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described below might have tens or hundredsof thousands of parameters, which one couldnot reasonably attempt to estimate from a cor-pus with on the order of a thousand clauses.However, statistical models of lexical selec-tional preferences can be estimated from verylarge corpora based on simpler syntactic struc-tures, e.g., those produced by a shallow parser.While there is undoubtedly disagreement be-tween these simple syntactic structures and thesyntactic structures produced by the UBG, onemight hope that they are close enough for lexicalinformation gathered from the simpler syntacticstructures to be of use in de�ning a probabilitydistribution over the UBG's structures.In the estimation procedure described here,we call the probability distribution estimatedfrom the larger, simpler corpus an auxiliary dis-tribution. Our treatment of auxiliary distribu-tions is inspired by the treatment of referencedistributions in Jelinek's (1997) presentation ofMaximum Entropy estimation, but in our es-timation procedure we simply regard the loga-rithm of each auxiliary distribution as another(real-valued) feature. Despite its simplicity, ourapproach seems to o�er several advantages overthe reference distribution approach. First, it isstraight-forward to utilize several auxiliary dis-tributions simultaneously: each is treated as adistinct feature. Second, each auxiliary distribu-tion is associated with a parameter which scalesits contribution to the �nal distribution. In ap-plications such as ours where the auxiliary dis-tribution may be of questionable relevance tothe distribution we are trying to estimate, itseems reasonable to permit the estimation pro-cedure to discount or even ignore the auxiliarydistribution. Finally, note that neither Jelinek'snor our estimation procedures require that anauxiliary or reference distribution Q be a prob-



ability distribution; i.e., it is not necessary thatQ(
) = 1, where 
 is the set of well-formedlinguistic structures.The rest of this paper is structured as fol-lows. Section 2 reviews how exponential mod-els can be de�ned over the parses of UBGs,gives a brief description of Stochastic Lexical-Functional Grammar, and reviews why maxi-mum pseudo-likelihood estimation is both feasi-ble and su�cient of parsing purposes. Section 3presents our new estimator, and shows how itis related to the minimization of the Kullback-Leibler divergence between the conditional es-timated and auxiliary distributions. Section 4describes the auxiliary distribution used in ourexperiments, and section 5 presents the resultsof those experiments.2 Stochastic Uni�cation-basedGrammarsMost of the classes of probabilistic languagemodels used in computational linguistic are ex-ponential families. That is, the probability P(!)of a well-formed syntactic structure ! 2 
 is de-�ned by a function of the formP�(!) = Q(!)Z� e��f(!) (1)where f(!) 2 Rm is a vector of feature values,� 2 Rm is a vector of adjustable feature param-eters, Q is a function of ! (which Jelinek (1997)calls a reference distribution when it is not an in-dicator function), and Z� = R
Q(!)e��f(!)d! isa normalization factor called the partition func-tion. (Note that a feature here is just a real-valued function of a syntactic structure !; toavoid confusion we use the term �attribute� torefer to a feature in a feature structure). IfQ(!) = 1 then the class of exponential dis-tributions is precisely the class of distributionswith maximum entropy satisfying the constraintthat the expected values of the features is a cer-tain speci�ed value (e.g., a value estimated fromtraining data), so exponential models are some-times also called �Maximum Entropy� models.For example, the class of distributions ob-tained by varying the parameters of a PCFGis an exponential family. In a PCFG each ruleor production is associated with a feature, so mis the number of rules and the jth feature valuefj(!) is the number of times the j rule is used

in the derivation of the tree ! 2 
. Simple ma-nipulations show that P�(!) is equivalent to thePCFG distribution if �j = log pj, where pj is therule emission probability, and Q(!) = Z� = 1.If the features satisfy suitable Markovian in-dependence constraints, estimation from fullyobserved training data is straight-forward. Forexample, because the rule features of a PCFGmeet �context-free� Markovian independenceconditions, the well-known �relative frequency�estimator for PCFGs both maximizes the likeli-hood of the training data (and hence is asymp-totically consistent and e�cient) and minimizesthe Kullback-Leibler divergence between train-ing and estimated distributions.However, the situation changes dramaticallyif we enforce non-local or context-sensitive con-straints on linguistic structures of the kind thatcan be expressed by a UBG. As Abney (1997)showed, under these circumstances the relativefrequency estimator is in general inconsistent,even if one restricts attention to rule features.Consequently, maximum likelihood estimationis much more complicated, as discussed in sec-tion 2.2. Moreover, while rule features are nat-ural for PCFGs given their context-free inde-pendence properties, there is no particular rea-son to use only rule features in Stochastic UBGs(SUBGs). Thus an SUBG is a triple hG; f; �i,where G is a UBG which generates a set of well-formed linguistic structures 
, and f and � arevectors of feature functions and feature param-eters as above. The probability of a structure! 2 
 is given by (1) with Q(!) = 1. Given abase UBG, there are usually in�nitely many dif-ferent ways of selecting the features f to makea SUBG, and each of these makes an empiricalclaim about the class of possible distributions ofstructures.2.1 Stochastic Lexical FunctionalGrammarStochastic Lexical-Functional Grammar(SLFG) is a stochastic extension of Lexical-Functional Grammar (LFG), a UBG formalismdeveloped by Kaplan and Bresnan (1982).Given a base LFG, an SLFG is constructedby de�ning features which identify salientconstructions in a linguistic structure (in LFGthis is a c-structure/f-structure pair and itsassociated mapping; see Kaplan (1995)). Apartfrom the auxiliary distributions, we based our



features on those used in Johnson et al. (1999),which should be consulted for further details.Most of these feature values range over thenatural numbers, counting the number of timesthat a particular construction appears in alinguistic structure. For example, adjunct andargument features count the number of adjunctand argument attachments, permitting SLFGto capture a general argument attachment pref-erence, while more specialized features countthe number of attachments to each grammaticalfunction (e.g., SUBJ, OBJ, COMP, etc.).The �exibility of features in stochastic UBGspermits us to include features for relativelycomplex constructions, such as date expres-sions (it seems that date interpretations, ifpossible, are usually preferred), right-branchingconstituent structures (usually preferred) andnon-parallel coordinate structures (usuallydispreferred). Johnson et al. remark that theywould have liked to have included features forlexical selectional preferences. While such fea-tures are perfectly acceptable in a SLFG, theyfelt that their corpora were so small that thelarge number of lexical dependency parameterscould not be accurately estimated. The presentpaper proposes a method to address this byusing an auxiliary distribution estimated froma corpus large enough to (hopefully) providereliable estimates for these parameters.2.2 Estimating stochasticuni�cation-based grammarsSuppose ~! = !1; : : : ; !n is a corpus of n syn-tactic structures. Letting fj(~!) = Pni=1 fj(!i)and assuming each !i 2 
, the likelihood of thecorpus L�(~!) is:L�(~!) = nYi=1P�(!i)= e��f(~!) Z�n� (2)@@�j log L�(~!) = fj(~!)� nE�(fj) (3)where E�(fj) is the expected value of fj un-der the distribution P�. The maximum likeli-hood estimates are the � which maximize (2), orequivalently, which make (3) zero, but as John-son et al. (1999) explain, there seems to be nopractical way of computing these for realisticSUBGs since evaluating (2) and its derivatives

(3) involves integrating over all syntactic struc-tures 
.However, Johnson et al. observe that parsingapplications require only the conditional proba-bility distribution P�(!jy), where y is the ter-minal string or yield being parsed, and that thiscan be estimated by maximizing the pseudo-likelihood of the corpus PL�(~!):PL�(~!) = nYi=1P�(!ijyi)= e��f(~!) nYi=1Z�1� (yi) (4)In (4), yi is the yield of !i andZ�(yi) = Z
(yi) e��f(!)d!;where 
(yi) is the set of all syntactic structuresin 
 with yield yi (i.e., all parses of yi gener-ated by the base UBG). It turns out that cal-culating the pseudo-likelihood of a corpus onlyinvolves integrations over the sets of parses ofits yields 
(yi), which is feasible for many inter-esting UBGs. Moreover, the maximum pseudo-likelihood estimator is asymptotically consistentfor the conditional distribution P(!jy). For thereasons explained in Johnson et al. (1999) we ac-tually estimate � by maximizing a regularizedversion of the log pseudo-likelihood (5), where�j is 7 times the maximum value of fj found inthe training corpus:log PL�(~!)� mXj=1 �2j2�2j (5)See Johnson et al. (1999) for details of the cal-culation of this quantity and its derivatives, andthe conjugate gradient routine used to calcu-late the � which maximize the regularized logpseudo-likelihood of the training corpus.3 Auxiliary distributionsWe modify the estimation problem presented insection 2.2 by assuming that in addition to thecorpus ~! and the m feature functions f we aregiven k auxiliary distributions Q1; : : : ; Qk whosesupport includes 
 that we suspect may be re-lated to the joint distribution P(!) or condi-tional distribution P(!jy) that we wish to esti-



mate. We do not require that the Qj be proba-bility distributions, i.e., it is not necessary thatR
Qj(!)d! = 1, but we do require that theyare strictly positive (i.e., Qj(!) > 0;8! 2 
).We de�ne k new features fm+1; : : : ; fm+k wherefm+j(!) = logQj(!), which we call auxiliaryfeatures. The m+ k parameters associated withthe resultingm+k features can be estimated us-ing any method for estimating the parametersof an exponential family with real-valued fea-tures (in our experiments we used the pseudo-likelihood estimation procedure reviewed in sec-tion 2.2). Such a procedure estimates parame-ters �m+1; : : : ; �m+k associated with the auxil-iary features, so the estimated distributions takethe form (6) (for simplicity we only discuss jointdistributions here, but the treatment of condi-tional distributions is parallel).P�(!) = Qkj=1Qj(!)�m+jZ� ePmj=1 �jfj(!):(6)Note that the auxiliary distributions Qj aretreated as �xed distributions for the purposesof this estimation, even though each Qj may it-self be a complex model obtained via a previousestimation process. Comparing (6) with (1) onpage 2, we see that the two equations becomeidentical if the reference distribution Q in (1) isreplaced by a geometric mixture of the auxiliarydistributions Qj , i.e., if:Q(!) = kYj=1Qj(!)�m+j :The parameter associated with an auxiliary fea-ture represents the weight of that feature in themixture. If a parameter �m+j = 1 then thecorresponding auxiliary feature Qj is equivalentto a reference distribution in Jelinek's sense,while if �m+j = 0 then Qj is e�ectively ig-nored. Thus our approach can be regarded asa smoothed version Jelinek's reference distribu-tion approach, generalized to permit multipleauxiliary distributions.4 Lexical selectional preferencesThe auxiliary distribution we used here is basedon the probabilistic model of lexical selectionalpreferences described in Rooth et al. (1999). Anexisting broad-coverage parser was used to �nd

shallow parses (compared to the LFG parses)for the 117 million word British National Cor-pus (Carroll and Rooth, 1998). We based ourauxiliary distribution on 3.7 million hg; r; ai tu-ples (belonging to 600,000 types) we extractedthese parses, where g is a lexical governor (forthe shallow parses, g is either a verb or a prepo-sition), a is the head of one of its NP argumentsand r is the the grammatical relationship be-tween the governor and argument (in the shal-low parses r is always obj for prepositional gov-ernors, and r is either subj or obj for verbalgovernors).In order to avoid sparse data problems wesmoothed this distribution over tuples as de-scribed in (Rooth et al., 1999). We assume thatgovernor-relation pairs hg; ri and arguments aare independently generated from 25 hiddenclasses C, i.e.:bP(hg; r; ai) = Xc2C Pe(hg; rijc)bPe(ajc)Pe(c)where the distributions Pe are estimated fromthe training tuples using the Expectation-Maximization algorithm. While the hiddenclasses are not given any prior interpretationthey often cluster semantically coherent predi-cates and arguments, as shown in Figure 1. Thesmoothing power of a clustering model such asthis can be calculated explicitly as the percent-age of possible tuples which are assigned a non-zero probability. For the 25-class model we get asmoothing power of 99%, compared to only 1:7%using the empirical distribution of the trainingdata.5 Empirical evaluationHadar Shemtov and Ron Kaplan at Xerox Parcprovided us with two LFG parsed corpora calledthe Verbmobil corpus and the Homecentre cor-pus. These contain parse forests for each sen-tence (packed according to scheme described inMaxwell and Kaplan (1995)), together with amanual annotation as to which parse is cor-rect. The Verbmobil corpus contains 540 sen-tences relating to appointment planning, whilethe Homecentre corpus contains 980 sentencesfrom Xerox documentation on their �homecen-tre� multifunction devices. Xerox did not pro-vide us with the base LFGs for intellectual prop-erty reasons, but from inspection of the parses



Class 16PROB 0.0340 0.0158 0.0121 0.0081 0.0079 0.0075 0.0058 0.0055 0.0055 0.0052 0.0050 0.0049 0.0048 0.0047 0.0047 0.0046 0.0046 0.0045 0.0045 0.0041 0.0041 0.0039 0.0039 0.0038 0.0038 0.0037 0.0036 0.0036 0.0036 0.0035 0.0035spokesman we people mother doctor police woman father director night someone report o�cer john girl o�cial ruth voice stephen company god chairman no-one man who edward mum nobody everyone peter0.3183 say:s � � � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0405 say:o � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0345 ask:s � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0276 tell:s � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0214 be:s � � � � � � � � � � � � � � � � � � � � � � � � �0.0193 know:s � � � � � � � � � � � � � � � � � � � � � � � �0.0147 have:s � � � � � � � � � � � � � � � � � � � � � � � �0.0144 nod:s � � � � � � � � � � � � � � � � � �0.0137 think:s � � � � � � � � � � � � � � � � � � � � � � � � � �0.0130 shake:s � � � � � � � � � � � � � � � � � �0.0128 take:s � � � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0104 reply:s � � � � � � � � � � � � � � � � � � � � � �0.0096 smile:s � � � � � � � � � � � � � � � � � � �0.0094 do:s � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0094 laugh:s � � � � � � � � � � � � � � � � � � � � � � �0.0089 tell:o � � � � � � � � � � � � � � � � � � � � � � � � � �0.0084 saw:s � � � � � � � � � � � � � � � � � � � � � � � � � �0.0082 add:s � � � � � � � � � � � � � � � � � � � � � �0.0078 feel:s � � � � � � � � � � � � � � � � � � � � � � � � �0.0071 make:s � � � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0070 give:s � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �0.0067 ask:o � � � � � � � � � � � � � � � � � � � � � � � � �0.0066 shrug:s � � � � � � � � � � � � �0.0061 explain:s � � � � � � � � � � � � � � � � � � � � � � � � � �0.0051 like:s � � � � � � � � � � � � � � � � � � � � �0.0050 look:s � � � � � � � � � � � � � � � � � � � �0.0050 sigh:s � � � � � � � � � � � � �0.0049 watch:s � � � � � � � � � � � � � � � � � � � � � � � �0.0049 hear:s � � � � � � � � � � � � � � � � � � � � � �0.0047 answer:s � � � � � � � � � � � � � � � � � � � �Figure 1: A depiction of the highest probability predicates and arguments in Class 16. The classmatrix shows at the top the 30 most probable nouns in the Pe(aj16) distribution and their probabil-ities, and at the left the 30 most probable verbs and prepositions listed according to Pre(hg; rij16)and their probabilities. Dots in the matrix indicate that the respective pair was seen in the trainingdata. Predicates with su�x : s indicate the subject slot of an intransitive or transitive verb; thesu�x : o speci�es the nouns in the corresponding row as objects of verbs or prepositions.it seems that slightly di�erent grammars wereused with each corpus, so we did not merge thecorpora. We chose the features of our SLFGbased solely on the basis of the Verbmobil cor-pus, so the Homecentre corpus can be regardedas a held-out evaluation corpus.We discarded the unambiguous sentences ineach corpus for both training and testing (asexplained in Johnson et al. (1999), pseudo-likelihood estimation ignores unambiguous sen-tences), leaving us with a corpus of 324 am-biguous sentences in the Verbmobil corpus and481 sentences in the Homecentre corpus; thesesentences had a total of 3,245 and 3,169 parsesrespectively.The (non-auxiliary) features used in werebased on those described by Johnson etal. (1999). Di�erent numbers of featureswere used with the two corpora becausesome of the features were generated semi-

automatically (e.g., we introduced a feature forevery attribute-value pair found in any featurestructure), and �pseudo-constant� features (i.e.,features whose values never di�er on the parsesof the same sentence) are discarded. We used172 features in the SLFG for the Verbmobil cor-pus and 186 features in the SLFG for the Home-centre corpus.We used three additional auxiliary featuresderived from the lexical selectional preferencemodel described in section 4. These were de-�ned in the following way. For each governingpredicate g, grammatical relation r and argu-ment a, let nhg;r;ai(!) be the number of timesthat the f-structure:� pred = gr = [pred = a] �appears as a subgraph of the f-structure of!, i.e., the number of times that a �lls the



grammatical role r of g. We used the lexicalmodel described in the last section to estimatebP(ajg; r), and de�ned our �rst auxiliary featureas:fl(!) = log bP(g0) + Xhg;r;ainhg;r;ai(!) log bP(ajg; r)where g0 is the predicate of the root featurestructure. The justi�cation for this feature isthat if f-structures were in fact a tree, fl(!)would be the (logarithm of) a probability distri-bution over them. The auxiliary feature fl is de-fective in many ways. Because LFG f-structuresare DAGs with reentrancies rather than treeswe double count certain arguments, so fl is cer-tainly not the logarithm of a probability distri-bution (which is why we stressed that our ap-proach does not require an auxiliary distributionto be a distribution).The number of governor-argument tuplesfound in di�erent parses of the same sentencecan vary markedly. Since the conditional proba-bilities bP(ajg; r) are usually very small, we foundthat fl(!) was strongly related to the number oftuples found in !, so the parse with the smallernumber of tuples usually obtains the higher flscore. We tried to address this by adding twoadditional features. We set fc(!) to be the num-ber of tuples in !, i.e.:fc(!) = Xhg;r;ainhg;r;ai(!):Then we set fn(!) = fl(!)=fc(!), i.e., fn(!) isthe average log probability of a lexical depen-dency tuple under the auxiliary lexical distribu-tion. We performed our experiments with fl asthe sole auxiliary distribution, and with fl, fcand fn as three auxiliary distributions.Because our corpora were so small, we trainedand tested these models using a 10-fold cross-validation paradigm; the cumulative results areshown in Table 1. On each fold we evaluatedeach model in two ways. The correct parsesmeasure simply counts the number of test sen-tences for which the estimated model assignsits maximum parse probability to the correctparse, with ties broken randomly. The pseudo-likelihood measure is the pseudo-likelihood oftest set parses; i.e., the conditional probabilityof the test parses given their yields. We actu-ally report the negative log of this measure, so a

smaller score corresponds to better performancehere. The correct parses measure is most closelyrelated to parser performance, but the pseudo-likelihood measure is more closely related to thequantity we are optimizing and may be morerelevant to applications where the parser has toreturn a certainty factor associated with eachparse.Table 1 also provides the number of indistin-guishable sentences under each model. A sen-tence y is indistinguishable with respect to fea-tures f i� f(!c) = f(!0), where !c is the correctparse of y and !c 6= !0 2 
(y), i.e., the featurevalues of correct parse of y are identical to thefeature values of some other parse of y. If asentence is indistinguishable it is not possible toassign its correct parse a (conditional) probabil-ity higher than the (conditional) probability as-signed to other parses, so all else being equal wewould expect a SUBG with with fewer indistin-guishable sentences to perform better than onewith more.Adding auxiliary features reduced the alreadylow number of indistinguishable sentences in theVerbmobil corpus by only 11%, while it reducedthe number of indistinguishable sentences in theHomecentre corpus by 24%. This probably re-�ects the fact that the feature set was designedby inspecting only the Verbmobil corpus.We must admit disappointment with these re-sults. Adding auxiliary lexical features improvesthe correct parses measure only slightly, and de-grades rather than improves performance on thepseudo-likelihood measure. Perhaps this is dueto the fact that adding auxiliary features in-creases the dimensionality of the feature vectorf , so the pseudo-likelihood scores with di�erentnumbers of features are not strictly comparable.The small improvement in the correct parsesmeasure is typical of the improvement we mightexpect to achieve by adding a �good� non-auxiliary feature, but given the importance usu-ally placed on lexical dependencies in statisticalmodels one might have expected more improve-ment. Probably the poor performance is duein part to the fairly large di�erences betweenthe parses from which the lexical dependencieswere estimated and the parses produced by theLFG. LFG parses are very detailed, and manyambiguities depend on the precise grammaticalrelationship holding between a predicate and its



Verbmobil corpus (324 sentences, 172 non-auxiliary features)Auxiliary features used Indistinguishable Correct - log PL(none) 9 180 401.3fl 8 183 401.6fl; fc; fn 8 180.5 404.0Homecentre corpus (481 sentences, 186 non-auxiliary features)Auxiliary features used Indistinguishable Correct - log PL(none) 45 283.25 580.6fl 34 284 580.6fl; fc; fn 34 285 582.2Table 1: The e�ect of adding auxiliary lexical dependency features to a SLFG. The auxiliaryfeatures are described in the text. The column labelled �indistinguishable� gives the number ofindistinguishable sentences with respect to each feature set, while �correct� and �� log PL� give thecorrect parses and pseudo-likelihood measures respectively.argument. It could also be that better perfor-mance could be achieved if the lexical dependen-cies were estimated from a corpus more closelyrelated to the actual test corpus. For example,the verb feed in the Homecentre corpus is used inthe sense of �insert (paper into printer)�, whichhardly seems to be a prototypical usage.Note that overall system performance is quitegood; taking the unambiguous sentences intoaccount the combined LFG parser and statisti-cal model �nds the correct parse for 73% of theVerbmobil test sentences and 80% of the Home-centre test sentences. On just the ambiguoussentences, our system selects the correct parsefor 56% of the Verbmobil test sentences and 59%of the Homecentre test sentences.6 ConclusionThis paper has presented a method for incorpo-rating auxiliary distributional information gath-ered by other means possibly from other corporainto a Stochastic �Uni�cation-based� Grammar(SUBG). This permits one to incorporate depen-dencies into a SUBG which probably cannot beestimated directly from the small UBG parsedcorpora available today. It has the virtue thatit can incorporate several auxiliary distributionssimultaneously, and because it associates eachauxiliary distribution with its own �weight� pa-rameter, it can scale the contributions of eachauxiliary distribution toward the �nal estimateddistribution, or even ignore it entirely. We haveapplied this to incorporate lexical selectional

preference information into a Stochastic Lexical-Functional Grammar, but the technique gener-alizes to stochastic versions of HPSGs, catego-rial grammars and transformational grammars.An obvious extension of this work, which wehope will be persued in the future, is to ap-ply these techniques in broad-coverage feature-based TAG parsers.ReferencesSteven P. Abney. 1997. Stochastic Attribute-Value Grammars. Computational Linguistics,23(4):597�617.Glenn Carroll and Mats Rooth. 1998. Valenceinduction with a head-lexicalized PCFG. InProceedings of EMNLP-3, Granada.Frederick Jelinek. 1997. Statistical Methods forSpeech Recognition. The MIT Press, Cam-bridge, Massachusetts.Mark Johnson, Stuart Geman, Stephen Canon,Zhiyi Chi, and Stefan Riezler. 1999. Estima-tors for stochastic �uni�cation-based� gram-mars. In The Proceedings of the 37th AnnualConference of the Association for Computa-tional Linguistics, College Park, MA.Ronald M. Kaplan and Joan Bresnan. 1982.Lexical-Functional Grammar: A formal sys-tem for grammatical representation. In JoanBresnan, editor, The Mental Representationof Grammatical Relations, chapter 4, pages173�281. The MIT Press.Ronald M. Kaplan. 1995. The formal architec-ture of LFG. In Mary Dalrymple, Ronald M.
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