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Abstract

We present risk bounds for position-sensitive max-margin ranking algorithms
that follow straightforwardly from a structural result for Rademacher averages
presented by [1]. We apply this result to pairwise and listwise hinge loss that
are position-sensitive by virtue of rescaling the margin by a pairwise or listwise
position-sensitive prediction loss.

1 Introduction

[2] recently presented risk bounds for probabilistic listwise ranking algorithms. The presented
bounds follow straightforwardly from structural results for Rademacher averages presented by [1].
These bounds are dominated by two terms: Firstly, by the empirical Rademacher average Rn(F)
of the class of ranking functions F ; secondly, by a term involving the Lipschitz constant of a Lips-
chitz continuous loss function. For example, for a loss function defined on the space of all possible
permutations over m ranks, the Lipschitz constant involves a factor m!. Loss functions defined over
smaller spaces involve smaller factors.

Similar risk bounds can be given for max-margin ranking algorithms based on the hinge-loss func-
tion. The bounds make use of a single structural result on Rademacher averages that reflects the
structure of the output space in the Lipschitz constant of the hinge-loss function. We apply the result
to pairwise and listwise hinge loss functions that are both position-sensitive by virtue of rescaling
the margin by a pairwise or listwise position-sensitive prediction loss. Position-sensitivity means
that high precision in the top ranks is promoted, corresponding to user studies in web search that
show that users typically only look at the very top results returned by the search engine [3].

The contribution of this paper is to show how simple risk bounds can be derived for max-margin
ranking algorithms by a straightforward application of structural results for Rademacher averages
presented by [1]. More involved risk bounds for pairwise ranking algorithms have been presented
before by [4] (using algorithmic stability), and for structured prediction by [5] (using PAC-Bayesian
theory).

2 Notation

Let S = {(xq, yq)}nq=1 be a training sample of queries, each represented by a set of documents
xq = {xq1, . . . , xq,n(q)}, and set of rank labels yq = {yq1, . . . , yq,n(q)}, where n(q) is the number
of documents for query q. For full rankings of all documents for a query, a total order on documents
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is assumed, with rank labels taking on values yqi ∈ {1, . . . , n(q)}. Documents of equivalent rank
can be specified by assuming a partial order on documents, where a multipartite ranking involves
r < n(q) relevance levels such that yqi ∈ {1, . . . , r} , and a bipartite ranking involves two rank
values yqi ∈ {1, 2} with relevant documents at rank 1 and non-relevant documents at rank 2.

Let the documents in xq be identified by the integers {1, 2, . . . , n(q)}. Then a permutation πq on xq
can be defined as a bijection from {1, 2, . . . , n(q)} onto itself. We use Πq to denote the set of all
possible permutations on xq , and πqj to denote the rank position of document xqj . Furthermore, let
(i, j) denote a pair of documents in xq and let Pq be the set of all pairs in xq .

A feature function φ(xqi) is associated with each document i = 1, . . . , n(q) for each query q.
Furthermore, a partial-order feature map as used in [6, 7] is created for each document set as follows:

φ(xq, πq) =
1

n(q)(n(q)− 1)/2

∑
(i,j)∈Pq

φ(xqi)− φ(xqj)sgn(
1
πqi
− 1
πqj

).

We assume linear ranking functions f ∈ F that are defined on the document level as f(xqi) =
〈w, φ(xqi)〉 and on the query level as f(xq, πq) = 〈w, φ(xq, πq)〉. Note that since feature vectors
on document and query level have the same size, assuming that ||w|| ≤ B, ||φ|| ≤ M , we get
||f || ≤ BM for all f ∈ F .

The goal of learning a ranking over the documents xq for a query q can be achieved either by
sorting the documents according to the document-level ranking function f(xqi) = 〈w, φ(xqi)〉, or
by finding the permutation π∗ that scores highest according to the query-level ranking function:

π∗ = arg max
πq∈Πq

f(xq, πq) = arg max
πq∈Πq

〈w, φ(xq, πq)〉 .

For convenience, let us furthermore define ranking-difference functions on the document level

f̄(xqi, xqj , yqi, yqj) = 〈w, φ(xqi)− φ(xqj)〉 sgn(
1
yqi
− 1
yqj

),

and on the query level
f̄(xq, yq, πq) = 〈w, φ(xq, yq)− φ(xq, πq)〉 .

Finally, let L(yq, πq) ∈ [0, 1] denote a prediction loss of a predicted ranking πq compared to the
ground-truth ranking yq . 1

3 Position-Sensitive Max-Margin Ranking Algorithms

A position-sensitive pairwise max-margin algorithm can be given by extending the magnitude-
preserving pairwise hinge-loss of [4] or [8]. For a fully ranked list of instances as gold standard,
the penalty term can be made position-sensitive by accruing the magnitude of the difference of in-
verted ranks instead of the magnitude of score differences. Thus the penalty for misranking a pair
of instances is higher for misrankings involving higher rank positions than for misrankings in lower
rank positions. The pairwise hinge loss is defined as follows (where (z)+ = max{0, z}):
Definition 1 (Pairwise Hinge Loss).

`P (f̄ ;xq, yq) =
∑

(i,j)∈Pq

((| m
yqi
− m

yqj
|)− f̄(xqi, xqj , yqi, yqj))+.

We use the pairwise 0-1 error `0−1 as basic ranking loss function for the pairwise case. Clearly,
`0−1(f̄ ;xq, yq) ≤ `P (f̄ ;xq, yq) for all f̄ , xq, yq . The 0-1 error is defined as follows (where [[z]] = 1
if z is true, 0 otherwise):

1We slightly abuse the notation yq to denote the permutation on xq that is induced by the rank labels. In
case of full rankings, the permutation πq corresponding to ranking yq is unique. For multipartite and bipartite
rankings, there is more than one possible permutation for a given ranking, so that we let πq denote a permutation
that is consistent with ranking yq .

2



Definition 2 (0-1 Loss).

`0−1(f̄ ;xq, yq) =
∑

(i,j)∈Pq

[[f̄(xqi, xqj , yqi, yqj) < 0]].

Listwise max-margin algorithms for the prediction loss of (Mean) Average Precision (AP) [9] and
NDCG [10] have been presented by [6] and [7], respectively. These ranking algorithms are position-
sensitive by virtue of position-sensitivity of the deployed prediction loss L. The listwise hinge loss
for general L is defined as follows:
Definition 3 (Listwise Hinge Loss).

`L(f̄ ;xq, yq) =
∑

πq∈Πq\yq

(L(yq, πq)− f̄(xq, yq, πq))+.

The basic loss function for the listwise case is defined by the prediction loss L itself. For example,
the prediction loss LAP for AP on the query level is defined as follows with respect to binary rank
labels yqj ∈ {1, 2}:
Definition 4 (AP Loss).

LAP (yq, πq) = 1−AP (yq, πq)

where AP (yq, πq) =

∑n(q)
j=1 Prec(j) · (|yqj − 2|)∑n(q)

j=1 (|yqj − 2|)

and Prec(j) =

∑
k:πqk≤πqj

(|yqk − 2|)
πqj

.

4 Risk Bounds

We use the usual definitions of expected and empirical risk with respect to a loss function `. The
expected risk is defined with respect to an unknown probability distribution PQ where we regard
pairs of documents and ranks (x, y) as random variables on the space Q.

R`(f̄) =
∫
Q
`(f̄ ;x, y)PQ(dx, dy).

The empirical risk is defined with respect to a sample S = {(xq, yq)}nq=1:

R̂`(f̄ ;S) =
1
n

n∑
q=1

`(f̄ ;xq, yq).

[1]’s central theorem on risk bounds using Rademacher averages can be restated with respect the
definitions above as follows:
Theorem 1 (cf. [1], Theorem 8). Assume loss functions ˜̀(f̄ ;xq, yq) ∈ [0, 1], `(f̄ ;xq, yq) ∈ [0, 1]
where ` dominates ˜̀ s.t. for all f̄ , xq, yq , ˜̀(f̄ ;xq, yq) ≤ `(f̄ ;xq, yq). Let S = {(xq, yq)}nq=1 be a
training set of i.i.d. instances, and F̄ be the class of linear ranking-difference functions. Then with
probability 1− δ over samples of length n, the following holds for all f̄ ∈ F̄:

R˜̀(f̄) ≤ R̂`(f̄ ;S) +Rn(` ◦ F̄) +

√
8 ln(2/δ)

n

where Rn(` ◦ F̄) = IEσ sup
f̄∈F̄

1
n

n∑
q=1

σi`(f̄ ;xq, yq).

The complexity measure of a Rademacher average Rn(F ) on a class of functions F quantifies the
extent to which some function in F can be correlated with a random noise sequence of length n.
Here the Rademacher average Rn(` ◦ F̄) is defined on a class of functions that is composed of a
Lipschitz continuous loss function ` and a linear ranking model in F̄ . It can be broken down into a
Rademacher averageRn(F̄) for the linear ranking models, and the Lipschitz constant L` for the loss
function `. The following theorem makes use of the Ledoux-Talagrand concentration inequality:
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Theorem 2 (cf. [1], Theorem 12). Let ` be a Lipschitz continuous loss function with Lipschitz
constant L`, thenRn(` ◦ F̄) ≤ 2L`Rn(F̄).

Furthermore, the Rademacher average for linear functions is given by the following Lemma:
Lemma 1 (cf. [1], Lemma 22). Let F̄ be the class of linear ranking difference functions bounded
by BM . Then for all f̄ ∈ F̄:

Rn(F̄) =
2BM√

n
.

In order to apply Theorem 1, we need to normalize loss functions to map to [0, 1]. For full pairwise
ranking, the size of the set of pairs over m = n(q) ranks is |Pq| =

(
m
2

)
. This yields a normalization

constant ZP =
(
m
2

)
(m− 1 + 2BM) for pairwise hinge loss.

An application of Theorem 2 to pairwise hinge loss yields the following:

Proposition 1. Let ˆ̀
P = 1

ZP
`P be the normalized pairwise hinge loss. Then for all f̄ ∈ F̄:

Rn(ˆ̀
P ◦ F̄) ≤ 2

m− 1 + 2BM
Rn(F̄).

Proof. Follows directly from Theorem (2) with Lˆ̀
P

= supf̄ |ˆ̀′P (f̄)| = | (m
2 )

(m
2 )(m−1+2BM)|

|.

Using the 0-1 loss as dominated loss, we can combine Theorem 1 and Lemma 1 with Proposition 1
to get the following result:
Theorem 3. Let `0−1 be the 0-1 loss defined in Definition (2) and `P be the pairwise hinge loss
defined in Definition (1). Let S = {(xq, yq)}nq=1 be a training set of i.i.d. instances, and F̄ be the
class of linear ranking-difference functions. Then with probability 1 − δ over samples of length n,
the following holds for all f̄ ∈ F̄:

R`0−1(f̄) ≤ R̂`P (f̄ ;S) +
(
m

2

)
4BM√

n
+
(
m

2

)
(m− 1 + 2BM)

√
8 ln(2/δ)

n
.

Proof. Combining Theorem (1) and Proposition (1) under the use of normalized loss function ˆ̀
P =

1
ZP
`P , we get

Rˆ̀
P

(f̄) ≤ R̂ˆ̀
P

(f̄ ;S) +
2

m− 1 + 2BM
2BM√

n
+

√
8 ln(2/δ)

n
.

Since for c, F,G > 0, the inequality F ≤ G implies cF ≤ cG, we can rescale the result above to
achieve a bound for the original loss functions.

ZP [Rˆ̀
P

(f̄)] ≤ ZP [R̂ˆ̀
P

(f̄ ;S) +
2

m− 1 + 2BM
2BM√

n
+

√
8 ln(2/δ)

n
].

Multiplying in the normalization constant gives

R`P (f̄) ≤ R̂`P (f̄ ;S) +
(
m

2

)
4BM√

n
+
(
m

2

)
(m− 1 + 2BM)

√
8 ln(2/δ)

n
.

Finally, we can bound R`P (f̄) by R`0−1(f̄) from below since R`0−1(f̄) ≤ R`P (f̄) follows from
`0−1 ≤ `P , concluding the proof.

Interestingly, the structure of the output space is directly reflected in the risk bounds. For full pair-
wise ranking over all possible pairs, a penalty of

(
m
2

)
has to be paid for the exploration of the full

space of all pairwise comparisons. For the case of pairwise ranking of documents at r relevance
levels, including |li| documents each, pairwise comparisons between documents at the same rele-
vance level can be ignored. Thus, in this scenario of multipartite ranking, the number of pairs |Pq|
is reduced from the set of all

(
m
2

)
pairwise comparisons to

∑r−1
i=1

∑r
j=i+1 |li||lj |. A risk bound for

this scenario is given by the following corollary:
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Corollary 1. Let `0−1 be the 0-1 loss and `P be the pairwise hinge loss defined on a set of∑r−1
i=1

∑r
j=i+1 |li||lj | pairs over r relevance levels li. Let S = {(xq, yq)}nq=1 be a training set

of i.i.d. instances, and F̄ be the class of linear ranking-difference functions. Then with probability
1− δ over samples of length n, the following holds for all f̄ ∈ F̄:

R`0−1(f̄) ≤ R̂`P (f̄ ;S)+(
r−1∑
i=1

r∑
j=i+1

|li||lj |)
4BM√

n
+(

r−1∑
i=1

r∑
j=i+1

|li||lj |)(r−1+2BM)

√
8 ln(2/δ)

n
.

Bipartite ranking of rel relevant and nrel non-relevant documents involves even fewer pairs, namely
|Pq| = rel · nrel. A risk bound for bipartite ranking can be given as follows:

Corollary 2. Let `0−1 be the 0-1 loss and `P be the pairwise hinge loss defined on a set of rel ·nrel
pairs for bipartite ranking of rel relevant and nrel non-relevant documents. Let S = {(xq, yq)}nq=1

be a training set of i.i.d. instances, and F̄ be the class of linear ranking-difference functions. Then
with probability 1− δ over samples of length n, the following holds for all f̄ ∈ F̄:

R`0−1(f̄) ≤ R̂`P (f̄ ;S) + (rel · nrel)4BM√
n

+ (rel · nrel)(1 + 2BM)

√
8 ln(2/δ)

n
.

For the general case of listwise hinge loss, we get the following, using a normalization constant
ZL = m!(1 + 2BM) for a number of |Πq| = m! permutations over m = n(q) ranks:

Proposition 2. Let ˆ̀
L = 1

ZL
`L be the normalized listwise hinge loss. Then for all f̄ ∈ F̄:

Rn(ˆ̀
L ◦ F̄) ≤ 2

1 + 2BM
Rn(F̄).

Proof. Follows directly from Theorem (2) with Lˆ̀
L

= supf̄ |ˆ̀′L(f̄)| = | m!
m!(1+2BM) |.

A risk bound for listwise prediction loss in the general case can be given as follows.

Theorem 4. Let `L be the listwise hinge loss defined in Definition (3). Let S = {(xq, yq)}nq=1 be a
training set of i.i.d. instances, and F̄ be the class of linear ranking-difference functions. Then with
probability 1− δ over samples of length n, the following holds for all f̄ ∈ F̄:

RL ≤ R̂`L(f̄ ;S) +m!
4BM√

n
+m!(1 + 2BM)

√
8 ln(2/δ)

n
.

Proof. Similar to the proof for (3) using the fact that the hinge loss `L bounds the prediction loss L
from above (see [11], Proposition 2), where RL =

∫
Q
L(yq, πq)P (dyq, dπq).

Specific prediction loss functions such as AP define a specific structure on the output space which
is reflected in the risk bound for structured prediction for AP loss. For AP, permutations that involve
only reorderings of relevant documents with relevant documents, or reorderings of irrelevant docu-
ments with irrelevant documents, are considered equal. This means that instead of m! permutations
over a list of size m = n(q), the number of permutations is |Πq| = m!

rel!nrel! =
(
m
rel

)
=
(
m
nrel

)
,

where rel and nrel are the number of relevant and irrelevant documents. A risk bound for listwise
ranking using AP loss can be given as follows:

Corollary 3. Let LAP be the AP loss defined Definition 4 and `LAP
be the listwise hinge loss using

LAP as prediction loss function. Let S = {(xq, yq)}nq=1 be a training set of i.i.d. instances, and
F̄ be the class of linear ranking-difference functions. Then with probability 1 − δ over samples of
length n, the following holds for all f̄ ∈ F̄:

RLAP
≤ R̂`LAP

(f̄ ;S) +
(
m

rel

)
4BM√

n
+
(
m

rel

)
(1 + 2BM)

√
8 ln(2/δ)

n
.
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5 Discussion

The bounds we presented were given for algorithms that compute the hinge loss by summing over
all possible outputs instead of taking the arg-max to find the most violated constraint. Since

∑
xi ≥

maxi xi, for all xi ≥ 0, the bounds still apply to approaches that take the arg-max. On the other
hand, they also apply to approaches where successively adding most violated constraints is infeasible
[12]. Tighter bounds may be given for arg-max and soft-max versions. This is due to future work.
Furthermore, the proofs need to be extended to other listwise loss functions such as NDCG. Lastly,
an empirical validation supporting the theoretical results needs to be given.
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