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Abstract
In response-based structured prediction, instead of a gold-standard structure, the learner is
given a response to a predicted structure from which a supervision signal for structured learning
is extracted. Applied to statistical machine translation (SMT), different types of environments
such as a downstream application, a professional translator, or an SMT user, may respond to
predicted translations with a ranking, a correction, or an acceptance/rejection decision, respec-
tively. We present algorithms and experiments that show that learning from responses alleviates
the supervision problem and allows a direct optimization of SMT for tasks such as cross-lingual
patent prior art retrieval, or translation of technical patent documents.

1 Introduction

Response-based learning describes a range of statistical learning methods that replace the full-
information supervised learning scenario by extracting supervision signals from the response
of an extrinsic environment to a predicted translation. Learning proceeds by “trying out” or
“grounding” translations in a task that is external to translation itself, receiving a response
from interacting in this task, and converting this response into a supervision signal for updating
model parameters. We focus on response-based structured prediction that operates according to
the following learning protocol:

1. Environment generates input structure xt
2. Learner predicts output structure yt
3. Environment generates response signal rt
4. Learner uses pair (xt, rt) to update its prediction rule

Clearly, the key advantage of response-based learning is to alleviate the supervision problem
by a repeatable generate-and-test procedure where feedback is obtained from the environment.
Such feedback is in general easier and less costly to obtain than full supervision information.
Furthermore, learning from task-based responses has the effect of grounding the learning pro-
cess in an extrinsic environment.

In this paper, we will describe three different types of response signals that are elicitated by
grounding SMT into three different environments, namely ranking responses elicited in cross-
lingual information retrieval (Section 2), correction responses elicited in form of post-edits by
professional translators (Section 3), and acceptance/rejection responses elicited in personalized
SMT (Section 4).

2 Grounding SMT in Cross-Lingual Patent Retrieval

The industry standard in cross-lingual information retrieval (CLIR) is to use established trans-
lation models for context-aware translation of query strings, effectively reducing the problem



Wikipedia Patents
MAP NDCG PRES MAP NDCG PRES

DT .3678 .5691 .7219 .2554 .5397 .5680
PSQ .3642 .5671 .7165 .2659 .5508 .5851
BOW-FD ∗.3919 ∗.5963 ∗.7528 ∗.2883 ∗.5819 ∗.6251

Table 1: Retrieval results of baseline systems and BOW-FD on large-scale CLIR task. ∗ denotes
significant difference compared to both baselines.

of CLIR to a pipeline of direct translation (DT) and monolingual retrieval (Chin et al., 2008).
Only recently, research approaches to probabilistic structured queries (PSQ) have been pre-
sented, that is, they include (weighted) translation alternatives into the query structure to allow
a more generalized term matching (Ture et al., 2012a,b). In both DT and PSQ, the integration
of SMT remains agnostic about its use for CLIR, and is instead optimized to match fluent, hu-
man reference translations. In contrast, retrieval systems often use bag-of-word representations,
stopword filtering, and stemming techniques during document scoring, and queries are rarely
fluent, grammatical natural language queries (Downey et al., 2008).

Attempts to inform the SMT system about its use for retrieval by optimizing its parameters
towards a retrieval objective have been presented in the form or re-ranking (Nikoulina et al.,
2012) or ranking (Sokolov et al., 2014).

The most direct integration of SMT and CLIR has been presented by Hieber and Riezler
(2015) in an approach to Bag-of-Words Forced Decoding (BOW-FD) where IR features for
words in the bag-of-words representation of documents force the SMT decoder to prefer rele-
vant documents with high probability. The crucial steps of the response-based online learning
protocol are instantiated in this approach as follows:

Prediction: Full translation hypergraph.
Response: BM25 scores of partial translation hypotheses.
Learning: Jointly optimize SMT and IR feature weights by direct ranking optimiza-

tion on relevant documents.

The key advantage of this approach clearly is the exploitation of the full translation search space,
which is made possible by decomposable IR features that relate partial translation hypotheses
to documents in the retrieval collection. This in turn allows to use the SMT decoder directly
in retrieval. The key modeling idea is to factorize the cross-lingual search problem of finding
document de given query qf as follows:

P (de|qf ) =
∑
h

P (h|qf )︸ ︷︷ ︸
translation

×P (de|h, qf )︸ ︷︷ ︸
retrieval

Learning is done by a joint optimization of a score function for linear models Fsmt and Fir

where

score(qf , de) = max
h

eFsmt(h,qe,qf )+Fir(h,de).

The parameters of this objective are optimized for ranking for given relevance ranked documents
s.t.

rank(d+, q) > rank(d−, q)⇐⇒ score(d+, q) > score(d−, q).

Table 1 presents evaluation results for large-scale patent CLIR. It shows a clear advantage
for BOW-FD over the aforementioned DT and PSQ approaches. Data used were Japanese-



Patents

BLEU ∆[σ]

baseline 30.26

rerank 32.54 +2.28 [±1.47]

tm+lm 33.24 +2.98 [±2.03]

tm+lm+rerank 34.02 +3.76 [±2.08]

Table 2: BLEU scores over patent test documents and mean difference and standard deviation
from baseline (in small font size).

English Patent CLIR data1 and German-English Wikipedia CLIR data2. Both datasets were
extracted automatically by using the citation graph in patents and Wikipedia to extract ranked
relevance links.

For more information on the data, model, and learning of BOW-FD, see Hieber and Riezler
(2015).

3 Learning SMT from Translator Post-Edits

Recent research in computer-assisted translation (CAT) has shown that post-editing of machine
translations by professional translators leads to improved productivity of translators, and to
improved quality of final translations (Koehn, 2009; Garcia, 2011; Green et al., 2013). This
scenario can be turned on its head by focusing on the human post-editor supporting the SMT
system, leading to a mutually beneficial cycle of human-assisted machine translation where the
SMT system performs online learning from human post-edits. The goal is to improve trans-
lation consistency for a given document, and to offer the user the experience of a system that
immediately learns from corrections (Wäschle et al., 2013; Denkowski et al., 2014; Green et al.,
2014).

Patent data are especially well-suited for an application of this scenario because of the
high repetitivity of patent documents. Wäschle et al. (2013) and Bertoldi et al. (2014) recently
presented an application of human-assisted SMT to patent data and data from legal and IT
domains.

The crucial steps of the response-based online learning protocol are instantiated in online
learning from post-edits as follows:

Prediction: Most probable sentence translation.
Response: User post-edit.
Learning: Dynamically extend phrase table and language model; update feature

weights by reranking.

The key difference between online learning from post-edits instead of from reference transla-
tions is the dynamic extension of the phrase table. Wäschle et al. (2013) and Bertoldi et al.
(2014) use a constrained search technique (Cettolo et al., 2010) that optimizes the coverage of
both source and target sentences. It produces exactly one phrase segmentation and alignment,
and allows gaps such that some source and target words may be uncovered. It differs in this re-
spect from forced decoding which produces an alignment only when the target is fully reachable
with the given models.

Assume the following phrase segmentation and alignment:

1111k train + 1,088k test, available under www.cl.uni-heidelberg.de/boostclir
2245k train + 1,455k test, available under www.cl.uni-heidelberg.de/wikiclir



Annex to the Technical Offer

Allegato all’ Offerta Tecnica

From this, three types of phrase pairs can be collected: (i) new phrase pairs by aligning unam-
biguous gaps (Technical Offer → Offerta Tecnica); (ii) known phrase pairs already present in
the given model (Annex→ Allegato and to the→ all’) ; (iii) full phrase pairs consisting of the
complete source sentence and its user translation (Annex to the Technical Offer→ Allegato all’
Offerta Tecnica). Only phrases that contain at least one content word are considered.

The weight update for the extended phrase table is done by updating relative fre-
quency features (collected into a cache during online learning) using a perceptron update
on a training example (xt, yt) with feature representation f(xt, yt) in case the prediction
ŷ = arg maxy w

>f(xt, y) does not match the target yt

w = w + f(xt, yt)− f(xt, ŷ).

Table 2 shows experimental results for German-English patent data sampled from title,
abstract and description sections from the PatTR corpus.3 Significant gains in BLEU score can
be obtained by reranking using a perceptron, or by updating phrase table (tm) and language
model (lm). In combination, nearly 4 BLEU points improvement are achieved.

For more information on data, model, and learning, see Wäschle et al. (2013) and Bertoldi
et al. (2014).

4 Towards Personalized SMT: Learning from Partial User Feedback

While the above described post-editing scenario is a big step towards high-quality human-
assisted SMT, the high cost and effort of post-editing may dampen the excitement about this
scenario. The question to ask is whether production-quality post-edits from professional trans-
lators are really necessary for human-assisted SMT, or whether weaker feedback from less
specialized users might be sufficient for learning.

Sokolov et al. (2014) recently addressed this question from a coactive learning perspec-
tive that provides a formal notion of feedback strength. They present a convergence analysis of
online structured prediction algorithms that learn from feedback consisting of slight improve-
ments over predicted translations, instead of optimal feedback consisting of full post-edits or
gold-standard translations. A simulation experiment on news data confirmed this theoretical
finding. This research implies that well-known online structured predictors can be used for
learning from weak feedback, without changes to the algorithms. What is open for change is
the strength of feedback, allowing “light” post-edits from non-professionals. An application of
this scenario to online learning for patent translation is a desideratum for future work.

We refer the reader to Sokolov et al. (2014) for more information on the theory and proof-
of-concept experiments in the coactive learning framework.

Another attack at learning from weak feedback can be taken from the direction of bandit
learning.4 Learning from bandit feedback describes an online learning scenario, where on each
of a sequence of rounds, a learning algorithm makes a prediction, and receives partial infor-
mation in terms of feedback to a single predicted point. In difference to the full information

3http://www.cl.uni-heidelberg.de/pattr/
4The name of this framework is inherited from a model where in each round a gambler pulls an arm of a different slot

machine (one-armed bandit), with the goal of maximizing his reward relative to the maximal possible reward, without
apriori knowledge of the optimal slot machine.



Algorithm 1 Bandit Structured Prediction

1: Input: sequence of learning rates γt
2: Initialize w0

3: for t = 0, . . . , T do
4: Observe xt
5: Calculate Epwt (y

′|xt)[φ(xt, y
′)]

6: Sample ỹt ∼ pwt
(y′|xt)

7: Obtain feedback ∆(ỹt)
8: Update wt+1 = wt − γt ∆(ỹt)(φ(xt, ỹt)− Epwt (y

′|xt)[φ(xt, y
′)])

Algorithm Structured Dueling Bandits

1: Input: γ, δ, w0

2: for t = 0, . . . , T do
3: Observe xt
4: Sample unit vector ut uniformly
5: Set w′t = wt + δut
6: Compare ∆(ŷwt

(xt)) to ∆(ŷw′
t
(xt))

7: if w′t wins then
8: wt+1 = wt + γut
9: else

10: wt+1 = wt

supervised scenario, the learner does not know what the correct prediction looks like, nor what
would have happened if it had predicted differently. Applied to SMT, this means that the learn-
ing algorithm only has access to a 1−BLEU loss evaluation of a predicted translation instead of
obtaining a gold standard reference translation. Clearly, a one-shot user quality estimate of the
predicted translation is easier and faster to obtain than light or full post-edits of predicted trans-
lations, or than reference translations generated from scratch. This framework can be seen as a
first step towards personalized machine translation where a given large SMT system is adapted
to a user solely by single-point user feedback to predicted structure.

The crucial steps of the response-based online learning protocol are instantiated in this
approach as follows:

Prediction: Exploration/exploitation sampling of sentence translation.
Response: User feedback on loss value of sampled translation.
Learning: Stochastic update using unbiased estimate of gradient.

Sokolov et al. (2015) presented two algorithms for online structured prediction in SMT
from bandit feedback that implement these ideas as follows. Algorithm 1 optimizes an expected
1−BLEU loss criterion (Och (2003), Smith and Eisner (2006), He and Deng (2012), Auli et al.
(2014), Wuebker et al. (2015), inter alia) by performing simultaneous exploration/exploitation
by sampling translations from a Gibbs model (line 6) , and using the obtained user feedback
(line 7) to perform an update in the negative direction of the instantaneous gradient (line 8).

The second algorithm extends Yue and Joachims (2009)’s dueling bandits algorithm to a
Structured Dueling Bandits algorithm. It compares a current weight vector wt with a neighbor-
ing point w′t along a direction ut, performing exploration (controlled by δ, line 5) by probing
random directions, and exploitation (controlled by γ, line 8) by taking a step into the winning
direction. The comparison step in line 6 is adapted to structured prediction from the original al-
gorithm by comparing the quality of wt and w′t via an evaluation of the losses ∆(ŷwt

(xt)) and



full information bandit information
in-domain SMT out-domain SMT DuelingBandit BanditStruct

0.2854 0.2579 0.2731±0.001 0.2705±0.001

Table 3: Corpus BLEU on test set for SMT domain adaptation from Europarl to NewsCommen-
tary by k-best reranking.

∆(ŷw′
t
(xt)) of the structured arms corresponding to predicting the most probable translation

under wt and w′t, respectively.
Sokolov et al. (2015) present an evaluation that follows the standard of simulating bandit

feedback by evaluating task loss functions against gold standard structures without revealing
them to the learner. Here the setup is a reranking approach to SMT domain adaptation where
the k-best list of an out-of-domain model is re-ranked (without re-decoding) based on bandit
feedback from in-domain data. This can also be seen as a simulation of personalized machine
translation where a given large SMT system is adapted to a user solely by single-point user
feedback to predicted structures.

The out-of-domain baseline SMT model is trained on 1.6 million parallel Europarl data and
includes the English side of Europarl and in-domain NewsCommentary in the language model.
The full-information in-domain SMT model gives an upper bound by MERT tuning the out-
of-domain model on in-domain development data. Learning under bandit feedback started at
the learned weights of the out-of-domain median model. It uses the parallel NewsCommentary
data to simulate bandit feedback, by evaluating the sampled translation against the gold standard
reference using as loss function ∆ a smoothed per-sentence 1−BLEU (by flooring zero n-gram
counts to 0.01).

Table 3 shows the final results that were are obtained by online-to-batch conversion where
the model trained for 100 epochs on in-domain training data is evaluated on a separate in-
domain test set. Results for Bandit Structured Prediction and Dueling Bandits are very close,
however, both are significant improvements over the out-of-domain SMT model that even in-
cludes an in-domain language model. The range of possible improvements is given by the
difference of the BLEU sore of the in-domain model and the BLEU score of the out-of-domain
model – nearly 3 BLEU points. Bandit learning can improve the out-of-domain baseline by
1.26 BLEU points (Bandit Structured Prediction) and by 1.52 BLEU points (Dueling Bandits).
Clearly, a comparison between Bandit Structured Prediction and Dueling Bandits is skewed to-
wards the latter approach that has access to two-point feedback instead of one-point feedback
as in the former case. It has been shown that querying the loss function at two points leads to
convergence results that closely resemble bounds for the full information case (Agarwal et al.,
2010), however, such feedback is clearly twice as expensive and, depending on the application,
might not be elicitable from users.

We refer the reader to Sokolov et al. (2015) for more information on data, model, and
experiments.

5 Conclusion

We presented a comprehensive perspective on machine learning approaches that attempt to
replace the full information supervised scenario by a setup in which supervision signals are
extracted from responses of an extrinsic environment to system predictions. The discussed
types of responses ranged from rankings deduced from performance of translations in extrinsic
tasks such as cross-lingual retrieval, to improvements of structures by post-edits of professional
translators, to partial feedback consisting of mere assessments of the quality of the predicted
translation. We showed the efficacy of response-based learning in several simulation experi-



ments. Clearly, improvements over traditional full-information structured prediction cannot be
expected from learning from such weaker types of feedback. Instead, the goal is to investigate
learning situations in which full information is not available. Moreover, task-based feedback
might be even preferable to independently created gold standard structures if the ultimate goal
is improved performance of a translation-related extrinsic task.

In future work, we would like to apply response-based learning from weak feedback to
real-life interactive scenarios. The new challenges of future work will be an investigation of re-
sponse signals that can be elicited from humans efficiently and reliably, and still are informative
enough for learning in SMT.

Acknowledgements

This research was supported in part by DFG grant RI-2221/1-2 “Weakly Supervised Learning
of Cross-Lingual Systems”.

References

Agarwal, A., Dekel, O., and Xiao, L. (2010). Optimal algorithms for online convex optimization
with multi-point bandit feedback. In Conference on Learning Theory (COLT), Haifa, Israel.

Auli, M., Galley, M., and Gao, J. (2014). Large-scale expected BLEU training of phrase-
based reordering models. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP 2014).
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