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Abstract

Counterfactual learning is a natural scenario to improve web-based machine trans-
lation services by offline learning from feedback logged during user interactions.
In order to avoid the risk of showing inferior translations to users, in such sce-
narios mostly exploration-free deterministic logging policies are in place. We
analyze possible degeneracies of inverse and reweighted propensity scoring estima-
tors, in stochastic and deterministic settings, and relate them to recently proposed
techniques for counterfactual learning under deterministic logging.

1 Introduction

Machine translation has recently become a commodity service that is offered for free for online
translation, e.g, by Google or Microsoft, or is integrated into e-commerce platforms (eBay) or social
media (Facebook). Such commercial settings facilitate the collection of user feedback on the quality
of machine translation output, either in form of an explicit user rating, or as indirect signal that can
be inferred from the interaction of the user with the translated content. While user feedback in form
of user clicks on displayed ads has been shown to be a valuable signal in response prediction for
online advertising (Chapelle and Li, 2011; Bottou et al., 2013), the gold mine of free user feedback
has not yet been exploited in the area of machine translation. Recent research has proposed bandit
structured prediction (Sokolov et al., 2016; Kreutzer et al., 2017; Nguyen et al., 2017) for online
learning of machine translation from weak user feedback to predicted translations, instead of from
costly manually created reference translations. The scenario investigated in these works is still far
removed from real world applications in commercial machine translation: Besides the fact that
previous research has been confined to simulated feedback, online bandit learning is unrealistic
in commercial settings due to the additional latency and the desire for offline testing of system
updates before deployment. A natural solution would be to exploit counterfactual learning that reuses
existing interaction data where the predictions have been made by a historic system different from
the target system. However, both online learning and offline learning from logged data are plagued
by the problem that exploration is prohibitive in commercial systems since it means to show inferior
translations to users. This effectively results in deterministic logging policies that lack explicit
exploration, making an application of off-policy methods theoretically questionable.
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Lawrence et al. (2017) recently showed that bandit learning of machine translation is possible even
under deterministic logging. They proposed an application of techniques such as doubly-robust policy
evaluation and learning (Dudik et al., 2011) or weighted importance sampling (Jiang and Li, 2016;
Thomas and Brunskill, 2016) to offline learning from deterministically logged data, and presented
evidence from simulation experiments that confirmed their conjecture that these techniques effectively
serve to smooth out deterministic components. The purpose of our paper is to give a formal account
on the possible degeneracies of the standard inverse propensity scoring technique (Rosenbaum and
Rubin, 1983) and its reweighted variant (Kong, 1992) under stochastic and deterministic logging,
with the goal of a clearer understanding of the effectiveness of the techniques proposed in Lawrence
et al. (2017).

2 Counterfactual Learning for Machine Translation

In the following, we give a short overview of the methods developed in Lawrence et al. (2017).
They formalize the problem of counterfactual learning for bandit structured prediction as follows: X
denotes a structured input space, Y(x) denotes the set of possible structured output for input x, and
δ : Y → [0, 1] denotes a reward function quantifying the quality of structured outputs. A data log is
denoted as a set of tuples D = {(xt, yt, δt)}nt=1, where for inputs xt, a logging policy µ produced an
output yt, which is logged with a corresponding reward δt ∈ [0, 1]. In the case of stochastic logging,
a propensity score µ(yt|xt) ∈ (0, 1] is logged in addition. Using the inverse propensity scoring
approach (IPS), importance sampling achieves an unbiased estimate of the expected reward under the
parametric target policy πw(yt|xt) ∈ [0, 1]:

V̂IPS(πw) =
1

n

n∑
t=1

δt
πw(yt|xt)
µ(yt|xt)

(1)

≈ Ep(x)Eµ(y|x)[δ(y)
πw(y|x)

µ(y|x)
]

= Ep(x)Eπw(y|x)[δ(y)].

In case of deterministic logging, outputs are logged with propensity µt = 1, t = 1, . . . , n of the
historical system. This results in empirical risk minimization, or empirical reward maximization,
without correction of the sampling bias of the logging policy:

V̂DPM(πw) =
1

n

n∑
t=1

δtπw(yt|xt). (2)

Lawrence et al. (2017) call equation (2) the deterministic propensity matching (DPM) objective,
and propose a first modification by the use of weighted importance sampling (Precup et al., 2000;
Jiang and Li, 2016; Thomas and Brunskill, 2016). The new objective is the reweighted deterministic
propensity matching (DPM+R) objective:

V̂DPM+R(πw) =
1

n

n∑
t=1

δtρ̄w(yt|xt) (3)

=
1
n

∑n
t=1 δtρw(yt|xt)

1
n

∑n
t=1 ρw(yt|xt)

,

with ρw(yt|xt) = πw(yt|xt). Setting ρw(yt|xt) = πw(yt|xt)
µ(yt|xt) recovers IPS with reweighting,

V̂IPS+R(πw) (Swaminathan and Joachims, 2015).

Lawrence et al. (2017) present further modifications of Equation (3) by the incorporation of a direct
reward estimation method into IPS as proposed in the doubly-robust (DR) estimator (Dudik et al.,
2011; Jiang and Li, 2016; Thomas and Brunskill, 2016). Let δ̂(xt, yt) be a regression-based reward
model trained on the logged data, and let ĉ be a scalar that allows to optimize the estimator for minimal
variance (Ross, 2013). They define a doubly controlled empirical risk minimization objective V̂ĉDC
as follows:

V̂ĉDC(πw) =
1

n

n∑
t=1

[
(δt − ĉδ̂t) ρ̄w(yt|xt) + ĉ

∑
y∈Y(xt)

δ̂(xt, y) ρw(y|xt)
]
, (4)
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Table 1: Gradients of counterfactual objectives.

∇V̂IPS/DPM = 1
n

∑n
t=1 δtρw(yt|xt)∇ log πw(yt|xt).

∇V̂IPS+R/DPM+R = 1
n

∑n
t=1[δtρ̄w(yt|xt)(∇ log πw(yt|xt)−

∑n
u=1 ρ̄w(yu|xu)∇ log πw(yu|xu))].

∇V̂ĉDC/ĉDR = 1
n

∑n
t=1[(δt − ĉδ̂)ρ̄w(yt|xt)(∇ log πw(yt|xt)−

∑n
u=1 ρ̄w(yu|xu)∇ log πw(yu|xu))

+ĉ
∑
y∈Y(xt) δ̂(xt, y)πw(y|xt)∇ log πw(y|xt)].

with ρw(yt|xt) = πw(yt|xt). Setting ĉ = 1 yields an objective called V̂DC. Setting ρw(yt|xt) =
πw(yt|xt)
µ(yt|xt) recovers the standard stochastic doubly-robust estimator V̂ĉDR. The optimal scalar parameter

ĉ can be derived easily by taking the derivative of the variance term, leading to ĉ = Cov(X,Y )
Var(Y ) .

The learning algorithms in Lawrence et al. (2017) are defined by applying a stochastic gradient ascent
update rule wt+1 = wt + η∇V̂ (πw)t to the objective functions defined above. The gradients are
shown in Table 1. In the experiments reported in Lawrence et al. (2017), the policy distribution is

assumed to be a Gibbs model πw(yt|xt) = eα(w>φ(xt,yt))∑
y∈Y(xt)

eα(w>φ(xt,y))
, based on a feature representation

φ : X × Y → Rd, a weight vector w ∈ Rd, and a smoothing parameter α ∈ R+, yielding the
following simple derivative∇ log πw(yt|xt) = α

(
φ(xt, yt)−

∑
y∈Y(xt) φ(xt, y)πw(yt|xt)

)
.

3 Degenerate Behaviour in Counterfactual Learning

Both the IPS and the DPM estimators can exhibit a degenerate behavior in that they can be maximized
by simply setting all logged outputs to probability 1, i.e., if πw(yt|xt) = 1 for ∀(yt, xt, δt) ∈ D =
{(xt, yt, δt)}nt=1. This is the case irrespective of whether data are logged stochastically (IPS) or
deterministically (DPM). Obviously, this is undesired as the probability for low reward outputs should
not be raised. For abbreviation, we set πt = πw(yt|xt) and µt = µ(yt|xt).

Theorem 1. maxπV̂IPS ∧maxπV̂DPM if ∀(yt, xt, δt) ∈ D : π(yt|xt) = 1 ∧ δt > 0.

Proof. We start by showing that the value of V̂IPS where ∀(yt, xt, δt) ∈ D : πt = 1 is greater than
the value of V̂IPS where ∃(xt, yt, δt) : πt ∈ [0, 1). W.l.og. assume that (xn, yn, δn) is the tuple with
πt ∈ [0, 1). Then

n∑
t=1

δt
µt

>

n−1∑
t=1

δt
µt

+
δnπn
µn

, (5)

δn
µn

>
δnπn
µn

,

1 > πn,

where the last line is true by assumption πn ∈ [0, 1). Because DPM is a special case of IPS with
µt = 1 for ∀(yt, xt) ∈ D = {(xt, yt, δt)}nt=1, the proof also holds for DPM.

The degenerate behavior of IPS and DPM described in Theorem 1 can be fixed by using reweighting,
which results in defining a probability distribution over the log D. Under reweighting, increasing the
probability of a low reward output takes away probability mass from the higher reward output. This
decreases the value of the estimator, and will thus be avoided in learning.

However, IPS+R and DPM+R still can behave in a degenerate manner, as we will show in the
following. We define the set Dmax that contains all tuples that receive the highest reward δmax
observed in the log, and we assume δmax > 0, leading to a cardinality of Dmax of at least one.
Definition 1. Let Dmax = maxδD, then D = Dmax ∪ D\Dmax.

We will show that the estimators can be maximized by simply setting the probability of at least one
tuple in Dmax to a value higher than 0, while leaving all other tuples in Dmax at their probabilities
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[0, 1], and setting the probability of tuples in the set D\Dmax to 0. Clearly, this is undesired as
outputs with a reward close to δmax should not receive a probability of 0. Furthermore, this learning
goal is easy to achieve since a degenerate estimator only needs to be concerned about lowering the
probability of tuples in D\Dmax as long as there is one tuple of Dmax with a probability above 0.
We want to prove the following theorem:

Theorem 2. maxπV̂IPS+R ∧maxπV̂DPM+R if ∃(xt, yt, δmax) ∈ Dmax : πt ∈ (0, 1] ∧ ∀(yt, xt, δt) ∈
D\Dmax : πt = 0.

We introduce a definition of data indices belonging to the sets Dmax and its complement in D:
Definition 2. Let

V̂IPS+R(πw) =

∑n
t=1 δt

πt
µt∑n

t=1
πt
µt

=
δmax

∑s−1
t=1

πt
µt

+
∑n
t=s δt

πt
µt∑n

t=1
πt
µt

,

where w.l.o.g. indices (1 . . . (s− 1)) refer to tuples in Dmax and indices (s . . . n) refer to indices in
D\Dmax. Thus, Dmax = {(xt, yt, δmax)}s−1t=1 and D\Dmax = {(xt, yt, δt)}nt=s.

Proof. We need to show that the value of V̂IPS+R where πt = 0 for ∀(yt, xt, δt) ∈ Dmax is lower than
the value of V̂IPS+R where ∃(xt, yt, δmax) ∈ Dmax with πt ∈ (0, 1]. Then

∑n
t=s δt

πt
µt∑n

t=s
πt
µt

<
δmax

∑s−1
t=1

πt
µt

+
∑n
t=s δt

πt
µt∑n

t=1
πt
µt

(6)

0 <
δmax

∑s−1
t=1

πt
µt∑n

t=1
πt
µt

,

where the last line is true for δmax > 0 as long as ∃(xt, yt, δmax) ∈ Dmax with πt > 0 as µt ∈ (0, 1]
by definition.

Furthermore, we need to show that the value of V̂IPS+R where ∃(yt, xt, δt) ∈ D\Dmax with πt ∈ (0, 1]

is lower than the value of V̂IPS+R with πt = 0 for ∀(yt, xt, δt) ∈ D\Dmax.

From the above, it is clear that ∃(xt, yt, δmax) ∈ Dmax with πt ∈ (0, 1], thus
δmax

∑s−1
t=1

πt
µt∑s−1

t=1
πt
µt

is

defined. W.l.o.g. assume that (ys, xs, δs) ∈ D\Dmax is the tuple with πs ∈ (0, 1]. Then

δmax
∑s−1
t=1

πt
µt

+ δs
πs
µs

+
∑n
t=s+1 δt

0
µt∑s

t=1
πt
µt

+
∑n
t=s+1

0
µt

<
δmax

∑s−1
t=1

πt
µt

+
∑n
t=s δt

0
µt∑s−1

t=1
πt
µt

+
∑n
t=s

0
µt

= δmax, (7)

δmax

s−1∑
t=1

πt
µt

+ δs
πs
µs

< δmax

s∑
t=1

πt
µt
,

δmax

s−1∑
t=1

πt
µt

+ δs
πs
µs

< δmax

s−1∑
t=1

πt
µt

+ δmax
πs
µs
,

δs
πs
µs

< δmax
πs
µs
. (8)

Equation 8 is true as δs < δmax by Definition 1 . As DPM+R is a special case of IPS+R with µt = 1
for ∀(yt, xt) ∈ D = {(xt, yt, δt)}nt=1, the proof also holds for DPM+R.

While employing stochastic gradient ascent, IPS+R and DPM+R can be prevented from reaching
their degenerate state by performing early stopping on a validation set. However, one cannot control
what happens to the probability mass that is freed when lowering the probability of a logged output.
The freed probability mass could be allocated to outputs that receive a lower reward than the logged
output which would create a system that is worse than the logging system.
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The estimators (ĉ)DR and (ĉ)DC successfully solve this problem. The direct reward predictor takes
the whole output space into account and thus assigns rewards to any structured output. The objective
will now be increased if the probability of outputs with high estimated reward is increased, and
decreased for outputs with low estimated reward. For this to happen, high reward outputs other
than the ones with maximal reward will be considered, even if the outputs have not been seen in the
training log. This will shift probability mass to unseen data with high estimated reward, which is a
desired property in learning.

4 Experimental Evidence

For completeness, we report the experimental evidence that Lawrence et al. (2017) provide to show
the effectiveness of their proposed techniques. They report an application of counterfactual learning in
a domain-adaptation setup for machine translation. A model is trained using out-of-domain data using
the hierarchical phrase-based machine translation framework that is based on a linear learner. The
model is given in-domain data to translate, and outputs are logged together with their per-sentence
BLEU score to the true reference, which simulates the reward signal. Experiments are conducted
on two language pairs. The first is German-to-English and its baseline system is trained on the
concatenation of the Europarl corpus, the Common Crawl corpus and the News corpus. The target
domain is represented by a corpus containing transcribed TED talks. The second language pair is
French-to-English. Its out-of-domain system is trained on the Europarl corpus and the target domain
is the News corpus.

Table 2: BLEU increase over the out-of-domain baseline on validation and test set for deterministically
and stochastically created logs.

BLEU BLEU difference BLEU
out-of-domain DPM+R DC ĉDC in-domain

de
te

rm
in

.

T
E

D validation 22.39 +0.59 +1.50 +1.89 25.43
test 22.76 +0.67 +1.41 +2.02 25.58

N
ew

s validation 24.64 +0.62 +0.99 +1.02 27.62
test 25.27 +0.94 +1.05 +1.13 28.08

out-of-domain IPS+R DR ĉDR in-domain

st
oc

ha
st

ic

T
E

D validation 22.39 +0.57 +1.92 +1.95 25.43
test 22.76 +0.58 +2.04 +2.09 25.58

N
ew

s validation 24.64 +0.71 +1.00 +0.71 27.62
test 25.27 +0.81 +1.18 +0.95 28.08

As shown in Table 2, under deterministic logging, the best results are obtained by the combining
reweighting and double control in the ĉDC method. The relations between the algorithms and even
the absolute improvements are quite similar under stochastic logging. For an extended discussion see
Lawrence et al. (2017).

5 Discussion

We presented an analysis of possible degenerate behavior in counterfactual learning scenarios. We
analyzed the degeneracies of the standard inverse propensity scoring method and its weighted variant,
both under stochastic and deterministic logging. Our analysis facilitates a clearer understanding why
doubly robust learning techniques serve to avoid such degeneracies, and why such techniques even
allow to perform counterfactual learning under deterministic logging.

Lawrence et al. (2017) also discuss a possible implicit exploration effect by the stochastic selection
of inputs. This phenomenon has recently been given a formal account by Bastani et al. (2017) and
has not been analyzed formally in this paper.

An open question is the application of the techniques proposed by Lawrence et al. (2017) to machine
translation with neural networks. For example, the necessity to normalize probabilities over the full
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set of logged data creates a memory bottleneck which makes it difficult to transfer the reweighting
approach to neural networks.
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