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Abstract
We present Otedama,1 a fast, open-source tool for rule-based syntactic pre-ordering, a well

established technique in statistical machine translation. Otedama implements both a learner
for pre-ordering rules, as well as a component for applying these rules to parsed sentences.
Our system is compatible with several external parsers and capable of accommodating many
source and all target languages in any machine translation paradigm which uses parallel train-
ing data. We demonstrate improvements on a patent translation task over a state-of-the-art
English-Japanese hierarchical phrase-based machine translation system. We compare Otedama
with an existing syntax-based pre-ordering system, showing comparable translation perfor-
mance at a runtime speedup of a factor of 4.5–10.

1. Introduction

Syntactic pre-ordering is a commonly used pre-processing technique in state-of-
the-art machine translation systems. It attempts to adjust the syntax of the source lan-
guage to that of the target language by changing the word order of a source sentence
prior to translation. Originally, this technology was devised to overcome a weak-
ness of classical phrase-based translation systems (Koehn et al., 2003), which usually
penalize moving target phrases far away from their source positions. This is a major

1An open-source version is available at https://github.com/StatNLP/otedama. Otedama is named after
a Japanese juggling game.
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source of errors when translating between languages with heterogeneous and dissim-
ilar sentence structures. Hierarchical phrase-based translation systems do not place a
similar prior penalty on phrase reordering during decoding, however, such systems
have been shown to profit from syntactic pre-ordering as well (de Gispert et al., 2015).

Otedama implements a variant of the approach of Genzel (2010), which learns cas-
cading lists of rules for syntactic transformation. Unlike early works on pre-ordering
which rely on hand-written rules (Collins et al., 2005), Otedama automatically extracts
rules from parse trees. While recent work has applied other learning algorithms to the
problem of learning pre-ordering models (Lerner and Petrov, 2013; Jehl et al., 2014;
de Gispert et al., 2015; Nakagawa, 2015), automatic rule-learning is a popular and
suitable choice for pre-ordering systems because syntactic features are discrete and
relatively dense and the resulting models allow for very fast application to system
input. In particular, the rule-based approach deals well with the combinatorial ex-
plosion that is incurred when attempting to train in-domain pre-ordering models on
data with a high prevalence of long sentences, as we demonstrate in our system eval-
uation. Furthermore, our approach is compatible with nearly any external parsing
framework, in difference to approaches where preordering and parsing need to be
tightly connected for improved performance (Nakagawa, 2015). Despite the fact that
pre-ordering continues to be an important technique in high-quality machine trans-
lation, so far, there is a lack of an open-source implementation of learners and online
application systems for pre-ordering that are convenient to use and fast enough to
be suitable for rapid prototyping and meaningful comparison of new approaches to
existing baselines. We created Otedama to address this lack. We compare Otedama
to two variants of an open-source pre-orderer by Neubig et al. (2012) which induces
a bracketing transduction grammar for producing a re-ordered string. Our system
yields comparable improvements in translation quality at a runtime speedup of a fac-
tor of 4.5–10. Our tool is available as open-source code and compatible with nearly
any external parser.

2. Specifications
2.1. Model Formalism

Our model formalism follows the work of Genzel (2010). The model is trained
based on syntactic parse trees of the source sentences in a parallel corpus, in addi-
tion to a bilingual word alignment. Parse trees are obtained from an automatic de-
pendency parser. By introducing head nodes, non-projective dependency graphs are
converted to a tree format (see Figure 2a). In order to obtain good results, the parser
should produce labeled dependencies. Otedama provides bindings to the Stanford
Parser and is fully compatible with any parser that produces POS tags and depen-
dency labels in the CoNLL output format,2 such as, for example, the Parzu parser for

2http://ilk.uvt.nl/conll/
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function ExampleRule(Node N)
if N.tag = _VBD AND
N.dep = root AND
N.parent.tag = ROOT AND
N.children[1].tag = VBD AND
N.children[1].dep = head AND
N.children[2].tag = _NN AND
N.children[2].dep = dobj then
swap(N.children[1],N.children[2])

end if
end function

Figure 1: Example pre-ordering rule. This rule swaps a past tense verb (VBD) with a
noun phrase (_NN).

German (Sennrich et al., 2009).3 Thus, Otedama is able to process a wide variety of
source languages.

The rules learned by Otedama comprise a matching context for nodes in a parse
tree, expressed in terms of the POS tags and dependency labels of a node, its parent
node, and a sequence of neighboring children of the node. Furthermore, a reordering
operation is defined on the sequence of neighboring children, which permutes the
positions of the children of the node, thereby making syntactic changes to the source
language corpus with the goal of approximating the target language syntax. An ex-
ample rule is given in Figure 1. Rules are learned iteratively, meaning that a rule
which is found useful (i.e. that increases the alignment monotonicity of the training
corpus) is first applied to the entire corpus before further rules are tested and applied.
This results in a cascading list of rules, which can be applied to source language parse
trees before translation.

In order to avoid combinatorial explosion, the permutations are restricted to a slid-
ing window, the size of which can be specified to be either 2, 3, or 4 (henceforth re-
ferred to as parameter l). For a window size of four, child node reordering is therefore
restricted to children that are at most three nodes apart from each other for any one
rule.

2.2. Training Procedure

We follow the basic procedure delineated by Genzel (2010) for learning pre-ordering
rules, with some modifications. We first describe the basic training procedure.

This objective of the training procedure is to minimize the number of alignment
crossings (Genzel, 2010) in a parallel training corpus. For example, the sentence pair
shown in Figure 2a has 13 alignment crossings. Applying the example rule from Fig-
ure 1 reduces the number of alignment crossings to 1, as shown in Figure 2b. This

3https://github.com/rsennrich/ParZu
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(b) After rule application

Figure 2: Example parse tree with POS tags, dependency labels and alignment cross-
ings (shown as numbered dots). The left side shows the original tree, the right side
shows the same tree after applying the rule from Figure 1. This rule swaps the sec-
ond and third child node of the “_VBD”-node, resulting in a reduction of alignment
crossings from 13 to 1. Some alignment links were omitted for clarity.

metric is trivial to compute for any word alignment and can be used as a proxy mea-
sure for evaluating pre-ordering models.

Training proceeds iteratively until a convergence criterion is reached or a fixed
number of iterations or amount of runtime have elapsed. Each iteration carries out a
two-step procedure: In the first step, all possible candidate rules from a small, ran-
dom subset of the training corpus are generated. This is done by extracting all rule
contexts (consisting of POS-tags and dependency labels of the current node, its par-
ent, and a span of its child nodes up to the window size), and pairing them with all
possible permutations of the given nodes for all dependency trees in the subset. Only
such candidate rules which locally increase alignment monotonicity are generated.
In the second step, each candidate rule is evaluated by applying it to the entire train-
ing corpus (or, in Genzel’s case, a second, larger subset thereof) and measuring the
reduction of alignment crossings. The candidate rules which increase the alignment
monotonicity of the training corpus and fulfill certain variance constraints are added
to the final rule set and applied to all training data. The partially reordered training
set is then used as input to the next iteration in which a new random subset is sampled
for rule candidate generation. This iterative procedure has two advantages: First, it is
likely to extract the most general rules, i.e. the rules which have the largest effect on all
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training examples in the beginning, and then subsequently proceed to more specific
rules, because sentences with frequent syntactic constructions are more likely to be
sampled than those with infrequent ones. This means that if training time is limited,
the most important rules will still be extracted. Second, even though the rule is re-
stricted to a window of a small number of nodes, the iterative procedure allows for
rules to be applied sequentially to the child nodes of the same parent, thus achieving
long-range permutations.

The following paragraphs describe our modifications of Genzel’s training recipe.

Scalability Genzel’s approach was designed for a MapReduce architecture, since
the rule extraction and evaluation at each training iteration can be easily parallelized.
Training on a large training set, however, requires a large parallel infrastructure run-
ning MapReduce. Our implementation aims to eliminate the dependency on MapRe-
duce, allowing the user to run Otedama on a single machine, and to provide a flexible
solution which can be adjusted for the available resources. We achieve these goals by
dynamically adjusting the size of the sampled subset of the training instances which
is used to generate candidate rules at each iteration. Since the candidate generation
step is much more expensive than the rule evaluation, we can still calculate crossing
alignment reduction on the entire training set, allowing for good generalization. The
initial sample size (henceforth referred to as parameter m) can be set by the user. If
the number of rules learned in the last iteration is below a minimum value of 20 or
above a maximum value of 1000, the sample size is adjusted in the following iteration
by doubling or halfing it. The candidate rule generation and scoring then follows
Genzel’s recipe. Our implementation supports multi-threading on a single machine.

Variance Constraints Depending on the quality of the parser and the syntactic com-
plexity of the training data, feedback on the effect of rules from reduction in alignment
crossings can be quite noisy. Otedama provides the option of specifying a variance
constraint for rule candidates in the form of a minimum ratio between sentences in the
training data on which alignment crossing is reduced, compared to those on which it
increases (henceforth referred to as parameter v). For example, setting v = 2 means
that only such rules that increase the alignment monotonicity of at least two times the
number of sentences than the number of sentences for which alignment monotonicity
decreases should be retained during training.

Rule Application Otedama provides two options for making rule application more
flexible: At training time, it can be specified whether rules with feature sets that are
subsets of the matching context should also be extracted as candidates. For a rule
extracted from a node with two children, where the original matching context com-
prises eight features (the POS-tag and dependency labels of the parent, the node, and
the two children, respectively), this means that all 254 nonempty subsets of the origi-
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nal matching context are extracted and evaluated as candidate rules. After candidate
rules are created from a node, they are ordered increasingly by the size of their fea-
ture sets. This means that Otedama first evaluates the most general rules with the
fewest required features and, if no rule is found to increase alignment monotonicity
and fulfill the specified variance constraints, proceeds to try the more specific rules.
In addition, we allow fuzzy matching of rules by specifying the maximum number of
features to be matched globally, at both training and test times.

3. Evaluation

As demonstrated by de Gispert et al. (2015), it is potentially beneficial to train pre-
ordering models on in-domain data rather than to deploy a model trained on a dif-
ferent domain. For our evaluation we selected the challenging domain of patents.
Patents contain very long, convoluted sentences, specialized vocabulary and idioms.
They are thus a poorer fit for a general purpose parser than other data. However, we
will show that pre-ordering improves translation quality on translation from English
into Japanese (EN-JA) and from German into English (DE-EN).

Baseline SMT system All our systems use the hierarchical phrase-based paradigm
(Chiang, 2007) as implemented by the cdec decoder (Dyer et al., 2010). Our English-
Japanese system was trained on the NTCIR7 patent MT data set by Utiyama and Isa-
hara (2007) (1.8M sentence pairs). We used the official development sets dev1 and
dev2 for tuning, while reserving dev3 for evaluation. The Japanese side was seg-
mented using MeCab4. The English side was tokenized and true-cased using scripts
from the Moses toolkit5. Our German-English system was trained on 750K sentence
pairs from the PatTr corpus (Wäschle and Riezler, 2012). Both sides of the data set
were tokenized and true-cased. Both systems used MGIZA++6 for word alignment.
The alignments were produced by the training script provided in the Moses toolkit
with the default number of IBM Model 1–4 and HMM iterations (5 iterations of IBM
Model 1 and HMM Model, 3 iterations IBM Model 3 and 4). Alignments were sym-
metrized using the grow-diag-final-and heuristic. We trained a 5-gram target side
language model using lmplz (Heafield et al., 2013). Rule extraction was performed
using cdec’s default parameters (maximum rule span = 15, maximum number of sym-
bols per rule = 5). Our system was tuned with the pairwise ranking optimizer dtrain
(Simianer et al., 2012). Tuning was run for 15 iterations, using a k-best size of 100 and
a constant learning rate of 0.00001. Final weights were obtained by averaging over all

4http://taku910.github.io/mecab/

5https://github.com/moses-smt/mosesdecoder

6http://www.cs.cmu.edu/~qing/giza/
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system # crossing alignments % of baseline

Baseline 1840536 100
Otedama 1465120 79.60
Lader class 1447312 78.64
Lader full 1364459 74.13

Table 1: EN-JP crossing scores

iterations. Both tuning and decoding used a cube pruning pop-limit of 200. We report
BLEU scores we calculated using MultEval (Dyer et al., 2011) on tokenized output.

Pre-orderer training Pre-ordering models were trained on 100,000 parallel sentence
pairs from our parallel training data. 7 English source data was parsed with the Stan-
ford Parser (Socher et al., 2013), German source data with the Parzu parser (Sennrich
et al., 2009). In contrast to Genzel (2010), we used IBM Model 4 alignments instead of
IBM Model 1 alignments in order to reduce noise on our smaller data set. We re-used
the symmetrized word alignments that were created during baseline training, as de-
scribed in the previous paragraph. We tried out various configurations of Otedama’s
hyper-parameters window size l ∈ {3, 4} and variance constraints v ∈ {0, 2, 5, 10}. For
both language pairs, l = 3 and v = 2, without fuzzy rule matching or feature subsets
performed best. The number of matching features was therefore set to the maximum
value of 10.8The initial subsample size for rule candidate generation was kept con-
stant at m = 10 throughout our experiments. Training was stopped after exhaustion
of a fixed runtime budget. The rules extracted by Otedama were applied to our MT
training and testing data, and word alignments of the training data were re-calculated
using GIZA++ with the same settings as above. Hierarchical rule extraction and tun-
ing were then carried out in the standard way, using the same settings as our baseline
system.

Instructions for training and applying Otedama, along with a small example script
and recommended parameter values, are provided on the GitHub page.

Comparative pre-ordering system We compare our system to Lader (Neubig et al.,
2012).9 Lader is an open-source reordering tool for machine translation. It performs a

7The size of the data set was chosen due to the runtime constraints of our comparison system in order to
ensure meaningful comparison. Due to its parallelized architecture, Otedama could process significantly
larger data sets during learning with only negligible overhead costs.

8This is the maximum number for a window size of 3. With a window of 4, there would be at most 12
features.

9https://github.com/neubig/lader
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large-margin training treating the parser’s derivation tree as a latent variable. Lader
allows to define various features. One possibility is to train a pre-ordering model only
from the parallel text and word classes (Lader class). Another option is to enhance the
model with additional linguistically informed features (POS tags and parse trees), if
available (Lader full). In both cases, the phrase table was also used as a feature to keep
frequent contiguous phrases. In our experiments we have replicated the standard
feature set from Neubig et al. (2012) using feature templates. To calculate classes we
utilized word classes computed by GIZA++. To obtain POS tags and parse trees the
Stanford tagger and the Stanford lexicalized PCFG parser were used, for both English
and German as source languages. We trained our models with the default learner
Pegasos. Due to the time constraints training was stopped after 10–15 iterations and
the model with the best alignment crossing score selected. We did not observe im-
provements in alignment monotonicity on the training data past 5 iterations. Train-
ing times were comparable for Otedama and Lader models, depending on the exact
Lader model specifications.

Intrinsic Evaluation by Crossing Score The crossing score counts the number of
crossing alignments in a heldout set of 10K sentence pairs. For EN-JA Otedama and
Lader achieved crossing score reductions of over 20 points. However, Lader per-
formed slightly better than Otedama under the intrinsic metric. Our implementation
includes a script, crossing-score.py, for evaluating crossing score on heldout data.
This measure is useful for quickly evaluating different configurations of Otedama, as
well as comparing it to other pre-ordering approaches.

Evaluation by MT Performance Table 2 shows BLEU scores for Otedama and Lader
experiments. For English-Japanese translation, Otedama performed on par with the
Lader class model. Both models significantly outperformed the baseline by 0.7 and 0.8
BLEU. The best model, Lader full, outperformed Otedama by 1.2 BLEU points. How-
ever, the ranking changes for the German-English experiment. Here, Otedama and
Lader full were indistinguishable, and both systems significantly improved over the
baseline. Lader class did not produce a significant improvement, showing the impor-
tance of syntactic information for this language pair.

While the Lader models were equally good or better in terms of BLEU, this came
at the cost of speed. Table 2 lists running times for the different systems. The bench-
mark was conducted on 100 randomly selected sentences, running 10 threads in par-
allel. We include parsing time for Otedama and Lader full (Lader class does not require
parsing). Otedama ran 4.5–10 times faster than Lader, making it more practical to use,
especially on large data.

4. Conclusion

We have presented a fast, flexible open-source implementation of automatic rule-
learning for source-side pre-ordering from dependency-annotated aligned parallel
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system BLEU Seconds/sentence
EN-JA DE-EN EN-JA DE-EN

Baseline 31.6 38.1
Otedama 32.3* 38.8* 0.64 0.35
Lader class 32.4* 38.4 2.89 (×4.5) 2.38 (×6.9)
Lader full 33.5*+ 38.6* 4.58 (×7.1) 3.72 (×10.7)

Table 2: BLEU scores and run times (including parsing, where necessary) for different
pre-ordering tools. * indicates a statistically significant improvement over the base-
line. + indicates a statistically significant improvement over Otedama.

training data. Our tool supports several external parser formats, and has shown
promising results on the difficult task of patent translation. Compared to another
open-source pre-ordering tool, we achieved a speedup of 4.5–10 while maintaining
translation performance.
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