensions (Bentivogli et al, 2016b) and along different domains (Castilho
et al, 2017a). In contrast, research on uses of NMT in online adaptation sce-
narios has so far been confined to simulations where the interactions of an
NMT system with a human post-editor are simulated by a given set of static
references (Wuebker et al, 2016; Knowles and Koehn, 2016; Turchi et al, 2017;
Peris et al, 2017, inter alia) or by a set of offline generated post-edits (Turchi
et al, 2017). User-studies on the benefits of machine learning for adaptation
of translation systems to human post-edits are rare, and to the best of our
knowledge, such studies have so far been restricted to phrase-based machine
translation (Denkowski et al, 2014b; Green et al, 2014; Bentivogli et al, 2016a;
Simianer et al, 2016).

We present a user study that analyzes 4,500 per-sentence interactions be-
tween an NMT system and 29 human post-editors. Our target domain are
patents that have to be translated from English into German. Our goal is to
quantify the mutual benefits of a system that immediately learns from user
corrections, on the one hand by reducing human post-editing effort, and on
the other hand by improving translation quality of the NMT output. In com-
paring post-editing of NMT outputs that are generated from systems with
and without online adaptation, we find a significant reduction in post-editing
effort for the former scenario according to the metrics of hTER (and hBLEU)
between NMT outputs and human post-edits. This confirms findings that have
been reported for user studies on online adaptation of phrase-based systems
(Bentivogli et al, 2016a; Simianer et al, 2016). Moreover, we find significant
improvements of post-editing effort for the online adaptation scenario with
respect to metrics such as keyboard strokes and mouse clicks that have been
used in computer-assisted translation.

We also attempt to quantify improvements in translation quality by mea-
suring improvements in sentence-level BLEU+1 (Nakov et al, 2012) and TER
between the iteratively refined NMT outputs and static human reference trans-
lations as found in granted patents. We find significant improvements with
respect to both metrics, showing a domain adaptation effect due to online
adaptation. This provides further evidence for the advantages of an online
adaptive NMT system in an interactive setup.

The remainder of this paper is organized as follows: In Section 2, we dis-
cuss the related work. We briefly introduce the learning protocol of online
adaptation, describe the tools and data, and the experimental design of our
user study (Section 3). Experimental results will be discussed in Section 4. We
conclude the paper by conclusions to be drawn from our experiments (Section
5).



A User-Study on Online Adaptation in NMT 3

2 Related Work

The advantages of NMT and its challenges have been investigated from dif-
ferent angles in recent work (Koehn and Knowles, 2017; Toral and Sánchez-
Cartagena, 2017; Farajian et al, 2017; Macketanz et al, 2017; Castilho et al,
2017a; Klubička et al, 2017; Bentivogli et al, 2018; Isabelle et al, 2017; Popović,
2017; Forcada, 2017; Castilho et al, 2017b; Junczys-Dowmunt et al, 2016;
Klubička et al, 2018; Shterionov et al, 2017; Burchardt et al, 2017, inter alia),
however, studies on interactive NMT, especially user studies involving human
post-edits of NMT outputs, have so far not been presented.

Online adaptation has been thoroughly researched since at least a decade,
either by adding online discriminative learning techniques (Cesa-Bianchi et al,
2008; Mart́ınez-Gómez et al, 2012; López-Salcedo et al, 2012; Denkowski et al,
2014a; Bertoldi et al, 2014, inter alia) to phrase-based MT systems, or adap-
tations to the generative components of the phrase-based framework (Nepveu
et al, 2004; Ortiz-Mart́ınez et al, 2010; Hardt and Elming, 2010, inter alia).
Recent studies applied the online adaptation framework to NMT, however, by
simulating the interactive scenario by online learning from offline created hu-
man references or post-edits (Wuebker et al, 2016; Knowles and Koehn, 2016;
Turchi et al, 2017; Peris et al, 2017).

User-studies involving the generation of post-edits in an online interaction
between translation system and post-editor have been presented as well, how-
ever, to the best of our knowledge these studies have been confined so far to
phrase-based MT (Green et al, 2013, 2014; Denkowski et al, 2014b; Bentivogli
et al, 2016a; Simianer et al, 2016).1 The closest approach to our work is the
study presented by Bentivogli et al (2016a). Similar to our work, they involve
human subjects in an interactive post-editing scenario where the system learns
online from user corrections. However, their study is confined to phrase-based
machine translation, and differs from our study in choosing a within-subjects
experimental design where the same translator post-edits the same document
under either test condition (static/adaptive NMT). We use a more standard
between-subjects design where each session is composed of different documents
of comparable difficulty, each of which is translated under two different con-
ditions (with and without online NMT adaptation), and post-edited by two
different translators.

3 Experimental Setup

3.1 Online Adaptation

Online adaptation for NMT follows the online learning protocol shown in Fig-
ure 1 that we adopted from Bertoldi et al (2014). The protocol assumes a
global model Mg that was trained on a large dataset of parallel data. This

1 In addition, Green et al (2014) – one of the first user studies on online adaptation to
post-edits – performed system updates offline instead of online.
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Train global model Mg

for each document d of |d| segments
for each example t = 1, . . . , |d|

1. Receive input sentence xt

2. Output translation ŷt
3. Receive user post-edit yt
4. Refine Mg+d on pair (xt, yt)

Fig. 1 Online learning protocol for post-editing workflow

dataset does not necessarily come from the same domain as the data used
in online adaptation. Online adaptation proceeds by performing online fine-
tuning on a further set of patent documents d, resulting in a combined model
Mg+d. This is done by invoking a sequence of |d| interactions, where on each
step a translation output ŷt for an input source segment xt is produced by the
NMT system, a post-edit yt is produced by the user, and a system update is
performed by using the pair (xt, yt) as supervision signal in online learning.

3.2 NMT System

The NMT system used in our experiments is based on the Lamtram toolkit
(Neubig, 2015), which is built on the dynamic neural network library DyNet
(Neubig et al, 2017). It implements an encoder-decoder architecture with at-
tention mechanism. The settings in our experiments use dot product as at-
tention type, together with attention feeding (Luong et al, 2015) where the
context vector of the previous state is used as input to the decoder neural
network. We trained recurrent neural networks (RNNs) with 2 layers consist-
ing of 256 units, and a word representation layer of 128 units, on GPU. The
chosen RNN architecture is a long short-term memory network (Hochreiter
and Schmidhuber, 1997). As stochastic optimization method we used ADAM
(Kingma and Ba, 2015) with a learning rate initialization to 0.001. To prevent
overfitting, we set the dropout rate to 0.5 (Srivastava et al, 2014), and used a
development set of 2k sentences for early stopping. Evaluation was performed
after every 50k sentences.

In order to use Lamtram as an interactive online learning platform, we
needed to modify the tool to allow training and translation to take turns
without having to reload the model parameters.

For online adaptation we used stochastic gradient descent, with a learning
rate of 0.05 and a dropout of 0.25. For inference, the beam size was set to 10,
and we tuned a word penalty parameter to adjust the lengths of the outputs,
as well as a penalty for unknown words. These parameters were set to 0.85
and 0.25 respectively.



A User-Study on Online Adaptation in NMT 5

Fig. 2 User interface for post-editing

3.3 User Interface

Furthermore, we implemented a user interface that sends inputs via the net-
work to a web client that renders the source and the proposed NMT for user
post-editing, and records post-edits for learning. A screenshot of the interface
is shown in Figure 2. From top to bottom, it shows the source, the post-editing
field, and the slider used to collect human quality ratings of the NMT outputs
before post-editing. Segments are complete patent abstracts in their original
order preluded by the respective patent’s title.

3.4 Data

As training data we used ∼ 2M parallel sentences extracted from Europarl and
News Commentary. Furthermore, offline fine-tuning was performed on ∼ 350k
parallel sentences of in-domain data from PatTR2. The translation direction
is from English into German.

Since patent claims and descriptions tend to be extremely complex and
long, they are not suitable for translation by non-experts. We therefore used
titles and abstracts for both training and test. Development and test data are
limited to documents, each consisting of a patent title and abstract, with an
overall maximum length of 45 tokens per sentence. The data split was done
by year and by family id to avoid any possible overlaps. The test data were
automatically grouped into clusters by cosine similarity of their bag-of-words

2 http://www.cl.uni-heidelberg.de/statnlpgroup/pattr/

http://www.cl.uni-heidelberg.de/statnlpgroup/pattr/
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tf-idf source representations and length, to obtain clusters of related documents
with an approximate source token count of 500, which is appropriate in a
post-editing setup given the available time limit of 90 minutes. This way,
each cluster contained the titles and complete abstracts of 3-5 documents. All
data were preprocessed by tokenization, truecasing, and byte pair encoding
(Sennrich et al, 2016b) with a vocabulary size of 10k for source and target,
respectively.

3.5 Experimental Design

Our post-editors were 29 master-level students at the Institute for Translation
and Interpreting at Heidelberg University. The experiments were conducted
during 8 post-editing sessions with a duration of 60-90 minutes each over the
course of 5 days. All sessions took place in the same computer pool with the
same hardware on each computer.

In a real-world post-editing scenario translator usually has access to online
available dictionaries, translation memories or other resources. However, in
our specific case the patents which we used in our experiments are online
available3, indexed, and can be retrieved by concordance search4. The data
for PatTR was extracted from the MAREC patent collection, which also can
be found online5. Thus in order to avoid receiving copies of the original data
instead of human post-edits, we had to compromise the experiment setup by
restricting post-editor to use only online dictionaries, that do not crawl for
parallel data6, and Wikipedia7.

In our experiments, we processed overall 105 documents, resulting in 2,209
source sentences. The same documents were used to test the effect of the
adaptation condition on human post-editing, however, in difference to Ben-
tivogli et al (2016a), no document was seen by the same translator twice. We
avoided on purpose a possible scenario assigning one document to the same
student two times, once translated by a baseline and once by an adapted NMT
system. This is to avoid a learning/memorizing effect for the second time a
post-editor views and edits the same document. Instead, all documents were
translated under two different translation conditions (with and without online
adaptation) and post-edited by two different students.

To sum up the experimental setup, there were two automatic translations
of the same 2,209 sentences (adaptive NMT + static NMT) and one post-edit
for each condition.8 In total we collected 4,563 per-sentence measures (NMT
adaptation false - 2,354 and true - 2,209) of (h)BLEU (Papineni et al, 2002),

3 http://www.cl.uni-heidelberg.de/statnlpgroup/pattr/
4 for example, on https://www.linguee.com
5 http://www.ifs.tuwien.ac.at/imp/marec.shtml
6 http://www.dict.cc,http://dict.leo.org
7 https://de.wikipedia.org
8 A single document was used as an exam in the very last session and translated by all

post-editors and without adaptation.

http://www.cl.uni-heidelberg.de/statnlpgroup/pattr/
https://www.linguee.com
http://www.ifs.tuwien.ac.at/imp/marec.shtml
http://www.dict.cc, http://dict.leo.org
https://de.wikipedia.org
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Table 1 Excerpt for the model coefficients for the used fixed effect of online NMT adap-
tation to the individual intercepts for response variable hBLEU; in the example, the global
intercept has a value of 47.19 and the global slope lies at 6.73

Random effect Individual intercept Individual slope

sentenceID 15 39.64 10.67
sentenceID 16 49.86 19.52
sentenceID 17 53.12 23.73
sentenceID 18 53.39 11.75
sentenceID 19 66.55 20.39

user A 45.96 3.06
user B 53.66 10.63
user C 51.23 15.01
user D 37.77 5.06
user E 53.07 7.28
user F 54.10 8.97

(h)TER (Snover et al, 2006), translation quality rating (Graham et al, 2016),
keyboard strokes and mouse clicks (Barrachina et al, 2009), and post-editing
time.

4 Analysis and Results

4.1 Statistical Analysis

To analyze the results, we used linear mixed-effects models (LMEMs), imple-
mented in the lme4 package (Bates et al, 2015) in R (R Core Team, 2014).
Baayen et al (2008) introduced the usage of LMEMs for the analysis of re-
peated measurement data, enabling to resolve non-independencies by intro-
ducing sources of variation, by-subject and by-item variation, as random ef-
fects into the model. The general form of an LMEM can be described as the
unconditional distribution of a vector of random effects b, and the conditional
distribution of a vector-valued random response variable Y given b, which are
both multivariate Gaussian distributions (Bates et al, 2015). In matrix form,
the LMEM can be expressed by the following formula:

Y = Xβ + Zb+ ε, (1)

where β and b are fixed-effects and random-effects vectors, X and Z are fixed-
effects and random-effects design matrices, and ε is a vector of random errors.

In our application, the main fixed effect is the NMT adaptation condition
(online adaptation to post-edits versus offline learning of a global model only),
for which several response variables were measured. The random effects have
differing intercepts as well as differing slopes. The granularity of the model is
at the sentence level. The observed response value for the i-th subject and j-th
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Table 2 Slopes for the used fixed effects of online NMT adaptation and dayID (index of
day when consecutive sessions took place) to the global intercept; the response variable is
post-editing time in ms, with a global intercept of 811.76 ± 43.47

Fixed effect Slope

NMT adaptation -29.72 ± 27.90

dayID 2 -135.81 ± 38.33
dayID 3 -171.21 ± 38.30
dayID 4 -221.24 ± 38.25
dayID 5 -235.82 ± 35.30

sentence, yij ∈ Y (for example, a time measurement, hTER, hBLEU, etc.), is
defined in our application of LMEMs as follows:

yij = β0 + (β1 + β2)xij + b0i + b0j + (b1i + b1j)zij + εij . (2)

The LMEM yields estimates of a global intercept β0 (i.e., the expected mean
value of a response variable when all slopes are equal to 0) and global slopes
for the used fixed effects of NMT adaptation β1 and dayID β2. Thus in our
experiments, a global intercept β0 is an estimate for an average value for the
measurements across all students and all sentences on the first day in the
scenario without NMT adaptation. A global slope of the main fixed effect
β1 provides an estimate for the difference due to online NMT adaptation.
The global slope β2 of the dayID fixed effect estimates differences in response
variables in consecutive sessions. Furthermore, we get random effect intercepts
for subject b0i and sentence levels b0j (i.e., for each level we get that level’s
intercept’s deviation from the global intercept) and random effect slopes within
each user b1i and sentence level b1j (i.e., the degree to which a fixed effect
deviates from the global slope within a given level). Thus, each student and
each sentence get its own individual intercept, or average value, in the scenario
without NMT adaptation, as well as its own estimate for improvement due to
online NMT adaptation. In our case, (xij) = X being equal to (zij) = Z, is
a design matrix of categorical variables with regard to the measurement for
the j-th sentence and i-th subject and the respective predictor; εij is an error
term.

We applied the idea of maximum random effects in our model by using ran-
dom slopes for each random effect to account for different reactions of subjects
and for different effects for items with regard to experimental conditions (Barr
et al, 2013). Table 1 illustrates the usefulness of the used maximum random
effects structure by a sample of individual intercepts and respective slopes
for each level of random effects in the LMEM for hBLEU. First, interpreting
individual intercepts as average hBLEU values without NMT adaptation, we
observe that both individual intercepts for sentences and post-editors differ
from the global intercept, which is the average value of 47.19 found in mea-
surements in the offline learning scenario. The high variance within individual
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Table 3 Slope for the fixed effect of online NMT adaptation to the global intercept.
LMEMs were built for hBLEU, TER/BLEU between NMT output (mt) and reference (ref),
TER/BLEU between post-edit (pe) and reference, hTER, rating, count of keystrokes and
mouse clicks, KSMR and time as response variables; significance of results was tested with
likelihood ratio tests of the full model against the model without the independent variable
of interest

Response variable Intercept Slope Significance

hBLEU (%) 47.19 ± 1.20 +6.73 ± 1.01 p <0.001
BLEU mt & ref (%) 20.79 ± 0.97 +1.76 ± 0.27 p <0.001
BLEU pe & ref (%) 22.76 ± 1.22 +1.09 ± 0.63 p <0.1

hTER (%) 35.45 ± 0.82 -4.98 ± 0.72 p <0.001
TER mt & ref (%) 56.28 ± 0.97 -0.95 ± 0.29 p <0.02
TER pe & ref (%) 54.86 ± 1.18 -0.53 ± 0.55 -

rating (0-100) 44.23 ± 2.39 +6.11 ± 1.42 p <0.001

kbd+click (count) 73.15 ± 4.76 -12.13 ± 2.08 p <0.001
KSMR (ratio) 0.52 ± 0.02 -0.07 ± 0.02 p <0.001

time (ms) 811.76 ± 43.47 -29.72 ± 27.90 -

intercepts of each random effect indicates varying difficulty of sentences to
be translated and diverse preferences and experience of post-editors. Second,
the individual slope values, interpreted as hBLEU improvements due to on-
line NMT adaptation, make evident how much influence the effect of NMT
adaptation has on each sentence and for each post-editor. In comparison to a
global slope of 6.73, individually estimated random effect slopes vary signifi-
cantly. This shows that different sentences are harder to improve and different
post-editors react differently to manipulations to the NMT system.

Also, we found it useful to add the dayID as an additional fixed effect in the
LMEM. The variable dayID labels the days in chronological order when con-
secutive sessions took place. It indicates the progress of post-editors through
time and their improving experience with the NMT system and post-editing
practice. An example is given in Table 2 which compares the speedup of the
post-editing time in consecutive sessions to the improvement in post-editing
time due to NMT adaptation. We can clearly see that the learning effect over
time (shown in the reduction in post-editing time in consecutive sessions) has
a larger impact than the effect of online NMT adaptation.

4.2 Experimental Results

Table 3 gives the central results of our analysis: We find significant improve-
ments in post-editing effort due to online adaptation, shown in reduced hTER
by nearly 5 points and improved hBLEU up to 6.73 points. Furthermore, online
adaptation has a domain adaptation effect which leads to translation outputs
which are closer to the static reference translations in the granted patents.
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0.32 0.23 0.66 −0.37 −0.27 −0.65 −0.44 −0.58

0.77 0.45 −0.83 −0.65 −0.4 −0.22 −0.29

0.38 −0.66 −0.83 −0.34 −0.22 −0.26

−0.46 −0.37 −0.9 −0.51 −0.71

0.74 0.51 0.27 0.37

0.39 0.25 0.35

0.53 0.75

0.52

rating

bleu_ref_mt

bleu_ref_pe

hbleu

ter_ref_mt

ter_ref_pe

hter

time

ksmr

[−1,−0.6]
(−0.6,−0.2]
(−0.2,0.2]
(0.2,0.6]
(0.6,1]

Fig. 3 Correlation matrix for pairwise Pearson correlation coefficients for KSMR, time,
hTER, hBLEU, TER/BLEU between reference and post-edit, TER/BLEU between refer-
ence and NMT output, rating; strong positive correlations are marked with dark red; strong
negative correlations by dark blue

This is shown in an increase of BLEU between NMT output and reference
translation as well as BLEU between post-edit and reference. This agrees with
the quality assessment (rating) that users had to give using a 100-point slider
before they can start the post-editing process: Post-editors assess the quality
of the NMT output at 6 points higher in case of online adaptation.

In measuring post-editing time, we normalized wall-clock time by the num-
ber of characters in a post-edit. The improvement in time is 30 ms less per
character, corresponding to a nominal improvement of 3.7%. We conjecture
that the reason why we could not establish a significant improvement in post-
editing time could be due to improved post-editors’ experience in consecutive
sessions. Moreover, despite the used by-item and by-subject random intercepts
and slopes, we see a high variability of post-editing speed across items and sub-
jects, which makes it difficult to prove significance for the effect of online NMT
adaptation for the reduction of post-editing time. This result confirms simi-
lar findings reported in Bentivogli et al (2016a). However, as is shown in the
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Fig. 4 Regression plots of hTER and time (left) and hBLEU and time (right)

next section, our correlation analysis allows to establish a strong tie between
post-editing time and metrics of post-editing effort.

In order to measure technical effort of post-editing, we combined keyboard
strokes and mouse clicks into the metric of key-stroke and mouse-action ratio
(KSMR) - a measure proposed by Barrachina et al (2009). KSMR is calculated
as the sum of the number of keystrokes and the number of mouse movements
plus one, divided by the count of characters in the reference. We observed
significant reduction in KSMR. According to the LMEM analysis, online NMT
adaptation enables post-editors to use 12 keystrokes and mouse clicks less per
sentence.

Table 4 shows example patents which were post-edited during our exper-
iment. In the first example, our adapted NMT system has learned the right
translation of blades after a post-editor changed Schaufeln to Klingen. In the
second example, the technical term image recorder was inconsistently and
wrong translated by the baseline system as Bildaufzeichner or Bildaufnah-
meer. The adapted system learns the translation Bildaufnahmeapparat from
the post-edit.

4.3 Correlation Study

Since due to the relatively small size of our user study, significance of the re-
sult difference between the adaptation conditions could not be established for
some response variables, we furthermore analyzed the correlations between the
obtained measures. For this purpose, we calculated pairwise Pearson correla-
tion coefficients (Figure 3). The correlation matrix shows strong correlations
of translation quality rating with hBLEU, hTER, time and KSMR. Figure 4
shows detailed values for post-editing time plotted against hTER and hBLEU.
The plots confirm that while the effect of online adaptation was not significant
for the response variable of time, there is a strong correlation of post-editing
time with metrics for post-editing effort such as hTER or hBLEU.
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Table 4 Examples for test patent data: source, reference, NMT output, post-edit, and
adapted NMT output

Source

The outer surfaces of the blades (172) are inclined relative
to the axis of rotation.
When the product to be cut is pushed into the knife arrangement
(170), the latter is rotated in such a manner that the blades (172)
cut the product to be cut along helical paths.

Reference

Die Aussenflächen der Klingen (172) sind relativ zur Drehachse
geneigt.
Wenn das Schneidgut in die Messeranordnung (170) eingeschoben
wird, wird diese derart in Drehung versetzt, dass die Klingen (172)
das Schneidgut entlang helikaler Bahnen zerteilen.

NMT output

Die Aussenflächen der Schaufeln (172) sind zur
Drehrichtungsachse geneigt.
Beim Eindringen des zu durchtrennenden Produkts in die
Messeranordnung (170) wird das zu schneidende Gut so gedreht.

Post-edit

Die Außenflächen der Klingen (172) sind bezogen auf die
Rotationsachse neigbar.
Beim Einführen des zu schneidenden Produktes in die
Messergruppe (170) wird letztere so gedreht, dass die Klingen
(172) das zu schneidende Produkt spiralförmig schneiden.

Adapted NMT

Die Aussenflächen der Schaufeln (172) sind bezogen auf die
Rotationsachse neigbar.
Beim Einschnitt des Warengutes in die Messeranordnung
(170) wird die Klinge so gedreht, dass die Klinge (172)
das zu schneidende Gut schneidet.

Source

Miniaturized image recorder
The aim of the invention is to create an image recorder which
can be miniaturized to such an extent that an endoscope of
the smallest dimensions can be produced therewith.
The disclosed image recorder can also be optimized in such a
manner that the major part of the semiconductor surface is
made available for pixel integration.

Reference

Miniaturisierter Bildaufnehmer
Ziel der offen gelegten Erfindung ist es einen Bildaufnehmer
vorzuschlagen, der soweit miniaturisiert werden kann, dass
damit ein Endoskop kleinster Dimensionen realisiert werden kann.
Ausserdem kann der offen gelegte Bildaufnehmer dahingehend
optimiert werden, dass der grösste Teil der Halbleiterfläche
für die Integration von Bildpunkten zur Verfügung steht.

NMT output

Miniaturisierter Bildaufzeichner
Der Erfindung liegt die Aufgabe zugrunde, einen
Bildaufnahmeer zu schaffen, der so miniaturiert ist, dass
eine Impedanz der kleinsten Abmessungen erzielbar ist.
Der Bildaufzeichner kann auch so optimiert werden, dass der
grösste Teil der Halbleiterfläche für die galvanische Integration
bereitgestellt wird.

Post-edit

Miniaturisierter Bildaufnahmeapparat
Das Ziel der Erfindung ist es, einen Bildaufnahmeapparat
herzustellen, der so miniaturisiert ist, dass ein Endoskop
der kleinsten Abmessungen damit hergestellt werden kann.
Der verlautbarte Bildaufnahmeapparat kann auch so optimiert
werden, dass der grösste Teil der Halbleiterfläche für die
Pixelintegration bereitgestellt wird.

Adapted NMT

Miniaturisierter Bildlautsprecher
Der Erfindung liegt die Aufgabe zugrunde, einen
Bildaufnahmeapparat zu schaffen, der so miniaturiert ist, dass
eine Impedanz der kleinsten Abmessungen hergestellt werden kann.
Der Bildaufnahmeapparat kann auch so optimiert werden,
dass der grösste Teil der Halbleiterfläche für die galvanische
Integration bereitgestellt wird.
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5 Summary and Conclusion

We presented a user-study on the effect of online adaptation on NMT systems
to interactive user post-edits of the proposed translations. We found signif-
icant reductions in human post-editing effort along several well-established
response variables (hTER, hBLEU, KSMR). Furthermore, we found a domain
adaptation effect due to online adaptation, leading to significant improvements
of TER/BLEU of the machine translations with respect to human reference
translations. This provides further evidence for the advantages of an online
adaptive NMT system in an interactive setup.

Due to our experimental setup where the same documents were translated
by both a static and an adaptive NMT system, and post-edited by two different
translators at different points in time, we found a confounding effect between
improved post-editing experience and reduced time. This did not allow us to
establish significant improvements of online NMT adaptation with respect to
post-editing time. However, we found a strong correlation of reduction in post-
editing time to improvements in metrics for post-editing effort such as hTER,
hBLEU, or KSMR. This shows firstly that the latter metrics are more reliable
indicators for reduced post-editing effort, and furthermore that reduced post-
editing time is a correlated, but not necessarily directly causally related effect.

In sum, our user study established significant improvements due to online
NMT adaptation along well-known metrics of post-editing effort, and along
the dimension of domain adaptation that is particularly important in tech-
nical translation domains such as patent translation. Our user study did not
touch novel modes of user interaction with NMT systems (for example, hu-
man bandit feedback: Kreutzer et al, 2017; Nguyen et al, 2017) or alternative
modes of NMT system adaptation (for example, interactive translation pre-
diction: Knowles and Koehn, 2016). These topics are subject of ongoing and
future work (see Kreutzer et al, 2018a,b; Lam et al, 2018).
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Ortiz-Mart́ınez D, Garćıa-Varea I, Casacuberta F (2010) Online learning for
interactive statistical machine translation. In: Proceedings of the Human
Language Technologies conference and the Annual Conference of the North
American Chapter of the Association for Computational Linguistics (HLT-



A User-Study on Online Adaptation in NMT 17

NAACL), Los Angeles, CA
Papineni K, Roukos S, Ward T, Zhu WJ (2002) Bleu: A method for automatic

evaluation of machine translation. In: Proceedings of the 40th Annual Meet-
ing on Association for Computational Linguistics (ACL), Stroudsburg, PA
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