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ABSTRACT
Community QA portals provide an important resource for
non-factoid question-answering. The inherent noisiness of
user-generated data makes the identification of high-quality
content challenging but all the more important. We present
an approach to answer ranking and show the usefulness of
features that explicitly model answer quality. Furthermore,
we introduce the idea of leveraging snippets of web search
results for query expansion in answer ranking. We present
an evaluation setup that avoids spurious results reported in
earlier work. Our results show the usefulness of our features
and query expansion techniques, and point to the impor-
tance of regularization when learning from noisy data.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Question-answering (fact retrieval) systems

General Terms
Experimentation, Performance

Keywords
Social search and ranking algorithms; Community question
answering; Query expansion

1. INTRODUCTION
Community Question-Answering (QA) portals can be char-

acterized as social media that present an alternative to tra-
ditional web search. Instead of browsing results of search
engines, users present their information needs as detailed
questions and get direct responses authored by humans.
User-generated language content comes in a high variance in
quality: questions and answers range from very high-quality
to low quality to irrelevant or even abusive content. This
complicates voting for best answers and makes high quality
in answer selection all the more important.
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The work presented in this paper attempts to construct
models and learners that accurately predict answer qual-
ity on user-generated data. We base our work on the Ya-
hoo! Answers1 dataset which has been used in pioneering
work by [21] and [22] (henceforth: SCZ) for the task of an-
swer ranking using linguistically motivated features. While
more recent work deploys Yahoo! Answers data for complete
QA [24, 25], we focus on the aspect of answer ranking, simi-
lar to SCZ, leaving aside the important module of question-
question matching [12, 11, 17].

The contributions of our work are as follows: Firstly, we
present features that explicitly model the quality of answers.
Given the information provided in the Yahoo! Answers data
released in the Yahoo! Webscope program2, our quality fea-
tures implement text-based measures of readability, formal-
ity, grammaticality, or entropy. We show in an experimen-
tal evaluation that such answer-specific features are a useful
complement to question-answer similarity features.

Secondly, our work contributes a new technique for query
expansion for answer ranking from noisy data. This is done
by applying the idea of piggybacking on web search results
to query expansion in answer retrieval. The key idea for our
application is to treat each question as a query to a search
engine and use the snippets of the top search results as a
richer representation of the original. The expansion terms
are thus not taken from the set of answers, but outsourced
to the richer source of information provided by web search
results.

Lastly, we contribute a controlled comparison of ranking
models by implementing a perceptron and a ranking SVM
in the same stochastic gradient descent (SGD) framework,
and by evaluating both models in a clean “answer sugges-
tion”setup that avoids interference from“also good”answers
which constitute a problem in the evaluation setup of SCZ.
SCZ use in a first step an IR engine to retrieve a set of candi-
date answers from the full pool of answers for all questions.
In a second step the top N answers that were retrieved in the
first step are reranked. The ranking problem for a particular
question is thus defined as finding the correct answer in the
pre-filtered pool of all answers generated for all questions.
If a question (or a similar question) has been asked several
times by different users in the Yahoo! Answers dataset, dif-
ferent “best answers” are possible, but only one user-selected
best answer is considered as correct answer in the test set
of SCZ. According to SCZ, selecting spurious best answers
caused 18% of the errors in reranking.

1http://answers.yahoo.com
2http://webscope.sandbox.yahoo.com/



In our work, we define the ranking problem for a par-
ticular question only over the set answers that have been
generated by users for this particular question, so that a
unique user-voted best answer is guaranteed. We call this
evaluation setup “answer suggestion” since it can be thought
of as automatic support for the users’ voting process for best
answers.

2. DENSE MODELS OF STRING
SIMILARITY AND QUALITY

The models used in our approach are linear combinations
of dense features on string similarity or on string properties
instead of on simple word identities. Feature groups 1-3 are
reimplementations of features that were shown to be useful
in SCZ. We contribute feature group 4 as a feature group
that explicitly measures intrinsic textual quality of answers.
We disregarded SCZ’s “web correlation features” because of
lacking access to user click logs and the reported general
poor performance of this feature group. Furthermore, we
did not compute generalized representations of text (e.g. by
n-grams, dependencies, or semantic roles). Instead, all fea-
tures were computed on full lexical forms.

2.1 Feature group 1: Vector-space similarity
The similarity between a question Q and an answer A is

measured by the standard information retrieval metrics of
the length-normalized BM25 formula and the classic TF-
IDF ranking (see [14]). The actual computation of the fea-
tures is done with the Terrier3 platform. Each answer A
is considered as a document and added to the Terrier in-
dex. The questions constitute the queries. For each ques-
tion/query Q, Terrier retrieves an ordered list of 3,000 docu-
ments/answers for TF-IDF and BM25, respectively. In our
setup, TF-IDF and BM25 scores are extracted only for the
n answers that have been posted by users for a question
Q. All other metaparameters were set similar to the values
reported in SCZ.

2.2 Feature group 2: Word-translation
probability

Feature group 2 implements the idea of “bridging the lex-
ical chasm” between questions and answers by using a word-
translation model [2, 20]. We used GIZA++4 to compute
word alignments using EM training [4], and smoothed prob-
abilities by a linear interpolation with counts over the whole
collection of answers C. The probability P (Q|A) that a
question Q is a translation of the answer A is defined in
SCZ as follows:

P (Q|A) =
∏
q∈Q

P (q|A) (1)

P (q|A) = (1− λ)Pml(q|A) + λPml(q|C) (2)

Pml(q|A) =
∑
a∈A

(T (q|a)Pml(a|A)) (3)

The probabilities Pml indicate maximum-likelihood estimates,
T (q|a) refers to the word translation table computed by
GIZA++. The metaparameter λ was set to 0.5 in our ex-
periments.

3http://terrier.org/
4http://www.fjoch.com/GIZA++.html

question snippet answer
avg. length 12.8 36.2 59.6

Table 1: Average lengths of questions, snippets, and
answers in training set.

2.3 Feature group 3: Textual proximity
Feature group 3 consists of 5 features measuring textual

proximity of questions and answers. Each of the 5 features
described below contributes 2 values to the feature vector
of an answer: First, the raw counts of question terms in
the answer, and second the normalized counts for each fea-
ture. Normalization is done by dividing the raw count by
the question length or by the answer length in the case of
Answer Span.

Answer span counts the largest distance (in words) be-
tween two non-stop question words in the answer.

Informativeness counts the number of non-stop nouns,
verbs, and adjectives in the answer that do not appear in
the question.

Same word sequence computes the number of non-stop
question words that appear in the same order in the answer
text.

Overall Match is the number of non-stop question terms
found in the answer.

Same sentence match calculates the maximal number of
non-stop question terms found in a single sentence in the
answer.

2.4 Feature group 4: Textual quality
The fourth feature group implements measures that cal-

culate intrinsic textual quality of answers. These features
are inspired by [1]. The question is whether answer-specific
features (in contrast to features on pairs of answers and cor-
responding questions) are informative enough to contribute
to answer ranking.

Punctuation measures the number of repeated non-letter
characters (including spaces and smilies), the use of capital-
ization, and the use of html tags.

OOV measures the number of out-of-vocabulary words,
i.e., words that do not appear in the top-1000 words in the
answer collection.

Readability implements several readability measures cal-
culated from the number of syllables or words in the text
and the number of sentences (see [1]).

Formality is based on part-of-speech tagged text, and
compares the number of“formal”word classes such as nouns,
adjectives, prepositions, and articles, against the number of
pronouns, verbs, adverbs, and interjections.

Grammaticality counts word n-grams up to length 5 that
appear more than 3 times in the collection.

Lastly, character-level entropy and word-level entropy mea-
sure informativeness of the text by calculating the entropy
of the character or word distributions.

3. PIGGYBACKING FEATURES ON WEB
SNIPPETS

[17] introduced the idea of leveraging web search results to
provide greater context for short texts as a way to improve
similarity measurements for short search queries. Their idea
was evaluated in a setup of query suggestion, however, it can



Figure 1: Google result page for query “how do seedless grapes, become seedless?”

just as well be used for query expansion as in our work. In
our work, we will treat a user question as a query to a search
engine. We then extend the feature vector of the original
question by the same features computed on the snippets of
the top search results. This setup resembles the well-known
technique of pseudo-relevance feedback [5, 26], however, ex-
pansion is not based on the set of top-ranked answers for the
original query but instead it is outsourced to the richer set
of web snippets for a regular web search using the original
query.

The average lengths of questions, snippets, and answers
in the training set is shown in Table 1. Query expansion by
search result snippets thus clearly is helpful to overcome the
length difference between questions and answers. Moreover,
our query expansion technique leverages search engine rank-
ing in several ways. Firstly, as shown in [16], parallel data of
queries and result snippets provide ideal data to extract syn-
onymous terms for query expansion. Secondly, our approach
piggybacks on the information about web link structure that
is implicit in the search engine’s ranking model.

In our experiments, we piggybacked our query expansion
on Google as search engine5. Google provides an API to
automatically issue queries which returns a maximum of 8
results for each query. We recorded snippets of each result.
Figure 1 shows an example snippet on the standard Google
search result page for the question how do seedless grapes,
become seedless?. Interestingly, the first result originates
from a Q&A community. Even if the question is not exactly
the same, the snippet of the top result introduces terms that
are relevant also to the answer of our question, e.g., “seeds”,
“grape”, “grow”, “reproduce”.

4. LEARNING TO RANK ANSWERS
Since it is rarely possible to classify answers to non-factoid

questions as correct or incorrect, the task of learning answer
quality is best defined as a ranking task. For a controlled
comparison of learners, we do not rely on external software,
but present an implementation of a perceptron and a ranking
SVM in an SGD framework [3] that is parameterized only
in a loss function L. Similar comparisons of perceptron and
SVM have been given before6. In our case, the relation is

5www.google.com
6[8] present a comparison of perceptron, multi-layer percep-
tron and SVM on the level of objective functions, but not
optimization algorithms. [18] present an SGD algorithm for
optimizing SVMs in primal form, however, the relation to

made very clear as a difference in regularization, which we
evaluate directly in an experimental comparison.

We represent each answer candidate by a feature vector
xi ∈ Rd, i = 1, . . . , n, and construct a set of preference pairs
P by pairing the best answer with all other answers gener-
ated for a question such that (i, j) ∈ P if xi is preferred over
xj . The general form of the SGD algorithm for a loss func-
tion L(w) =

∑
(i,j)∈P lij(w) defined on pairs is as follows:

for t = 1, . . . , T do
Pick at random a preference pair (i, j) ∈ P
Update w(t+1) = w(t) − η(t)∇lij(w(t))

end for

In order to compare the perceptron objective to the SVM
objective, it is useful to reformulate the standard loss over
misclassified points in the following hinge loss form:

lij(w) = (−〈w, xi − xj〉)+

where (a)+ = max(0, a). The perceptron update can be
understood as a SGD update of this objective, leading to
the following update form:

if
〈
w(t), xi − xj

〉
< 0 then

w(t+1) = w(t) + η(t)(xi − xj)
else
w(t+1) = w(t)

end if

The SVM objective can be written in the form of regular-
izer + loss as follows:

lij(w) = λ||w||2 + (1− 〈w, xi − xj〉)+

Regularization is obtained by minimizing the (squared) `2-
norm of w which is equivalent to finding a hyperplane with
large margin. The second term expresses the hinge loss suf-
fered from ranking errors. The regularization metaparam-
eter λ balances the two objectives. Optimizing this objec-
tive in a SGD framework yields an update that differs from
the perceptron only in the misclassification criterion and the
regularization term:

perceptrons is less clear due to the subgradient projection.



Question/Snippet Best Answer Rank
Q: How to remove burnt spot in a stainless

pot?
If you put a laundry lint sheet in the
burnt pan with some water and boil it,
it is suppose the lift the burnt spot off the
pan. I also use baking soda with water
and boil it, that works too.

3→1 (6)

S: but now i have a stainless steel pot that’s
all black inside. put hot water in your pan
and then load the burned spots with baking

Q: How do you get your passport renewed? You have to send your passport to the
passport office along with a renewal
application and two new photos. [...]
Check the US passport office site below,
you can get the application online.

2→1 (6)
S: clinton et al. class action lawsuit; check

the status of your passport application.
apply for a u.s. passport. apply for a u.s.
passport

Q: How do you say dog in france? Dog, same way you say it in the United
States or anywhere else in the world. But
in French the word for ”dog” is ”chien.”

2→1 (8)
S: for you when you travel to france and other

nations where french is spoken. how to
say stuff in french ”stuff” how to say dog
in french ”chien”

Q: how to get dog hair off of furniture? There are dense sponges you can buy
from furniture cleaning companies that
can be used to do this. They [...] need to
be [...] rubbed over the furniture. [...]

3→1 (7)
S: remove pet hair from furniture. how do

i get dog hair off furniture? to remove
pet hair from clothing or furniture, rub
article with clean fabric

Q: how to find determent in mXn matrix? a determinant is not defined for a mxn
matrix it’s only defined for square matrix

3→1 (4)
S: transforming a matrix to reduced row ech-

elon form, find the matrix in reduced row
echelon form that is row equivalent to the
given m x n matrix a. calculate the deter-
minant of the given n x n matrix a. vector
spaces

Q: How do I fix video games with scrathes? a how bout you put the games back in the
case when you are done then they wont
have scratches on them

5→1 (7)
S: how to fix scratched cds and dis does skip-

doctor remove scratches on cds? how to
repair a scratched cd, dvd, or video game

Table 2: Ranking improvements produced by piggybacking on web snippets.

if
〈
w(t), xi − xj

〉
< 1 then

w(t+1) = w(t) + η(t)((xi − xj)− 2λw(t))
else
w(t+1) = w(t) + η(t)(−2λw(t))

end if

5. EXPERIMENTS
The QA corpus used in our experiments consists of the

Yahoo! Answers Manner Questions, version 2.0, as available
via Yahoo!’s Webscope program. We split the corpus of
142,627 question-answer pairs into a training set, a develop-
ment set, and a test set (60%, 20%, 20%) by randomly se-
lecting 85,578 questions for the training set (resulting in 5.76
answers on average), 28,525 questions for development (5.73
answers/question) and 28,524 questions for testing (5.70 an-
swers/question).

For machine learning purposes, each pair of question and
correct answer constitutes a positive example, and all other
answers for the same question constitute negative examples.
This setup was used in training, development, and testing.
Note that this setup is different to the evaluation scenario
of SCZ where spurious “best answers” coming from related
questions can interfere in reranking a pre-selected set of can-
didate answers chosen from all questions.

As evaluation metrics we used Average Precision@1 and
Mean Reciprocal Rank. Precision@1 is defined as 1 if the
correct answer is ranked first, 0 otherwise. Reciprocal Rank
is defined as the inverse of the rank of the correct answer.
The Average for both metrics is taken over all questions in
the test set. Feature extraction required the implementation
of several match-functions for feature groups 3 and 4, and for
some features an annotation with part-of-speech tags. We
used the Tree Tagger7 for this purpose. Feature group 1 was
outsourced to the Terrier platform. Feature group 2 relies
on GIZA++ for calculating word alignments. Web snip-
pets for the construction of larger contexts were based on
the Google search engine. We experimented with different
numbers of results out of the maximally 8 results returned
for each query and found 3 snippets to yield optimal results
for the averaged perceptron, while 1 snippet was slightly
preferable for the SVM. The learners were implemented as
alternative update rules in the same framework, using a de-

creasing learning rate η(t) = η(0)

1+t/|P | [23] with η(0) = 2
|P | .

The regularization metaparameter λ of the `2 regularizer of
the SVM was adjusted on the heldout data. The optimal
value was found to be 10−6. Best results for the perceptron
were found by averaging weight vectors over all updates [7].
Parameter averaging did not improve results for the SVM.

7
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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Figure 2: Overall answer ranking results for Averaged Perceptron evaluated with respect to Precision@1
(P@1) and Mean Reciprocal Rank (MRR).

Averaged Perceptron fg1 fg12 fg123 fg1234 +fg1s +fg12s
AP@1 MRR AP@1 MRR AP@1 MRR AP@1 MRR AP@1 MRR AP@1 MRR

fg12 74.57% 31.09%

fg123 77.76% 32.07% 1.82% 0.75%

fg1234 81.12% 33.44% 3.74% 1.80% 1.89% 1.04%

+fg1s 82.08% 33.80% 4.29% 2.07% 2.43% 1.31% 0.53% 0.27%

+fg12s 88.38% 36.12% 7.90% 3.83% 5.97% 3.07% 4.01% 2.01% 3.46% 1.73%

+fg123s 88.83% 36.26% 8.16% 3.95% 6.23% 3.17% 4.25% 2.11% 3.71% 1.83% (0.24%) 0.10%

Table 3: Incremental improvements of feature combinations with fg1 baseline for Averaged Perceptron.

Figures 2 and 3 show the results of the averaged percep-
tron and the ranking SVM on the test set. As baseline we
use a model that includes only feature group 1, thus emulat-
ing a standard bag-of-words retrieval model. Feature groups
were added incrementally (fg1, fg12, fg123, fg1234). Addi-
tionally, feature groups 1-3 are applied incrementally to the
snippets, indicated as +fg1s, +fg12s, +fg123s.

Tables 3 and 4 show incremental improvements of feature
combinations with fg1 as baseline. Statistical significance
was evaluated by an Approximate Randomization test with
stratified shuffling at the level of questions [15]. The results
for all

(
7
2

)
pairwise comparisons are statistically significant

at significance level p < 0.05, except for the comparison
of +fg123s to +fg12s, and the difference between fg1s to
fg1234.

These results can be interpreted as follows: For both
learners, we see similar relations with respect to feature
combinations. The biggest relative improvement is caused
by fg2, the translation feature, confirming SCZ’s findings.
Smaller improvements can be gained by adding features for
textual proximity and quality (fg3 and fg4). Feature compu-
tation on web snippets gives another significant gain, again

with the biggest boost coming from piggybacking translation
features on web snippets.

A comparison of learners shows that the SVM can take
better advantage of additional features than the averaged
perceptron. Starting from similar baseline results, the SVM
yields best results for a combination of all features that are
around 2% better than the best results for the averaged per-
ceptron. Given the comparable implementations of learners
we can trace this difference back to different regularization
mechanisms in the two learners. We found in different ex-
periments that averaging weight vectors improves results by
around 2% for the perceptron. However, adjusting λ for
optimal performance on the development set improves per-
formance of the SVM by around 2% over the averagedper-
ceptron.

Our results are not directly comparable to SCZ’s results,
however, it should be noted that our baseline results are
lower, and our best results higher than those of SCZ. Fur-
thermore, SCZ could not achieve improvements by using a
ranking SVM [10, 13, 6] instead of a simpler perceptron [9,
7, 19]. A possible explanation why similar improvements
were not visible in the experiments of SCZ is the use of



external software8 for the SVM computation, which compli-
cates a controlled comparison9. Furthermore, our approach
of “answer suggestion” provides a clean setup to compare
two learners without interference from “also good” answers.
Those are unavoidable in SCZ’s setup where a pool of all
answers generated for all questions is ranked with respect to
a particular question.

6. CONCLUSION
Table 2 shows examples for improvements of answer rank-

ing due to piggybacking features onto snippets. The first
three examples show how snippets can introduce new terms
that are clearly relevant for the best answer. Less exciting
but equally effective expansions are shown for the fourth
through sixth example. Here either known terms are re-
peated, and thus boosted, or spelling errors are corrected.

In sum, we can conclude that answer ranking for social
QA data is an interesting research field because of the abun-
dance of data and at the same time because of the inherent
noisiness of data. In the presented work we have shown
that improvements in answer ranking can be achieved from
both angles of feature engineering and learning algorithms.
In the first case, we have shown that piggybacking feature
extraction onto richer resources such as web search results
significantly improves matching performance. For the sec-
ond case, we have shown that appropriate regularization is
the crucial ingredient in learning from noisy user-generated
data.

The current setup was confined to the task of answer sug-
gestion. This scenario was chosen to provide a clean evalua-
tion setup for a controlled comparison of models and learn-
ers. The disadvantage of this scenario is a reduced compa-
rability to the work of SCZ, or standard ranking or retrieval
scenarios. For example, a comparison of our web snippet
expansion with standard query expansion techniques [26] is
not meaningful in an answer suggestion setup where the cen-
tral problem of low recall is already solved. Future work will
address an extension of the described approach to an end-to-
end QA system that includes a question-question mapping
and a ranking over the full space of answers.
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