
Generalized Syntactic and Semantic Models
of Query Reformulation

Amaç Herdağdelen∗
University of Trento

Rovereto, Italy
amac@herdagdelen.com

Massimiliano Ciaramita
Google

Zürich, Switzerland
massi@google.com

Daniel Mahler
Google

Zürich, Switzerland
mahler@google.com

Maria Holmqvist∗
Linkopings University
Linkopings, Sweden

marho@ida.liu.se

Keith Hall
Google

Zürich, Switzerland
kbhall@google.com

Stefan Riezler
Google

Zürich, Switzerland
riezler@google.com

ABSTRACT
We present a novel approach to query reformulation which
combines syntactic and semantic information by means of
generalized Levenshtein distance algorithms where the sub-
stitution operation costs are based on probabilistic term
rewrite functions. We investigate unsupervised, compact
and efficient models, and provide empirical evidence of their
effectiveness. We further explore a generative model of query
reformulation and supervised combination methods provid-
ing improved performance at variable computational costs.

Among other desirable properties, our similarity measures
incorporate information-theoretic interpretations of taxonomic
relations such as specification and generalization.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Query for-
mulation, Search process, Retrieval models.

General Terms
Algorithms, Experimentation.

Keywords
Query reformulation, query rewriting, generalized edit dis-
tance, similarity metrics.

1. INTRODUCTION
Query reformulation is the process of iteratively modify-

ing a query to improve the quality of a search engine results,
in order to satisfy one’s information need. Search engines

∗Work carried out during internships at Google.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’10, July 19–23, 2010, Geneva, Switzerland.
Copyright 2010 ACM 978-1-60558-896-4/10/07 ...$10.00.

support users in this task explicitly; e.g., by suggesting re-
lated queries or query completions, and implicitly; e.g., by
expanding the query to improve quality and recall of organic
and sponsored results. The close interaction between users
and algorithms makes this a central topic in search technol-
ogy and research [10, Ch. 6].

Successful refinements are closely related to the original
query [22]. This is not surprising as reformulations involve
spelling corrections, morphological variations and tend to
reuse parts of the previous query. More precisely, reformu-
lations are close to the previous query both syntactically, as
sequences of characters or terms,1 and semantically, often in-
volving transparent taxonomic relations. As an example, for
the query“becoming a dentist”, the reformulation“becoming
an oral surgeon” might have a higher chance of producing
relevant results than “becoming a doctor”. In this paper we
address the following question: how can we model query re-
formulation as a process involving syntactic and semantic
operations within a unified and principled framework?

String distance metrics model the similarity between two
queries as a function of the edit operations (insertion, dele-
tion, substitution) that are necessary to generate one string
from the other. Jones et al. [14] noticed that edit distance
can be an accurate query similarity measure as it approx-
imates well the users’ conservative disposition in query re-
finement. Semantic approaches are based on the linguistic
notion that similar words (queries) occur in similar contexts;
an intuition that can be captured by statistical association
measures extracted from simple document counts [5], or in-
volving deeper analyses; e.g., of search results snippets [24].
Here we investigate a class of models for query reformula-
tion which combines the syntactic and semantic aspects. We
call these models generalized in the sense that they aim at
capturing both syntactic and semantic properties of a refor-
mulation. These models build upon the generalized edit dis-
tance framework. In our formulation, the cost of an edit op-
eration, rather than being fixed, is weighted by probabilistic
interpretations of the semantic relation between two terms.
Our approach, while conceptually simple, unsupervised, and
efficient, outperforms several competitors and baselines. We

1Through the paper with the term syntactic we refer purely
to the surface properties of queries as sequences of symbols,
without any reference to their constituent structure.

provide empirical evidence from extensive evaluations on two
datasets in Section 6.

Pushing the framework further, we investigate a genera-
tive model previously applied to biological sequence align-
ment problems [20]. We show that in this direction im-
proved performance can be expected, although at increased
computational cost and additional complexities in param-
eter estimation, leaving room for further research. While
most of the focus is on single unsupervised signals for query
reformulation, we show that our measures provide mutually
complementary information: weighted combinations further
improve performance.

The paper also touches upon a related topic. Recently,
Boldi et al. [4] proposed the idea of capturing explicitly the
relation between two queries with respect to a taxonomic
representation (e.g., specification, generalization, etc.) to
improve query reformulations. With respect to this issue,
we show how asymmetric and symmetric probabilistic sim-
ilarity measures, and their combinations, can be loosely in-
terpreted as information-theoretic approximations of cate-
gorical notions such as ”generalization” or ”specification”.

2. RELATED WORK
Query reformulation is an important topic in web search

as a large fraction of the queries issued to search engines
are modified after examination of the results [12]. Query
modification is supported in several ways to improve search
experience; e.g., via automatic spelling correction [6]. Query
reformulation also requires editing or expanding the query.
Several techniques have been proposed based on relevance
feedback, query log analysis and distributional similarity [2,
18, 23, 24, 28, 29]. A related task to query reformulation is
session segmentation [9, 13].

As relevance and pseudo relevance feedback impose ad-
ditional cognitive load on the user, and can lead to query
drift or costly computations, Jones et al. [14] proposed to
pre-compute reformulations by ranking candidate queries
extracted from query logs, using several types of features
and learning methods. Interestingly, they notice how simple
linear combinations of just a few edit distance features pro-
vide powerful ranking functions, comparable to more com-
plex methods. Previously, Wen et al. [26] clustered queries
combining several sources of information such as coclick
and traditional IR document similarity, including string dis-
tance. They also suggest using a smaller fixed cost for pairs
of terms occurring in Wordnet in the edit distance com-
putation, but did not carry out a systematic evaluation.
Generalizations of string matching metrics are the focus of
our study. Generalized Levenshtein distance algorithms [17]
have been intensively investigated in bioinformatics for solv-
ing sequence alignment problems. Oommen and Kashyap
proposed a model which generates the probability of a string
being rewritten into another accounting for all possible com-
binations of edit operations [20] that has been used success-
fully in peptide classification [3] and optical character recog-
nition [15].

Previous studies have teased apart the semantic aspects
of query reformulations. Rieh and Xie [22] (see also [11, 16])
analyzed query transitions in terms of syntactic and seman-
tic operations and found that when reformulating previous
queries users adopt several tactics including generalization,
replacement with synonyms, parallel movement (approxi-
mately 50% of the time) and specification (approximately

30% of the time). Boldi et al. [4] proposed a query refor-
mulation approach based on classifying reformulation types
(QRTs) as belonging to a small taxonomy. They represent
query transitions in a feature space including properties ex-
tracted from sessions and similarity features including edit
distance, Jaccard and term vector cosine. Hence, they build
a supervised QRT decision tree classifier which achieves 92%
accuracy in a four-class task (specialization, generalization,
correction, parallel move). Their methodology includes an
unspecified feature selection process, thus we don’t know
the contribution of each feature. However, the high accu-
racy suggests that a few features, at least partially based
on simple string matching metrics, can go a long way in
capturing taxonomic aspects of query reformulations (see
also Huang and Efthimiadis [11] for a related unsupervised
approach). In evaluation they find that recommendations
limited to specializations provide the best accuracy while
introducing other types of QRTs decreases the quality of
the recommendations.

3. PRELIMINARIES
Let (qs, qt) be an ordered pair where qt is a candidate

reformulation of a query qs. We call qs the source and qt
the target. A similarity measure between two queries is a
function f : (qs, qt) → IR which takes (qs, qt) as input and
returns a score. In particular, we are interested in functions
which correlate well with human judgments of how good a
reformulation qt is for qs.

3.1 Semantic similarity
For several of the similarity measures described below, we

employ pointwise mutual information (PMI) as a measure
of the association between two terms or queries. PMI has
been applied extensively to model semantic similarity – e.g.,
Turney [25] uses it to discover synonyms on web data – and
correlates well with human judgments [21]. Let x and y be
two strings that we want to measure the amount of asso-
ciation between. Let p(x) and p(y) be the probability of
observing x and y in a given model; e.g., relative frequen-
cies estimated from occurrence counts in a corpus. We also
define p(x, y) as the joint probability of x and y; i.e., the
probability of the two strings occurring together. An ab-
stract definition of PMI for our purposes is as follows:

PMI(x, y) = log

„
p(x, y)

p(x)p(y)

«
. (1)

PMI can yield negative values, if p(x, y) < p(x)p(y). For
the purposes of normalization, below in this section, we dis-
card negative PMI values and assign zero to such cases. PMI
is also used as a basis for the substitutability score of two
terms (see Section 5.2). Limiting PMI to positive values is
further motivated by the assumption that substituting two
terms occurring together less frequently than random should
not be penalized more than two unrelated terms.2

As pointed out in [16, 22] query transitions tend to corre-
late with taxonomic relations such as generalization and spe-
cialization. Boldi et al. [4] show how knowledge of transition
types can positively impact query reformulation. We would
like to exploit this information as well. However, rather than

2As a matter of fact, such occurrences are extremely rare in
our data and within noise levels.

building a dedicated supervised classifier for this task we try
to capture it directly at the source. We propose that by ma-
nipulating PMI we can directly model taxonomic relations
to some extent. In the following definitions we interpret
(x, y) as a transition from x (i.e. source) to y (i.e. target)
to break the symmetry without loss of generalization.

3.1.1 Joint normalization
The first type of normalization, called joint normalization,

uses the negative log joint probability and is defined as:

PMI(J)(x, y) = PMI(x, y)/− log(p(x, y)). (2)

As we limit PMI to positive values the normalization bounds
the range between 0 and 1. The jointly normalized PMI(J)
is a symmetric measure between x and y in the sense that
PMI(J)(x, y) = PMI(J)(y, x). Intuitively it is a measure of
the amount of shared information between the two strings
relative to the sum of individual strings information.

3.1.2 Specialization normalization
To capture asymmetries in the relation between two strings,

we apply two non-symmetric normalizations also bounding
the measure between 0 and 1. The first asymmetric normal-
ization is called specialization and is defined as:

PMI(S)(x, y) = PMI(x, y)/− log(p(x)). (3)

The reason we call it specialization is that PMI(S) favors
pairs where the second one is a specialization of the first one.
For instance, PMI(S) is at its maximum when p(x, y) = p(y)
and that means the conditional probability p(x|y) is 1 which
is an indication of a specialization relation.

3.1.3 Generalization normalization
The second asymmetric normalization is called generaliza-

tion and is defined in the reverse direction as:

PMI(G)(x, y) = PMI(x, y)/− log(p(y)). (4)

PMI(G) is at maximum when p(y|x) is 1.
The three normalizations provide a richer representation

of the association between two strings and approximate the
generalization-specialization dimension from an information-
theoretic perspective. As an example, for the query transi-
tion“apple”to“mac os”PMI(G)=0.2917 and PMI(S)=0.3686;
i.e., there is more evidence for a specialization. Conversely
for the query transition “ferrari models” to “ferrari” the mea-
sures yield PMI(G)=1 and PMI(S)=0.5558; i.e., the target
is a “perfect” generalization of the source3.

3.2 Syntactic similarity
Let V be a finite vocabulary and ξ be the null symbol. An

edit operation: insertion, deletion or substitution, is a pair
(a, b) ∈ {V ∪{ξ}×V ∪{ξ}}−{(ξ, ξ)}. An alignment between
two sequences x and y is a sequence of edit operations ω =
(a1, b1), ..., (an, bn). Given a non-negative cost function c the
cost of an alignment is c(ω) =

Pn
i=1 c(ωi). The Levenshtein

distance, or edit distance, defined over V , dV (x, y) between
x and y is the cost of the least expensive sequence of edit
operations which transforms x into y [17]. The distance
computation can be performed via dynamic programming in
time O(|x||y|). Edit distance captures the amount of overlap
between the queries as sequences of symbols and have been
previously used in information retrieval [4, 14, 27].
3The values are computed from Web counts.

4. QUERY-LEVEL MEASURES
We calculate the PMI for a pair (qs, qt) using the num-

ber of documents retrieved by a search engine for qs, qt and
qs,t where qs,t is a shorthand for the concatenation of qs
and qt. Formally, let Ns and Nt be the number of docu-
ments retrieved for qs and qt respectively. Similarly, let Ns,t
be the number of documents retrieved for the concatenated
joint query. We define the probability of, respectively, the
two queries and the joint query as p(qs) = Ns

N
, p(qt) = Nt

N
,

and p(qs, qt) =
Ns,t

N
where N is a constant large enough

to approximate the total number of documents that can be
retrieved. In our implementation we use Google’s search en-
gine. The number of results returned determine Ns, Nt, and
Ns,t. We denote this PMI measure between two queries by
PMIWeb(qs, qt). We renormalize the PMI values as described
above thus generating three query-level similarity measures.

5. TERM-LEVEL MEASURES

5.1 Syntactic measures
We use two Levenshtein distance models as basic syntactic

measures. The first, called Edit1 (E1), employs a unit cost
function for each of the three operations. That is, given a
finite vocabulary T of all terms occurring in queries:

∀a, b ∈ T, cE1(a, b) = 1 if a 6= b, 0 otherwise. (5)

The second, called Edit2 (E2), uses unit costs for insertion
and deletion, but computes the character-based edit distance
between two terms to determine the substitution cost. If two
terms are similar at the character level, the cost of substitu-
tion is lower. Given the vocabulary T of terms and a finite
vocabulary A of characters the cost function is defined as:

∀a, b ∈ T, cE2(a, b) = dA(a, b) if a ∧ b 6= ξ, 1 otherwise (6)

where 0 ≤ dA(a, b) ≤ 1, normalizing by max(|a|, |b|).
We also investigate a variant in which the input sequences

are alphabetically sorted before the edit distance computa-
tion. The motivation is the observation that queries may
be often formulated as sets of terms in which the order of
the terms is irrelevant. Thus, ”Brooklyn pizza” and ”pizza
Brooklyn”may denote same user intent but the edit distance
is unable to capture the similarity. By presorting the terms
in the queries we compute an order-free version of edit dis-
tance. We prefix the names of these models with “Sorted”.

5.2 Generalized edit distance
Extending the Levenshtein distance framework to take

into account semantic similarities between terms is concep-
tually simple. As in the Edit2 model above we use a modified
cost function. For our purposes, the cost function should
have the following properties: whenever there is evidence
of semantic association between two terms, it should be
“cheaper” to substitute these terms instead of deleting one
and inserting the other. For an unrelated term pair, a combi-
nation of insertion and deletion should always be less costly
then a substitution. We also assume that the cost of the
substitution of a term with itself (i.e. identity substitution)
is always 0. Considering these requirements, we define the
cost function as a cost matrix S based on the normalized
PMI measures defined above. Given a normalized similar-
ity measure f , an entry in a cost matrix S for a term pair

(wi, wj) is defined as:

s(wi, wj) = 2− 2f(wi, wj) + ε (7)

The ε correction, coupled with unit insertion and deletion
costs, guarantees that these requirements are fulfilled. We
call these models GenEdit (GE). Given a finite term vocab-
ulary T and cost matrix S the cost function is defined as:

∀a, b ∈ T, cGE(a, b) = s(a, b) if a ∧ b 6= ξ, 1 otherwise. (8)

5.2.1 Cost matrix estimation
To estimate a cost matrix we used session logs consisting of

actual transitions of consecutive queries. The data consists
of approximately 1.3 billion English queries generated from
the U.S. A session is defined as a sequence of queries from the
same user within a controlled time interval. Let qs and qt be
a query pair observed in the session data where qt is issued
immediately after qs in the same session. Let q′s = qs \ qt
and q′t = qt \ qs, where \ is the set difference operator. The
co-occurrence count of two terms wi and wj from a query
pair qs, qt is denoted by ni,j(qs, qt) and is defined as:

ni,j(qs, qt) =

8<: 1 if wi = wj ∧ wi ∈ qs ∧ wj ∈ qt
1/(|q′s| |q′t|) if wi ∈ q′s ∧ wj ∈ q′t

0 otherwise.

(9)
If a term occurs in both queries, it has a co-occurrence

count of 1. For all other pairs we make sure the sum of co-
occurrence counts for a term wi ∈ qs is 1 for a given query
pair. The normalization is an attempt to avoid the under-
representation of terms occurring in both queries. The fi-
nal co-occurrence count of two arbitrary terms wi and wj
is denoted by Ni,j and it is defined as the sum over all
query pairs in the session logs, Ni,j =

P
qs,qt

ni,j(qs, qt).

Let N =
P
i,j Ni,j be the sum of co-occurrence counts over

all term pairs. Then we define a joint probability for a

term pair as p(x, y) =
Ni,j

N
. Similarly, we define the single-

occurrence counts and probabilities of the terms by com-
puting the marginalized sums over all term pairs. Namely,
the probability of a term wi occurring in the source query is
p(i, ·) =

P
j Ni,j/N and similarly the probability of a term

wj occurring in the target query is p(·, j) =
P
iNi,j/N .

Plugging these values in Eq. (1), we obtain the PMI(i, j)
for term pair wi and wj , which are further normalized as
described in Section 3.1. Any term pair that is not co-
occurring in the session data is considered to be unrelated
and is assigned a PMI value of zero.

5.3 A generative model
The edit distance measures considered so far generate a

score based on the least-costly alignment of two queries.
This can be viewed as finding the shortest path in a query
space constructed on the atomic edit operations. A natural
extension would calculate the probability of producing the
target from the source not only considering the least-costly
alignment of two queries but computing over all possible
ways the target can be obtained from the source. Oommen
and Kashyap [20], proposed a syntactic transition probabil-
ity model (referred to as the OK model) which shows how
the probability of a string, in our case a query, rewrite can
be computed with a generative model consisting of random
insertion, deletion, and substitution operations. The model
has been successfully applied to problems such as peptide
classification and OCR correction [3, 15].

Let x = (x1x2 . . . xn) and y = (y1y2 . . . ym) be the source
and target strings respectively such that x ∈ V ? and y ∈ V ?
where V is the finite alphabet of symbols. We introduce two
additional symbols ξ and λ, which are not in V , as input and
output null symbols, respectively. The OK model computes
the probability of obtaining y from x under a generative
model which takes as input two probability distributions G
and S, and works in the following steps.

1. Distribution G specifies the number of insertions to be
applied to the source. In each independent string gen-
eration process z terms are inserted with probability
G(z). The intermediate output at the end of this step
is x′ = x′1x

′
2 . . . x

′
n+z where x′ is the string x modified

by inserting z ξ symbols at random positions of x.

2. The distribution S is over {T ∪ {ξ} × T ∪ {λ}}. The
value S(yj |xi) for two symbols xi and yj is the proba-
bility that xi is substituted by yj . The output of this
step is y′ which is obtained by substituting all symbols
in x′ according to the probabilities specified by S.

3. Last step mirrors the original deletion operation: all λ
characters remaining in y′ are deleted. The remaining
string is y, the output of the process.

There are two constraints on S. The first states that
∀xi

P
yj∈T∪{λ} S(yj |xi) = 1. This ensures that each symbol

in x is either substituted, left intact or deleted. The second
constraint S(λ|ξ) = 0 guarantees that exactly z insertions
are made and no input null symbol inserted at the first step
is deleted in the second step (i.e. ξ is always substituted by
a symbol in T not by λ).

Using the OK model, one can compute the transition
probability of a source query to a target query by integrating
the individual probabilities of all possible paths allowed by
the generative model. The explicit form of this probability
is:

p(y|x) =

mX
z=max(0,m−n)

G(z)n!z!

(n+ z)!

X
x′

X
y′

n+zY
k=1

S(y′k, x
′
k) (10)

where m = |x| and n = |y|. The outermost summation is
over all possible values of number of insertions. The factor
n!z!

(n+z)!
is the number of different ways in which z ξ char-

acters can be inserted in x to obtain x′. Although the ex-
plicit calculation of this probability is too expensive, due to
the combinatorial element, Oommen and Kashyap provide a
dynamic program which runs in approximately cubic time,
O(mnmin(m,n)) [20].

As in the generalized edit distance models, we represent
the queries as strings and the terms as characters. That is,
qs = w1w2 · · ·wn is the source query and qt = w1w2 · · ·wm
is the target query where wi,wj ∈ T .

5.3.1 Parameter estimation
In order to actually employ the OK model we need to es-

timate distributions G and S. The model accepts arbitrary
probability distributions and estimating meaningful param-
eters is not trivial. We devise an estimation strategy similar
to that used by Kolak and Resnik [15] who apply the OK
model to optical character recognition (OCR). The idea is
to generate an alignment with a simpler model and then es-
timate all substitutions in S directly from a large-enough

dataset. As a corpus of pairs to align we used the session
data of Section 5.2.1, under the assumption that contigu-
ous query pairs represent reasonable candidates of naturally
occurring query transitions. Subsequently, we ran a general-
ized edit-distance model to find the least-costly alignment of
each pair and then count the edit operations that make up
this alignment. The application of the edit-distance model
thus provides a way to reverse engineer the query transi-
tions and obtain estimates for the term insertion, deletion
and substitution probability distributions.

Summarizing, we run a generalized edit distance model on
the query pairs in our session dataset4, and count the num-
ber of times each term insertion, deletion, and substitution
occurred directly off the alignments. By integrating these
counts over all pairs and normalizing them into probability
distributions, we obtain the necessary estimates for G and
S. The inspection of the outcome of this procedure revealed
that the deletion probability (i.e. S(λ|xi)) is largely over-
estimated (e.g. over 0.3 for some terms). This is possibly
due to the noisy alignment procedure. To solve this problem
we introduce one adjustable parameter called damping fac-
tor, denoted by DF. For each term, the deletion probability
is corrected as S(λ|t)← S(λ|t)/DF , then S is re-normalized
so that ∀xi

P
yj∈T∪{λ} S(yj |xi) = 1.

6. EXPERIMENTS
We evaluate all models discussed so far on two datasets.

As an external benchmark we use the unsupervised distri-
butional similarity system (DistSim) of Alfonseca et al. [1].
DistSim implements an extension of the vector-space model
of distributional similarities to query-to-query similarity, by
combining different vectors using the geometric mean of the
frequencies for each of the features separately. Features are
n-grams collected in the context of each query in hundreds
of millions of documents. The score of a query reformulation
is the cosine of the vectors representing each query. DistSim
generates richly lexicalized high-dimensional models which
in evaluation [1] outperformed web kernel methods [24].

6.1 Experimental setup
The evaluation involves a query reformulation task in which

several source queries are provided, each with a set of candi-
date reformulations scored by raters. Each model predicts a
real-valued score for each source-target reformulation pair.
The score represents the quality of the reformulation ac-
cording to the system. While the absolute value of the score
might not be meaningful in itself it is used to rank the queries
in the set of possible targets for the same source. Several
evaluation metrics are used to quantify the performance of
a system: Spearman rank correlation, precision at N and
mean average precision. We use Spearman correlation as
our primal evaluation measure as it is independent of the
choice of a threshold which is necessary for precision.

6.2 Combined models
We evaluate all the similarity measures individually as

well as in combination. We experiment with one unsuper-
vised combination method, a baseline which simply averages
all signals5. We also evaluate a supervised combination,

4A sorted joint-normalized generalized edit distance model.
5All non-normalized individual signals are re-normalized be-
fore combination.

QS1500 CC2000
Number of query pairs 1500 2000
Number of source queries 57 500
Average log-probability qs -10,61 -10,57
Average log-probability qt -9.33 -10,27
Average Number of terms qs 3,40 2,08
Average Number of terms qt 2,83 2,24

Table 1. Statistics of the evaluation datasets.

and a supervised optimization of the OK model. The OK
model involves an adjustable parameter DF that should be
picked empirically. Hence, we optimize the OK model sep-
arately by a supervised leave-one-out procedure. All values
for DF = 10i were evaluated at i = 1, 2, .., 10. As a full
supervised combination we used a neural network regres-
sion model using all of the features introduced in the pa-
per, excluding OK. This approach lets us exploit potential
non-linearities in the signals. For each network model three
parameters are optimized: learning rate, number of hidden
units and number of iterations (epochs) over the training
data. Predictions are generated in a leave-one-out scheme
where in turn a source query qs is excluded for prediction.

6.3 Evaluation data
The first evaluation set, QS1500 is based on the gold stan-

dard from [1]. It contains 57 source queries, each paired with
up to 20 target queries. The candidate reformulations are
generated from the top-20 ranked suggestions using several
different systems, based on the web kernel approach [24], and
distributional similarity. Two raters evaluated each pair, us-
ing the 5-Likert scale defined in [24]. The weighted Cohen’s
Kappa was 0.7111 on a binary split at level 1.5, indicating
substantial agreement amongst the raters for a binary deci-
sion. In the computation of the precision at N scores we use
the pairs with a score of 1.5 or more [1] as positive pairs.

The second evaluation set, called CC2000, was built from
scratch based on the hypothesis that two different queries are
related if they lead to user clicks on the same documents.
This approach is similar to the method proposed by Fitz-
patrick and Dent [8]. Our technique adds click information,
thus strengthening the preference for precision over recall in
the extraction of related queries. For a randomly extracted
set of 500 source queries, we randomly sampled 4 targets. 3
out of 4 targets are queries that have been co-clicked with
at least 10 different results. The remaining one has been
co-clicked only once. The latter pair acts as a control on
the quality of click as a measure of relatedness. The 2,000
pairs were judged by 5 raters, with access to the search re-
sult, in blind evaluation according to a 4-point scale: Unre-
lated(1), Slightly Related(2), Very Related(3), Same Mean-
ing(4). Inter-rater agreement of 5 raters on a binary classi-
fication task (class 1 = Unrelated or Slightly Related, class
2 = Very Related or Same Meaning) gave a Kappa value
of 0.65. A connection between the co-click hypothesis and
human ratings can be seen from computing average human
scores for the automatically created distinction. This results
in an average human score of 3.1 for pairs with more than 10
co-clicks, and an average human score of 2.3 for pairs with
1 co-click. This shows that the co-click hypothesis yields
positively related pairs that are judged on average as Very
Related by human raters, while the control set are judged
only as Slightly Related. The gold standard for each pair

QS1500
Similarity Function Spearman mAP Prec@1 Prec@3 Prec@5 Sig.
1 NN 0.500 0.806 0.836 0.741 0.637 7
2 Oommen-Kashyap 0.470 0.747 0.782 0.698 0.637 10
3 DistSim 0.438 0.744 0.768 0.679 0.628 12
4 Mean all 0.435 0.772 0.818 0.691 0.633 13
5 SortedGenEdit(S) 0.429 0.774 0.845 0.709 0.638 13
6 SortedGenEdit(G) 0.428 0.775 0.828 0.712 0.648 13
7 PMIWeb(S) 0.417 0.713 0.764 0.630 0.589 13
8 PMIWeb(J) 0.409 0.730 0.782 0.679 0.594 13
9 SortedGenEdit(J) 0.408 0.771 0.832 0.701 0.639 13

10 GenEdit(S) 0.382 0.743 0.796 0.695 0.619 15
11 GenEdit(G) 0.380 0.745 0.795 0.698 0.625 15
12 GenEdit(J) 0.365 0.737 0.790 0.692 0.609 15
13 SortedEdit2 0.320 0.714 0.757 0.668 0.630 18
14 SortedEdit1 0.314 0.697 0.763 0.660 0.595 18
15 PMIWeb(G) 0.283 0.670 0.627 0.547 0.570 18
16 Edit2 0.270 0.649 0.715 0.618 0.571 18
17 Edit1 0.252 0.633 0.683 0.615 0.550 18
18 Length-target(Char) 0.139 0.519 0.435 0.456 0.437 20
19 Length-target(Term) 0.112 0.506 0.453 0.423 0.413 20
20 log-prob target -0.161 0.452 0.309 0.309 0.341 -

Table 2. The grand table for QS1500. The column Sig. gives the index of the model with the highest Spearman correlation that
the corresponding model is significantly higher than with p < 0.05. Length and log probability of target are absolute baselines.

Similarity Measure QS1500 CC2000
Oommen-Kashyap 0.470* 0.391* (6)
SortedGenEdit(S) 0.429* 0.407* (4)
SortedGenEdit(G) 0.428* 0.419* (2)
SortedGenEdit(J) 0.408 0.391* (7)
GenEdit(S) 0.382 0.414* (3)
GenEdit(G) 0.380 0.424* (1)
GenEdit(J) 0.365 0.402* (5)
SortedEdit2 0.320 0.288 (11)
SortedEdit1 0.314 0.298 (9)
Edit2 0.270 0.292 (10)
Edit1 0.252 0.299 (8)

Table 3. Generalized edit distances for QS1500 and CC2000.
The ranks of the features for CC2000 are given in parenthe-
ses; * indicates a higher Spearman correlation than the highest
performing edit distance baseline (SortedEdit2 for QS1500 and
Edit1 for CC2000) at a significance level of 0.95.

is the average of the 5 ratings. Choosing a fixed threshold
for the precision scores is not straightforward; e.g., using a
threshold at three produces 132 all positive sets and 90 all
negative sets, therefore we would not be able to compute a
meaningful precision score for too many sets. To avoid this
problem we choose in each set the positive pair as the one
with the highest score. In this way we obtain 774 positive
pairs and 1221 negative pairs. Thus in terms of precision
we evaluate the performance of systems at identifying the
best available pair. The following table summarizes some
datasets statistics: Table 1 summarizes the basic properties
of the datasets.

7. RESULTS AND DISCUSSION
In the following sections, we discuss the performance of

generalized edit distance with respect to baselines (simple
edit distance and distributional similarity models), comment
on the effect of taxonomic normalization of PMI, and report
the performance of combining different measures in super-
vised and unsupervised settings. In order to give a birds-eye
overview, the results for all models are given in Tables 2
and 4 for QS1500 and CC2000, respectively. In these tables,
we report Spearman correlation, mean average precision and

precision at various positions. Since, there are only 4 target
queries per source in CC2000, we report precision values at
1, 2 and 3 for that dataset. For QS1500, the precision values
at 1, 3 and 5 are reported.

7.1 Generalized Edit Distance
The Spearman rank correlations obtained for all edit dis-

tance models are given in Table 3 for QS1500 and CC2000.
Several points are worth discussing in these results.

Generalized edit distance is better than simple edit dis-
tance. For both datasets, the generalized edit distance mod-
els (all variants of GenEdit and SortedGenEdit) outperform
the simple edit-distance based features (Edit1 and Edit2).
This observation is also supported by the significance re-
sults obtained by one-tailed t-tests reported in the same ta-
ble. This result proves that our method is a powerful, yet
simple, generalization of an already robust query similarity
measure. To the best of our knowledge ours is the first (suc-
cessful) application of such generalized algorithms to IR.

Sorting has an effect on results. For QS1500, sorted edit-
distance based features (SortedGenEdit) outperformed their
unsorted counterparts (GenEdit) by margins of more than 4
percent (though, we were unable to confirm a significant dif-
ference between them). The pattern is different in CC2000
where the unsorted features outperform their sorted coun-
terparts albeit with smaller margins. We hypothesize that
this effect might be related to the query length, greater in
QS1500 both for qs and qt. It is possible that as longer
queries are more subject to permutations, sorted distance
measures emerge as more robust.

Generative models are promising. Especially for QS1500,
we see that the increased complexity of the OK model pays
off in terms of performance. Since the OK model uses the
substitution probability matrices computed by the align-
ments obtained by SortedGenEdit(J) model, the difference
between the SortedGenEdit(J) and the OK model becomes
even more encouraging. Although we picked the damping
factor value for each set by supervision (i.e., leave-one-out),
we should note that the OK model is robust with respect
to varying values of DF. In the optimization experiments we

CC2000
Similarity Function Spearman mAP Prec@1 Prec@2 Prec@3 Sig.
1 NN 0.432 0.739 0.583 0.511 0.451 10
2 GenEdit(G) 0.424 0.716 0.545 0.485 0.447 11
3 SortedGenEdit(G) 0.419 0.712 0.550 0.476 0.446 11
4 GenEdit(S) 0.414 0.714 0.543 0.488 0.447 11
5 SortedGenEdit(S) 0.407 0.710 0.546 0.477 0.445 11
6 GenEdit(J) 0.402 0.714 0.541 0.482 0.448 11
7 Oommen-Kashyap 0.391 0.704 0.515 0.484 0.451 11
8 SortedGenEdit(J) 0.391 0.706 0.538 0.474 0.445 11
9 Mean all 0.386 0.711 0.531 0.485 0.448 12

10 PMIWeb(G) 0.369 0.698 0.506 0.473 0.449 13
11 PMIWeb(J) 0.330 0.692 0.485 0.474 0.444 17
12 DistSim 0.322 0.707 0.532 0.492 0.427 17
13 Edit1 0.299 0.656 0.441 0.438 0.418 17
14 SortedEdit1 0.298 0.662 0.456 0.444 0.420 17
15 Edit2 0.292 0.676 0.478 0.458 0.432 17
16 SortedEdit2 0.288 0.685 0.487 0.461 0.432 17
17 PMIWeb(S) 0.264 0.681 0.477 0.461 0.437 17
18 log-prob target 0.114 0.626 0.384 0.416 0.404 19
19 Length-target(Char) -0.036 0.603 0.362 0.390 0.392 -
20 Length-target(Term) -0.077 0.603 0.358 0.387 0.388 -

Table 4. The grand table for CC2000. The column Sig. gives the index of the model with the highest Spearman correlation that
the corresponding model is significantly higher than with p < 0.05. Length and log probability of target are absolute baselines.

observed that the Spearman scores of the OK models remain
at levels either comparable to or superior than other gener-
alized models’ in a range of almost 7 orders of magnitude
for DF. However, the simpler generalized models are even
more robust. Better formulations of the generative model
constitute an interesting direction for future research.

7.2 Taxonomic normalization
Type of normalization is important. Especially for the

query-level similarity measures (variants of PMIWeb), the
type of normalization has a significant effect on performance.
E.g., as it can be seen in Table 2, PMIWeb(G) performs
badly in QS1500 (Spearman 0.283, rank 15), but PMIWeb(S)
is more competitive (Spearman 0.417, rank 7) even though
both measures are based on the same PMI values and only
differ by their type of normalization. Interestingly, a simi-
lar but reversed pattern is observed for CC2000 in Table 4.
For this dataset, PMIWeb(G) is the best measure among the
query-level measures with a Spearman correlation of 0.369
and overall rank of 10. PMIWeb(S), on the other hand,
can achieve a correlation of 0.264 and is placed quite low
in the overall ranking. The difference between PMIWeb(S)
and PMIWeb(G) is significant (p < 0.05) for both datasets
in opposite directions. This evidence alone suggests that
different normalizations can capture different properties of
different datasets. A similar pattern also emerges from the
generalized edit distance models, specialization works best
for QS1500 and generalization for CC2000.

One intriguing explanation for this pattern involves the
dominant directionality in the datasets. We know that in
QS1500 target queries are shorter than source queries on
average, suggesting that transitions are more likely in the
generalization direction. It is possible that a feature which
favors transitions in the generalization direction loses its
discriminative power and do not correlate well with hu-
man judgments because of the bias in the dataset. A sim-
ilar effect in the reversed direction is compatible with re-
sults on CC2000. Further investigations of such information-
theoretic approximations of taxonomic notions related to

generality and inclusion seem also particularly promising as
they don’t rely on pre-computed resources.

7.3 Combined models
Supervision works. In Tables 2 and 4, we see that the

neural network model constructed on all features (NN) out-
performed all other methods in both datasets. This was
rather expected but it is important to see that there is
room for further improvements, and that the features we
propose provide complementary information. Experiments
with linear regression were less successful which suggests
there might be non-linear interactions between features that
can be captured by the neural network. It is also interest-
ing to notice that supervised combination improves but not
by a large margin indicating that our single generalized fea-
tures have good discriminative power in absolute terms. The
comparison with the high-dimensional distributional similar-
ity model (DistSim) is also positive, DistSim performs only
marginally better than the GenEdit models on one dataset
(QS1500) – although, in terms of precision, GenEdit models
are still better – and worse on CC2000. Naive unsupervised
combination yields mixed results.

8. CONCLUSION
In this paper we proposed an approach to query reformula-

tion aiming at the combination of string similarity measures
and corpus-based semantic association measures. General-
ized Levenshtein distance algorithms provide a principled
framework for this combination. By manipulating the edit
distance cost function our models can incorporate naturally
useful statistical association measures, including variants of
pointwise mutual information which, to some extent, cap-
ture directly taxonomic relations between terms. The mod-
els we proposed are mostly unsupervised, compact and ef-
ficient, and we provided empirical evidence of their effec-
tiveness. We also explored a generative query reformulation
model which provides further improvements at some addi-
tional computational cost and estimation complexity. Fi-
nally, we evaluated supervised combinations proving that
the features capture complementary aspects of the data.

This framework offers several opportunities for further re-
search. In a related work [7] we investigate supervised mod-
els based on our features trained on noisy data within a
learning to rank framework. Another interesting topic in-
volves, as in bioinformatics, controlling the costs of all edit
operations, including insert and delete, by applying algo-
rithms such as Needleman-Wunsch [19]. Another interesting
and promising topic involves moving beyond context-free re-
formulation methods in the generalized framework. In our
approach substitution costs involve pairs of terms indepen-
dent of the surrounding context while it seems likely that
dependencies between terms should be taken into account
in the computation of the best reformulation.

9. ADDITIONAL AUTHORS
Additional authors: Enrique Alfonseca (Google, Zürich,

Switzerland, email: ealfonseca@google.com).

10. REFERENCES
[1] E. Alfonseca, K. Hall, and S. Hartmann. Large-scale

computation of distributional similarities for queries.
In Proceedings of NAACL-HLT, pages 29–32.
Association for Computational Linguistics, 2009.

[2] J. Allan. Relevance feedback with too much data. In
Proceedings of SIGIR, pages 337–343. ACM, 1995.

[3] E. Aygün, B. Oommen, and Z. Cataltepe. On utilizing
optimal and information theoretic syntactic modeling
for peptide classification. In Pattern Recognition in
Bioinformatics, volume 5780 of Lecture Notes in
Computer Science, pages 24–35. Springer Berlin, 2009.

[4] P. Boldi, F. Bonchi, C. Castillo, and S. Vigna. From
’Dango’ to ’Japanese cakes’: Query reformulation
models and patterns. In Proceedings of Web
Intelligence. IEEE Cs Press, 2009.

[5] K. Church, W. Gale, P. Hanks, and D. Hindle. Using
statistics in lexical analysis. In Lexical Acquisition:
Exploiting On-Line Resources to Build a Lexicon,
pages 115–164. Erlbaum, 1991.

[6] B. Cucerzan and E. Brill. Spelling correction as an
iterative process that exploits the collective knowledge
of web users. In Proceedings of EMNLP, pages
293–300. Association for Computational Linguistics,
2004.

[7] F. De Bona, S. Riezler, K. Hall, M. Ciaramita,
A. Herdağdelen, and M. Holmqvist. Learning dense
models of query similarity from user click logs. In
Proceedings of NAACL-HLT. Association for
Computational Linguistics, 2010.

[8] L. Fitzpatrick and M. Dent. Automatic feedback using
past queries: Social searching? In Proceedings of
SIGIR, pages 306–313. ACM, 1997.

[9] D. He, A. Göker, and D. Harper. Combining evidence
for automatic web session identification. Information
Processing and Management, 38(5):727–742, 2002.

[10] M. Hearst. Search user interfaces. Cambridge
University Press, 2009.

[11] J. Huang and E. Efthimiadis. Analyzing and
evaluating query reformulation strategies in web
search logs. In Proceedings of CIKM, pages 77–86.
ACM, 2009.

[12] B. Jansen, A. Spink, and S. Koshman. Web searcher
interaction with the dogpile.com metasearch engine.

Journal Of The American Society For Information
Science And Technology, 58(5):744–755, 2007.

[13] R. Jones and K. Klinkner. Beyond the session
timeout: automatic hierarchical segmentation of
search topics in query logs. In Proceedings of CIKM,
pages 699–708. ACM, 2008.

[14] R. Jones, B. Rey, O. Madani, and W. Greiner.
Generating query substitutions. In Proceedings of
WWW, pages 387–396. ACM, 2006.

[15] O. Kolak and P. Resnik. OCR error correction using a
noisy channel model. In Proceedings of HLT, pages
29–32. Association for Computational Linguistics,
2002.

[16] T. Lau and E. Horvitz. Patterns of search: analyzing
and modeling web query refinement. In Proceedings of
the seventh international conference on User modeling,
pages 119–128. Springer-Verlag New York, Inc., 1999.

[17] V. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. Soviet Physics
Doklady, 10(8):707–710, 1966.

[18] M. Mitra, A. Singhal, and C. Buckley. Improving
automatic query expansion. In Proceedings of SIGIR,
pages 206–214. ACM, 1998.

[19] S. Needleman and C. Wunsch. A general method
applicable to the search for similarities in the amino
acid sequence of two proteins. Journal of Molecular
Biology, 48(3):443–453, 1970.

[20] B. Oommen and R. Kashyap. A formal theory for
optimal and information theoretic syntactic pattern
recognition. Pattern Recognition, 31(8):1159–1177,
1998.

[21] G. Recchia and M. Jones. More data trumps smarter
algorithms: comparing pointwise mutual information
with latent semantic analysis. Behavioral Research
Methods, 41(3):647–656, 2009.

[22] S. Rieh and H. Xie. Analysis of multiple query
reformulations on the web: the interactive information
retrieval context. Inf. Process. Manage.,
42(3):751–768, 2006.

[23] S. Riezler, Y. Liu, and A. Vasserman. Translating
queries into snippets for improved query expansion. In
Proceedings of Coling, pages 737–744, 2008.

[24] M. Sahami and T. Heilman. A web-based kernel
function for measuring the similarity of short text
snippets. In Proceedings of WWW, pages 377–386.
ACM, 2006.

[25] P. Turney. Mining the web for synonyms: PMI–IR
versus LSA on TOEFL. Lecture Notes in Computer
Science, 2167:491–503, 2001.

[26] J. Wen, J. Nie, and H. Zhang. Clustering user queries
of a search engine. In Proceedings of WWW, pages
162–168. ACM, 2001.

[27] J. Wen, J. Nie, and H. Zhang. Query clustering using
user logs. ACM Trans. Inf. Syst., 20(1):59–81, 2002.

[28] J. Xu and B. Croft. Query expansion using local and
global document analysis. In Proceedings of SIGIR,
pages 4–11. ACM, 1996.

[29] Z. Zhang and O. Nasraoui. Mining search engine
query logs for query recommendation. In Proceedings
of WWW, pages 1039–1040. ACM, 2006.

