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Abstract

This paper reports some experiments that com-
pare the accuracy and performance of two
stochastic parsing systems. The currently pop-
ular Collins parser is a shallow parser whose
output contains more detailed semantically-
relevant information than other such parsers.
The XLE parser is a deep-parsing system that
couples a Lexical Functional Grammar to a log-
linear disambiguation component and provides
much richer representations. We measured the
accuracy of both systems against a gold stan-
dard of the PARC 700 dependency bank, and
also measured their processing times. We found
the deep-parsing system to be more accurate
than the Collins parser with only a slight re-
duction in parsing speed.1

1 Introduction

In applications that are sensitive to the meanings ex-
pressed by natural language sentences, it has become
common in recent years simply to incorporate publicly
available statistical parsers. A state-of-the-art statistical
parsing system that enjoys great popularity in research
systems is the parser described in Collins (1999) (hence-
forth “the Collins parser”). This system not only is fre-
quently used for off-line data preprocessing, but also
is included as a black-box component for applications
such as document summarization (Daume and Marcu,
2002), information extraction (Miller et al., 2000), ma-
chine translation (Yamada and Knight, 2001), and ques-
tion answering (Harabagiu et al., 2001). This is be-

1This research has been funded in part by contract #
MDA904-03-C-0404 awarded from the Advanced Research and
Development Activity, Novel Intelligence from Massive Data
program. We would like to thank Chris Culy whose original ex-
periments inspired this research.

cause the Collins parser shares the property of robustness
with other statistical parsers, but more than other such
parsers, the categories of its parse-trees make grammati-
cal distinctions that presumably are useful for meaning-
sensitive applications. For example, the categories of
the Model 3 Collins parser distinguish between heads,
arguments, and adjuncts and they mark some long-
distance dependency paths; these distinctions can guide
application-specific postprocessors in extracting impor-
tant semantic relations.

In contrast, state-of-the-art parsing systems based on
deep grammars mark explicitly and in much more de-
tail a wider variety of syntactic and semantic dependen-
cies and should therefore provide even better support for
meaning-sensitive applications. But common wisdom has
it that parsing systems based on deep linguistic grammars
are too difficult to produce, lack coverage and robustness,
and also have poor run-time performance. The Collins
parser is thought to be accurate and fast and thus to repre-
sent a reasonable trade-off between “good-enough” out-
put, speed, and robustness.

This paper reports on some experiments that put this
conventional wisdom to an empirical test. We investi-
gated the accuracy of recovering semantically-relevant
grammatical dependencies from the tree-structures pro-
duced by the Collins parser, comparing these dependen-
cies to gold-standard dependencies which are available
for a subset of 700 sentences randomly drawn from sec-
tion 23 of the Wall Street Journal (see King et al. (2003)).

We compared the output of the XLE system, a
deep-grammar-based parsing system using the English
Lexical-Functional Grammar previously constructed as
part of the Pargram project (Butt et al., 2002), to the
same gold standard. This system incorporates sophisti-
cated ambiguity-management technology so that all pos-
sible syntactic analyses of a sentence are computed in
an efficient, packed representation (Maxwell and Ka-
plan, 1993). In accordance with LFG theory, the output



includes not only standard context-free phrase-structure
trees but also attribute-value matrices (LFG’s f(unctional)
structures) that explicitly encode predicate-argument re-
lations and other meaningful properties. XLE selects the
most probable analysis from the potentially large candi-
date set by means of a stochastic disambiguation com-
ponent based on a log-linear (a.k.a. maximum-entropy)
probability model (Riezler et al., 2002). The stochas-
tic component is also “ambiguity-enabled” in the sense
that the computations for statistical estimation and selec-
tion of the most probable analyses are done efficiently
by dynamic programming, avoiding the need to unpack
the parse forests and enumerate individual analyses. The
underlying parsing system also has built-in robustness
mechanisms that allow it to parse strings that are outside
the scope of the grammar as a shortest sequence of well-
formed “fragments”. Furthermore, performance parame-
ters that bound parsing and disambiguation work can be
tuned for efficient but accurate operation.

As part of our assessment, we also measured the pars-
ing speed of the two systems, taking into account all
stages of processing that each system requires to produce
its output. For example, since the Collins parser depends
on a prior part-of-speech tagger (Ratnaparkhi, 1996), we
included the time for POS tagging in our Collins mea-
surements. XLE incorporates a sophisticated finite-state
morphology and dictionary lookup component, and its
time is part of the measure of XLE performance.

Performance parameters of both the Collins parser and
the XLE system were adjusted on a heldout set consist-
ing of a random selection of1/5 of the PARC 700 depen-
dency bank; experimental results were then based on the
other 560 sentences. For Model 3 of the Collins parser, a
beam size of 1000, and not the recommended beam size
of 10000, was found to optimize parsing speed at little
loss in accuracy. On the same heldout set, parameters of
the stochastic disambiguation system and parameters for
parsing performance were adjusted for a Core and a Com-
plete version of the XLE system, differing in the size of
the constraint-set of the underlying grammar.

For both XLE and the Collins parser we wrote con-
version programs to transform the normal (tree or f-
structure) output into the corresponding relations of
the dependency bank. This conversion was relatively
straightforward for LFG structures (King et al., 2003).
However, a certain amount of skill and intuition was
required to provide a fair conversion of the Collins
trees: we did not want to penalize configurations in the
Collins trees that encoded alternative but equally legit-
imate representations of the same linguistic properties
(e.g. whether auxiliaries are encoded as main verbs or
aspect features), but we also did not want to build into
the conversion program transformations that compensate
for information that Collins cannot provide without ap-

pealing to additional linguistic resources (such as identi-
fying the subjects of infinitival complements). We did not
include the time for dependency conversion in our mea-
sures of performance.

The experimental results show that stochastic parsing
with the Core LFG grammar achieves a better F-score
than the Collins parser at a roughly comparable parsing
speed. The XLE system achieves 12% reduction in error
rate over the Collins parser, that is 77.6% F-score for the
XLE system versus 74.6% for the Collins parser, at a cost
in parsing time of a factor of 1.49.

2 Stochastic Parsing with LFG

2.1 Parsing with Lexical-Functional Grammar

The grammar used for this experiment was developed in
the ParGram project (Butt et al., 2002). It uses LFG as a
formalism, producing c(onstituent)-structures (trees) and
f(unctional)-structures (attribute value matrices) as out-
put. The c-structures encode constituency and linear or-
der. F-structures encode predicate-argument relations and
other grammatical information, e.g., number, tense, state-
ment type. The XLE parser was used to produce packed
representations, specifying all possible grammar analyses
of the input.

In our system, tokenization and morphological analy-
sis are performed by finite-state transductions arranged in
a compositional cascade. Both the tokenizer and the mor-
phological analyzer can produce multiple outputs. For ex-
ample, the tokenizer will optionaly lowercase sentence
initial words, and the morphological analyzer will pro-
ducewalk +Verb +Pres +3sgandwalk +Noun +Pl for
the input formwalks. The resulting tokenized and mor-
phologically analyzed strings are presented to the sym-
bolic LFG grammar.

The grammar can parse input that hasXML de-
limited named entity markup:<company>Columbia
Savings</company> is a major holder of so-called junk
bonds. To allow the grammar to parse this markup,
the tokenizer includes an additional tokenization of the
strings whereby the material between theXML markup
is treated as a single token with a special morphologi-
cal tag (+NamedEntity). As a fall back, the tokenization
that the string would have received without that markup
is also produced. The named entities have a single mul-
tiword predicate. This helps in parsing both because it
means that no internal structure has to be built for the
predicate and because predicates that would otherwise be
unrecognized by the grammar can be parsed (e.g.,Cie.
Financiere de Paribas). As described in section 5, it was
also important to use named entity markup in these ex-
periments to more fairly match the analyses in the PARC
700 dependency bank.

To increase robustness, the standard grammar is aug-



mented with aFRAGMENT grammar. This allows sen-
tences to be parsed as well-formed chunks specified by
the grammar, in particular as Ss, NPs, PPs, and VPs, with
unparsable tokens possibly interspersed. These chunks
have both c-structures and f-structures corresponding to
them. The grammar has a fewest-chunk method for de-
termining the correct parse.

The grammar incorporates a version of Optimality
Theory that allows certain (sub)rules in the grammar to be
prefered or disprefered based on OT marks triggered by
the (sub)rule (Frank et al., 1998). The Complete version
of the grammar uses all of the (sub)rules in a multi-pass
system that depends on the ranking of the OT marks in
the rules. For example, topicalization is disprefered, but
the topicalization rule will be triggered if no other parse
can be built. A one-line rewrite of the Complete grammar
creates a Core version of the grammar that moves the ma-
jority of the OT marks into theNOGOOD space. This ef-
fectively removes the (sub)rules that they mark from the
grammar. So, for example, in the Core grammar there is
no topicalization rule, and sentences with topics will re-
ceive aFRAGMENT parse. This single-pass Core grammar
is smaller than the Complete grammar and hence is faster.

The XLE parser also allows the user to adjust per-
formance parameters bounding the amount of work that
is done in parsing for efficient but accurate operation.
XLE’s ambiguity management technology takes advan-
tage of the fact that relatively few f-structure constraints
apply to constituents that are far apart in the c-structure,
so that sentences are typically parsed in polynomial time
even though LFG parsing is known to be an NP-complete
problem. But the worst-case exponential behavior does
begin to appear for some constructions in some sentences,
and the computational effort is limited by aSKIMMING

mode whose onset is controlled by a user-specified pa-
rameter. When skimming, XLE will stop processing the
subtree of a constituent whenever the amount of work ex-
ceeds that user-specified limit. The subtree is discarded,
and the parser will move on to another subtree. This guar-
antees that parsing will be finished within reasonable lim-
its of time and memory but at a cost of possibly lower
accuracy if it causes the best analysis of a constituent
to be discarded. As a separate parameter, XLE also lets
the user limit the length of medial constituents, i.e., con-
stituents that do not appear at the beginning or the end
of a sentence (ignoring punctuation). The rationale be-
hind this heuristic is to limit the weight of constituents in
the middle of the sentence but still to allow sentence-final
heavy constituents. This discards constituents in a some-
what more principled way as it tries to capture the psy-
cholinguistic tendency to avoid deep center-embedding.
When limiting the length of medial constituents, cubic-
time parsing is possible for sentences up to that length,
even with a deep, non-context-free grammar, and linear

parsing time is possible for sentences beyond that length.
The Complete grammar achieved 100% coverage of

section 23 as unseen unlabeled data: 79% as full parses,
21%FRAGMENT and/orSKIMMED parses.

2.2 Dynamic Programming for Estimation and
Stochastic Disambiguation

The stochastic disambiguation model we employ defines
an exponential (a.k.a. log-linear or maximum-entropy)
probability model over the parses of the LFG grammar.
The advantage of this family of probability distributions
is that it allows the user to encode arbitrary properties
of the parse trees as feature-functions of the probability
model, without the feature-functions needing to be inde-
pendent and non-overlapping. The general form of con-
ditional exponential models is as follows:

pλ(x|y) = Zλ(y)−1eλ·f(x)

whereZλ(y) =
∑

x∈X(y) e
λ·f(x) is a normalizing con-

stant over the setX(y) of parses for sentencey, λ is
a vector of log-parameters,f is a vector of feature-
values, andλ · f(x) is a vector dot product denoting the
(log-)weight of parsex.

Dynamic-programming algorithms that allow the ef-
ficient estimation and searching of log-linear mod-
els from a packed parse representation without enu-
merating an exponential number of parses have
been recently presented by Miyao and Tsujii (2002)
and Geman and Johnson (2002). These algorithms can
be readily applied to the packed and/or-forests of
Maxwell and Kaplan (1993), provided that each conjunc-
tive node is annotated with feature-values of the log-
linear model. In the notation of Miyao and Tsujii (2002),
such afeature forestΦ is defined as a tuple〈C,D, r, γ, δ〉
whereC is a set of conjunctive nodes,D is a set of dis-
junctive nodes,r ∈ C is the root node,γ : D → 2C is
a conjunctive daughter function, andδ : C → 2D is a
disjunctive daughter function.

A dynamic-programming solution to the problem of
finding most probable parses is to compute the weight
φd of each disjunctive node as the maximum weight of
its conjunctive daugher nodes, i.e.,

φd = max
c∈γ(d)

φc (1)

and to recursively define the weightφc of a conjunctive
node as the product of the weights of all its descendant
disjunctive nodes and of its own weight:

φc =
∏

d∈δ(c)

φd e
λ·f(c) (2)

Keeping a trace of the maximally weighted choices in a
computaton of the weightφr of the root conjunctive node



r allows us to efficiently recover the most probable parse
of a sentence from the packed representation of its parses.

The same formulae can be employed for an effi-
cient calculation of probabilistic expectations of feature-
functions for the statistical estimation of the parameters
λ. Replacing the maximization in equation 1 by a sum-
mation defines theinside weightof disjunctive node. Cor-
respondingly, equation 2 denotes the inside weight of a
conjunctive node. Theoutside weightψc of a conjunctive
node is defined as the outside weight of its disjunctive
mother node(s):

ψc =
∑

{d|c∈γ(d)}

ψd (3)

The outside weight of a disjunctive node is the sum of
the product of the outside weight(s) of its conjunctive
mother(s), the weight(s) of its mother(s), and the inside
weight(s) of its disjunctive sister(s):

ψd =
∑

{c|d∈δ(c)}

{ψc e
λ·f(c)

∏
{d′|d′∈δ(c),d′ 6=d}

φd′} (4)

From these formulae, the conditional expectation of a
feature-functionfi can be computed from a chart with
root noder for a sentencey in the following way:∑

x∈X(y)

eλ·f(x)fi(x)
Zλ(y)

=
∑
c∈C

φcψcfi(c)
φr

(5)

Formula 5 is used in our system to compute expectations
for discriminative Bayesian estimation from partially la-
beled data using a first-order conjugate-gradient routine.
For a more detailed description of the optimization prob-
lem and the feature-functions we use for stochastic LFG
parsing see Riezler et al. (2002). We also employed a
combined`1 regularization and feature selection tech-
nique described in Riezler and Vasserman (2004) that
considerably speeds up estimation and guarantees small
feature sets for stochastic disambiguation. In the experi-
ments reported in this paper, however, dynamic program-
ming is crucial for efficient stochastic disambiguation,
i.e. to efficiently find the most probable parse from a
packed parse forest that is annotated with feature-values.
There are two operations involved in stochastic disam-
biguation, namely calculating feature-values from a parse
forest and calculating node weights from a feature forest.
Clearly, the first one is more expensive, especially for
the extraction of values for non-local feature-functions
over large charts. To control the cost of this compu-
tation, our stochastic disambiguation system includes
a user-specified parameter for bounding the amount of
work that is done in calculating feature-values. When the
user-specified threshold for feature-value calculation is
reached, this computation is discontinued, and the dy-
namic programming calculation for most-probable-parse

search is computed from the current feature-value anno-
tation of the parse forest. Since feature-value computa-
tion proceeds incrementally over the feature forest, i.e.
for each node that is visited all feature-functions that ap-
ply to it are evaluated, a complete feature annotation can
be guaranteed for the part of the and/or-forest that is vis-
ited until discontinuation. As discussed below, these pa-
rameters were set on a held-out portion of the PARC700
which was also used to set the Collins parameters.

In the experiments reported in this paper, we used a
threshold on feature-extraction that allowed us to cut off
feature-extraction in 3% of the cases at no loss in accu-
racy. Overall, feature extraction and weight calculation
accounted for 5% of the computation time in combined
parsing and stochastic selection.

3 The Gold-Standard Dependency Bank

We used the PARC 700 Dependency Bank (DEPBANK)
as the gold standard in our experiments. TheDEPBANK

consists of dependency annotations for 700 sentences that
were randomly extracted from section 23 of the UPenn
Wall Street Journal (WSJ) treebank. As described by
(King et al., 2003), the annotations were boot-strapped
by parsing the sentences with a LFG grammar and trans-
forming the resulting f-structures to a collection of depen-
dency triples in theDEPBANK format. To prepare a true
gold standard of dependencies, the tentative set of depen-
dencies produced by the robust parser was then corrected
and extended by human validators2. In this format each
triple specifies that a particular relation holds between a
head and either another head or a feature value, for ex-
ample, that theSUBJ relation holds between the heads
run anddog in the sentenceThe dog ran. Average sen-
tence length of sentences inDEPBANK is 19.8 words, and
the average number of dependencies per sentence is 65.4.
The corpus is freely available for research and evaluation,
as are documentation and tools for displaying and prun-
ing structures.3

In our experiments we used a Reduced version of the
DEPBANK, including just the minimum set of dependen-
cies necessary for reading out the central semantic rela-
tions and properties of a sentence. We tested against this
Reduced gold standard to establish accuracy on a lower
bound of the information that a meaning-sensitive appli-
cation would require. The Reduced version contained all
the argument and adjunct dependencies shown in Fig.
1, and a few selected semantically-relevant features, as
shown in Fig. 2. The features in Fig. 2 were chosen be-

2The resulting test set is thus unseen to the grammar and
stochastic disambiguation system used in our experiments. This
is indicated by the fact that the upperbound of F-score for the
best matching parses for the experiment grammar is in the range
of 85%, not 100%.

3http://www2.parc.com/istl/groups/nltt/fsbank/



Function Meaning
adjunct adjuncts
aquant adjectival quantifiers (many, etc.)
comp complement clauses (that, whether)
conj conjuncts in coordinate structures
focus int fronted element in interrogatives
mod noun-noun modifiers
number numbers modifying nouns
obj objects
obj theta secondary objects
obl oblique
obl ag demoted subject of a passive
obl compar comparativethan/asclauses
poss possessives (John’s book)
pron int interrogative pronouns
pron rel relative pronouns
quant quantifiers (all, etc.)
subj subjects
topic rel fronted element in relative clauses
xcomp non-finite complements

verbal and small clauses

Figure 1: Grammatical functions inDEPBANK.

cause it was felt that they were fundamental to the mean-
ing of the sentences, and in fact they are required by the
semantic interpreter we have used in a knowledge-based
application (Crouch et al., 2002).

Feature Meaning
adegree degree of adjectives and adverbs

(positive, comparative, superlative)
coord form form of a coordinating

conjunction (e.g.,and, or)
det form form of a determiner (e.g.,the, a)
num number of nouns (sg, pl)
numbertype cardinals vs. ordinals
passive passive verb (e.g.,It was eaten.)
perf perfective verb (e.g.,have eaten)
precoordform either, neither
prog progressive verb (e.g.,were eating)
pron form form of a pronoun (he, she, etc.)
prt form particle in a particle verb

(e.g.,They threw it out.)
stmt type statement type (declarative,

interrogative, etc.)
subordform subordinating conjunction (e.g.that)
tense tense of the verb (past, present, etc.)

Figure 2: Selected features for ReducedDEPBANK

.

As a concrete example, the dependency list in Fig. 3 is
the Reduced set corresponding to the following sentence:

He reiterated his opposition to such funding,
but expressed hope of a compromise.

An additional feature of theDEPBANK that is relevant
to our comparisons is that dependency heads are rep-
resented by their standard citation forms (e.g. the verb
swamin a sentence appears asswimin its dependencies).

We believe that most applications will require a conver-
sion to canonical citation forms so that semantic relations
can be mapped into application-specific databases or on-
tologies. The predicates of LFG f-structures are already
represented as citation forms; for a fair comparison we
ran the leaves of the Collins tree through the same stem-
mer modules as part of the tree-to-dependency transla-
tion. We also note that proper names appear in theDEP-
BANK as single multi-word expressions without any in-
ternal structure. That is, there are no dependencies hold-
ing among the parts of people names (A. Boyd Simpson),
company names (Goldman, Sachs & Co), and organiza-
tion names (Federal Reserve). This multiword analysis
was chosen because many applications do not require
the internal structure of names, and the identification of
named entities is now typically carried out by a separate
non-syntactic pre-processing module. This was captured
for the LFG parser by using named entity markup and for
the Collins parser by creating complex word forms with
a singlePOStag (section 5).

conj(coord∼0, express∼3)
conj(coord∼0, reiterate∼1)
coord form(coord∼0, but)
stmt type(coord∼0, declarative)
obj(reiterate∼1, opposition∼6)
subj(reiterate∼1, pro∼7)
tense(reiterate∼1, past)
obj(express∼3, hope∼15)
subj(express∼3, pro∼7)
tense(express∼3, past)
adjunct(opposition∼6, to∼11)
num(opposition∼6, sg)
poss(opposition∼6, pro∼19)
num(pro∼7, sg)
pron form(pro∼7, he)
obj(to∼11, funding∼13)
adjunct(funding∼13, such∼45)
num(funding∼13, sg)
adjunct(hope∼15, of∼46)
num(hope∼15, sg)
num(pro∼19, sg)
pron form(pro∼19, he)
adegree(such∼45, positive)
obj(of∼46, compromise∼54)
det form(compromise∼54, a)
num(compromise∼54, sg)

Figure 3: Reduced dependency relations forHe reiterated
his opposition to such funding, but expressed hope of a
compromise.

4 Conversion to Dependency Bank Format

A conversion routine was required for each system to
transform its output so that it could be compared to the
DEPBANK dependencies. While it is relatively straightfor-
ward to convert LFG f-structures to the dependency bank



format because the f-structure is effectively a dependency
format, it is more difficult to transform the output trees of
the Model 3 Collins parser in a way that fairly allocates
both credits and penalties.

LFG Conversion We discarded the LFG tree structures
and used a general rewriting system previously developed
for machine translation to rewrite the relevant f-structure
attributes as dependencies (see King et al. (2003)). The
rewritings involved some deletions of irrelevant features,
some systematic manipulations of the analyses, and some
trivial respellings. The deletions involved features pro-
duced by the grammar but not included in the PARC 700
such as negative values ofPASS, PERF, and PROG and
the featureMEASUREused to mark measure phrases. The
manipulations are more interesting and are necessary to
map systematic differences between the analyses in the
grammar and those in the dependency bank. For example,
coordination is treated as a set by the LFG grammar but as
a singleCOORDdependency with severalCONJ relations
in the dependency bank. Finally, the trivial rewritings
were used to, for example, changeSTMT-TYPE decl in
the grammar toSTMT-TYPE declarative in the de-
pendency bank. For the Reduced version of the PARC
700 substantially more features were deleted.

Collins Model 3 Conversion An abbreviated represen-
tation of the Collins tree for the example above is shown
in Fig. 4. In this display we have eliminated the head lex-
ical items that appear redundantly at all the nonterminals
in a head chain, instead indicating by a single number
which daughter is the head. Thus, S˜ 2 indicates that the
head of the main clause is its second daughter, the VP,
and its head is its first VP daughter. Indirectly, then, the
lexical head of the S is the first verbreiterated.

(TOP∼1
(S∼2 (NP-A∼1 (NPB∼1 He/PRP))

(VP∼1 (VP∼1 reiterated/VBD
(NP-A∼1 (NPB∼2 his/PRP$

opposition/NN)
(PP∼1 to/TO

(NPB∼2 such/JJ
funding/NN))))

but/CC
(VP∼1 expressed/VBD

(NP-A∼1 (NPB∼1 hope/NN)
(PP∼1 of/IN

(NP-A∼1 (NPB∼2 a/DT
compromise/NN))))))))

Figure 4: Collins Model 3 tree forHe reiterated his op-
position to such funding, but expressed hope of a compro-
mise.

The Model 3 output in this example includes standard
phrase structure categories, indications of the heads, and

the additional -A marker to distinguish arguments from
adjuncts. The terminal nodes of this tree are inflected
forms, and the first phase of our conversion replaces them
with their citation forms (the verbsreiterateandexpress,
and the decapitalized and standardizedhefor Heandhis).
We also adjust for systematic differences in the choice of
heads. The first conjunct tends to be marked as the head
of a coordination in Model 3 output, whereas the depen-
dency bank has a more symmetric representation: it in-
troduces a newCOORD head and connects that up to the
conjunction, and it uses a separateCONJrelation for each
of the coordinated items. Similarly, Model 3 identifies
the syntactic markersto and that as the heads of com-
plements, whereas the dependency bank treats these as
selectional features and marks the main predicate of the
complements as the head. These adjustments are carried
out without penalty. We also compensate for the differ-
ences in the representation of auxiliaries: Model 3 treats
these as main verbs with embedded complements instead
of the PERF, PROG, and PASSIVE features of theDEP-
BANK , and our conversion flattens the trees so that the
features can be read off.

The dependencies are read off after these and a few
other adjustments are made. NPs under VPs are read off
either as objects or adjuncts, depending on whether or
not the NP is annotated with the argument indicator (-A)
as in this example; the -A presumably would be miss-
ing in a sentence likeJohn arrived Friday, andFriday
would be treated as anADJUNCT. Similarly, NP-As un-
der S are read off as subject. In this example, however,
this principle of conversion does not lead to a match with
the dependency bank: in theDEPBANK grammatical rela-
tions that are factored out of conjoined structures are dis-
tributed back into those structures, to establish the correct
semantic dependencies (in this case, thathe is the subject
of both reiterate and expressand not of the introduced
coord). We avoided the temptation of building coordinate
distribution into the conversion routine because, first, it is
not always obvious from the Model 3 output when dis-
tribution should take place, and second, that would be
a first step towards building into the conversion routine
the deep lexical and syntactic knowledge (essentially the
functional component of our LFG grammar) that the shal-
low approach explicitly discounts4.

For the same reasons our conversion routine does not
identify the subjects of infinitival complements with par-
ticular arguments of matrix verbs. The Model 3 trees pro-
vide no indication of how this is to be done, and in many
cases the proper assignment depends on lexical informa-
tion about specific predicates (to capture, for example, the
well-known contrast betweenpromiseandpersuade).

Model 3 trees also provide information about certain

4However, we did explore a few of these additional transfor-
mations and found only marginal F-score increases.



long-distance dependencies, by marking with -g annota-
tions the path between a filler and a gap and marking the
gap by an explicitTRACE in the terminal string. The filler
itself is not clearly identified, but our conversion treats
all WH categories under SBAR as potential fillers and
attempts to propagate them down the gap-chain to link
them up to appropriate traces.

In sum, it is not a trivial matter to convert a Model 3
tree to an appropriate set of dependency relations, and the
process requires a certain amount of intuition and skill.
For our experiments we tried to define a conversion that
gives appropriate credit to the dependencies that can be
read from the trees without relying on an undue amount
of sophisticated linguistic knowledge5.

5 Experiments

We conducted our experiments by preparing versions of
the test sentences in the form appropriate to each sys-
tem. We used a configuration of the XLE parser that ex-
pects sentences conforming to ordinary text conventions
to appear in a file separated by double line-feeds. A cer-
tain amount of effort was required to remove the part-of-
speech tags and labeled brackets of the WSJ corpus in a
way that restored the sentences to a standard English for-
mat (for example, to remove the space betweenwoandn’t
that remains when thePOS tags are removed). Since the
PARC 700 treats proper names as multiword expressions,
we then augmented the input strings withXML markup
of the named entities. These are parsed by the grammar
as described in section 2. We used manual named entity
markup for this experiment because our intent is to mea-
sure parsing technology independent of either the time
or errors of an automatic named-entity extractor. How-
ever, in other experiments with an automatic finite-state
extractor, we have found that the time for named-entity
recognition is negligible (on the order of seconds across
the entire corpus) and makes relatively few errors, so that
the results reported here are good approximations of what
might be expected in more realistic situations.

As input to the Collins parser, we used the part-of-
speech tagged version of section 23 that was provided
with the parser. From this we extracted the 700 sentences
in the PARC 700. We then modified them to produce
named entity input so that the parses would match the
PARC 700. This was done by putting underscores be-
tween the parts of the named entity and changing the final
part of speech tag to the appropriate one (usually NNP)
if necessary. (The number of words indicated at the be-
ginning of the input string was also reduced accordingly.)
An example is shown in (1).

5The results of this conversion are available at
http://www2.parc.com/istl/groups/nltt/fsbank/

(1) Sen. NNP Christopher NNP Dodd NNP−→
Sen.ChristopherDodd NNP

After parsing, the underscores were converted to spaces
to match the PARC 700 predicates.

Before the final evaluation,1/5 of the PARC 700 de-
pendency bank was randomly extracted as a heldout set.
This set was used to adjust the performance parameters of
the XLE system and the Collins parser so as to optimize
parsing speed without losing accuracy. For example, the
limit on the length of medial phrases was set to 20 words
for the XLE system (see Sec. 2), and a regularizer penalty
of 10 was found optimal for thè1 prior used in stochas-
tic disambiguation. For the Collins parser, a beam size
of 1000 was found to improve speed considerably at lit-
tle cost in accuracy. Furthermore, the np-bracketing flag
(npbflag) was set to 0 to produce an extended set of NP
levels for improved argument/adjunct distinction6. The fi-
nal evaluation was done on the remaining 560 examples.
Timing results are reported in seconds of CPU time7. POS

tagging of the input to the Collins parser took 6 seconds
and this was added to the timing result of the Collins
parser. Time spent for finite-state morphology and dictio-
nary lookup for XLE is part of the measure of its timing
performance. We did not include the time for dependency
extraction or stemming the Collins output.

Table 1 shows timing and accuracy results for the Re-
duced dependency set. The parser settings compared are
Model 3 of the Collins parser adjusted to beam size 1000,
and the Core and Complete versions of the XLE sys-
tem, differing in the size of the grammar’s constraint-
set. Clearly, both versions of the XLE system achieve a
significant reduction in error rate over the Collins parser
(12% for the core XLE system and 20% for the complete
system) at an increase in parsing time of a factor of only
1.49 for the core XLE system. The complete version gives
an overall improvement in F-score of 5% over the Collins
parser at a cost of a factor of 5 in parsing time.

Table 1: Timing and accuracy results for Collins parser
and Complete and Core versions of XLE system on Re-
duced version of PARC 700 dependency bank.

time prec. rec. F-score
LFG core 298.88 79.1 76.2 77.6

LFG complete 985.3 79.4 79.8 79.6
Collins 1000 199.6 78.3 71.2 74.6

6A beam size of 10000 as used in Collins (1999) improved
the F-score on the heldout set only by .1% at an increase of pars-
ing time by a factor of 3. Beam sizes lower than 1000 decreased
the heldout F-score significantly.

7All experiments were run on one CPU of a dual proces-
sor AMD Opteron 244 with 1.8 GHz and 4GB main memory.
Loading times are included in CPU times.



6 Conclusion

We presented some experiments that compare the accu-
racy and performance of two stochastic parsing systems,
the shallow Collins parser and the deep-grammar-based
XLE system. We measured the accuracy of both systems
against a gold standard derived from the PARC 700 de-
pendency bank, and also measured their processing times.
Contrary to conventional wisdom, we found that the shal-
low system was not substantially faster than the deep
parser operating on a core grammar, while the deep sys-
tem was significantly more accurate. Furthermore, ex-
tending the grammar base of the deep system results in
much better accuracy at a cost of a factor of 5 in speed.

Our experiment is comparable to recent work on read-
ing off Propbank-style (Kingsbury and Palmer, 2002)
predicate-argument relations from gold-standard tree-
bank trees and automatic parses of the Collins parser.
Gildea and Palmer (2002) report F-score results in the
55% range for argument and boundary recognition based
on automatic parses. From this perspective, the nearly
75% F-score that is achieved for our deterministic rewrit-
ing of Collins’ trees into dependencies is remarkable,
even if the results are not directly comparable. Our scores
and Gildea and Palmer’s are both substantially lower than
the 90% typically cited for evaluations based on labeled
or unlabeled bracketing, suggesting that extracting se-
mantically relevant dependencies is a more difficult, but
we think more valuable, task.
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