
Reducing Feature Space for Learning to Rank in

Cross-Language Information Retrieval

by

Schigehiko Schamoni

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Arts

in

Computational Linguistics

Ruprecht-Karls-Universität Heidelberg

Neuphilologische Fakultät

Supervisor:

Professor Dr. Stefan Riezler

Heidelberg, September 2013

1

Abstract

Reducing Feature Space for Learning to Rank in
Cross-Language Information Retrieval

by

Schigehiko Schamoni

In this thesis we will examine a recent approach in the field of information retrieval.
Information retrieval as a research field denotes the development and implementation of
methods and techniques to retrieve information from a collection. The ranking component,
one of the most important modules in today’s search engines, is our central concern and we
will employ learning to rank, a machine learning technique for improving ranking quality
with respect to a certain information need.

The technique we will examine is based on a quadratic expansion of word features which is
able to capture natural language phenomena such as polysemy and synonymy. This quadratic
expansion implicates a high demand for computer resources regarding computational com-
plexity and memory requirements. A central question is how to reduce these requirements
while preserving the properties of the model. One way to address these problems is to employ
hashing to directly reduce the memory requirements of the model. We will further examine
several methods that reduce the complexity of the data, i.e. the number of dimensions of
the data representation.

We will first apply our model to a monolingual task on a standard dataset for text-based
retrieval and evaluate various methods for feature reduction and feature selection. In this
task, our model performs very well and surpasses the results of experiments from other works
on the same dataset considerably.

In the second part of our experiments we will transfer the model into a cross-language
setting where we train the system on relevance data between Japanese and English patents.
These relevances were created based on information from a citation graph. Our model is able
to learn a relevance metric and simultaneously learn useful word relations across languages
without any external translation resource. We will then enrich the system in a novel way
by integrating highly informative domain knowledge features and receive improvements over
state-of-the-art statistical machine translation based approaches for patent retrieval on the
same dataset.

Finally, we will demonstrate the flexibility of our approach by additionally incorporating
a completely different model into our system. The final results of the combined system show
a significant gain over the retrieval performance of each single system.

2

Zusammenfassung

In dieser Arbeit untersuche ich einen modernen Ansatz zur Implementierung eines zentralen
Moduls aus dem Bereich Information Retrieval (Informationsrückgewinnung, Informations-
akquise). Information Retrieval beschreibt das Themengebiet, das sich mit der Entwick-
lung von Algorithmen, Techniken und Methoden der Akquise von digitalen Informationen
beschäftigt, wie sie etwa in heutigen Suchmaschinen eingesetzt werden.

In dem von mir untersuchten Modul werden Machine Learning Techniken (maschinelle
Lernverfahren) benutzt, um die Ergebnisse von traditionellen Suchverfahren zu verbessern.
Hierzu wird in einer Ranking-Komponente die Reihenfolge der Suchergebnisse mit mathema-
tischen Optimierungsmethoden den Anforderungen der Applikation entsprechend angepasst.
Dieser Ansatz heißt Learning to Rank und ist heutzutage eine Standardmethode zur Opti-
mierung der Suchergebnisse von Suchmaschinen.

Im Zentrum meiner Arbeit steht eine moderne Variante eines solchen Ranking-Verfahrens,
das nicht nur die Einzelwörter aus Suchanfragen und Suchdokumenten auswertet, sondern auf
einer durch quadratische Expansion der Wörter angereicherten Datenrepräsentation arbeitet.

Diese quadratische Expansion hat interessante Eigenschaften und kann Phänomene er-
fassen, die besonders in menschlicher Sprache auftreten. Allerdings bringt der Ansatz auch
Probleme bezüglich Speicherkapazität, Lernkomplexität und Kapazität des Modells mit sich.
Eine wichtige Frage ist daher, wie man diese Anforderungen verringern kann, ohne dabei die
Vorteile des Modells aufzugeben. Hierzu reduziere ich auf der einen Seite die Anzahl der
Variablen des Modells durch Hashing, und untersuche auf der anderen Seite, wie die Anzahl
der Dimensionen der Daten sinnvoll verringert werden kann.

Das Model wird zunächst mit einer einsprachigen Anwendung evaluiert und die Auswir-
kungen der Methoden untersucht. Daraufhin wende ich das Modell in einer sprachübergreifen-
den Anwendung an, in der für ein gegebenes japanisches Patent relevante amerikanische
Patente gefunden werden müssen. Diese Daten wurden auf Basis von Zitationen in den
Patenten erstellt. Ich zeige dabei, dass das Modell ohne die Integration eines Überset-
zungssystems Wortbedeutungen über Sprachgrenzen hinweg erkennt und gleichzeitig die
Relevanz solcher Wortpaare im Bezug auf Patente beurteilen kann. Die erzielten Ergebnisse
sind vergleichbar mit anderen modernen Methoden, die auf Unigramm-Ansätzen basieren
und auf den gleichen Daten evaluiert wurden.

Dieses Modell kombiniere ich in einer neuartigen Weise mit speziell modellierten Features
(Merkmalen) aus der Patentdomäne. Die erzielten Ergebnisse dieses Modells übertreffen die
Ergebnisse von Methoden, die auf statistischen maschinellen Übersetzungssystemen basieren.

Das Besondere an dem Ansatz ist seine Flexibilität. Ich zeige wie es ohne Weiteres
möglich ist, neue Module zu integrieren und dadurch die Leistung des kombinierten Systems
zu steigern. Da ich diese Kombination mit Machine Learning Techniken optimiere, liefert das
neue System zum Teil erheblich bessere Ergebnisse als jedes beteiligte Einzelsystem allein.

i

Contents

Contents i

List of Figures iii

List of Tables iv

1 Introduction 1

1.1 Motivation . 3
1.2 Structure of the Thesis . 5

2 Methods 6

2.1 Information Retrieval . 6
2.2 Learning to Rank . 11
2.3 Word Features . 18
2.4 Hash Kernels . 20
2.5 Feature Selection and Reduction . 23

3 Training and Test Framework 30

3.1 Complexity . 30
3.2 Implementation . 37
3.3 Evaluation . 40

4 Monolingual Information Retrieval 47

4.1 Retrieval on the 20NG Corpus . 47
4.2 Experiments . 48
4.3 Results . 59

5 Cross-Language Information Retrieval 61

5.1 Bilingual Patent Retrieval . 61
5.2 Experiments on the Sparse Model . 63
5.3 Combining Sparse and Dense Models . 78
5.4 Final Results . 88

ii

6 Discussion and Outlook 90

6.1 Discussion . 90
6.2 Future Work . 93

7 Conclusion 99

Bibliography 101

iii

List of Figures

1.1 The taxonomy of ranking . 2

2.1 Structure of an inverted index . 8
2.2 The ranking component within the retrieval pipeline 11
2.3 Multipartite pairwise ranking . 15
2.4 Pairwise learning to rank approach . 15
2.5 Relevant features that are individually irrelevant 24

3.1 Parallel computing architectures . 34
3.2 MapReduce for retrieval system evaluation . 36
3.3 Precision-recall curve . 41
3.4 Normalized recall and PRES metric . 44

4.1 Error at beginning of training . 51
4.2 Convergence of the error . 51
4.3 MAP scores during training on 20NG . 51
4.4 Progressive error and fixed learning rate . 52
4.5 Performance on test for DLR and FLR . 52
4.6 MAP for different ℓ1-regularization settings . 54

5.1 Error during training on TFIDF and binarized data 64
5.2 Comparison of binarized and TFIDF vectors . 65
5.3 Performance of mixed vector models . 65
5.4 Effect of TFIDF induced stop word filtering. 67
5.5 Different SGD sampling schemes for pairwise ranking 68
5.6 Performance of query-document sampling schemes 69
5.7 Comparison of different feature reduction methods 72
5.8 Effect of ℓ1-regularization on MAP . 75
5.9 Effect of ℓ1-regularization on PRES . 76
5.10 Example IPC classification . 79
5.11 A different view of the dense model . 86

6.1 Clusters in document space. 97

iv

List of Tables

3.1 Latency for different types of computer memory 31

4.1 The 20 newsgroups in the 20NG corpus . 48
4.2 Splits of the 20NG corpus . 49
4.3 Comparison of MAP scores for fixed and decaying learning rates 52
4.4 Different models trained with fixed learning rates 52
4.5 Model performance under various ℓ1-regularization settings 54
4.6 Effect of TFIDF construction schemes on retrieval performance 55
4.7 Influence of limited and full vocabulary on MAP 56
4.8 Sample mappings created by correlated feature hashing 57
4.9 Retrieval performance with correlated feature hashing 59
4.10 Overview of MAP scores under different configurations 60

5.1 The Japanese-English patent corpus . 63
5.2 Implicit stop word detection by TFIDF weighting 66
5.3 Sparsity of differently trained models . 70
5.4 Comparison of models using full and limited vocabulary 71
5.5 Length of documents and vocabulary sizes after filtering 73
5.6 Mappings created by correlated feature hashing on patent data 74
5.7 Evolution of the sparse model . 77
5.8 Retrieval performance of the sparse and the dense model 83
5.9 Weights and influence of single dense features 84
5.10 Performance of the combined model . 87
5.11 Overview on the results of the sparse and the dense model 89

1

Chapter 1

Introduction

Searching information has become an everyday task for us. With the growing amount of
electronic media accessible for many people, information retrieval (IR) has become an im-
portant component in our daily life. We use information retrieval systems in the form of
web search engines often many times a day, and there are numerous applications special-
ized on certain information needs, e.g. querying databases for flight-schedule information,
stock management software, medical applications, etc. Long before the development of the
Internet, the retrieval of electronic information was already an active research field.

Although all applications today work with similar basic components (e.g. the vector space
model, query expansion, latent representations), the ever growing amount of data requires
the systems to sort and categorize information according to the application. A step forward
to improve a system’s retrieval quality is the definition of a real valued score that assesses
relevance of a document with respect to a query. The idea is that retrieval is not only about
term-matching, but that terms also have different weights (as in TFIDF, see Section 2.1).
Finding the documents that fit best to a query has become the task of searching similar
documents by means of a similarity metric. The user is then presented a list of results,
starting with the documents that the system ranks most important, i.e. assigns the highest
relevance or similarity score to.

However, all TFIDF-like systems (e.g. BM25, Jones et al. 2000) are static in their cal-
culation of relevance, which means they cannot change their behavior even if they repeatedly
present the user a ranking he is not satisfied with. Such user feedback, called clickthrough-
data in the field of web-search, is the most valuable resource for commercially run search
systems (Joachims, 2002). The biggest step towards a dynamic search system was the
implementation of a ranking module that analyzes such feedback and tunes relevance assess-
ments that are repeatedly corrected by the users. The method of using machine learning
techniques to implement this ranking module is called learning to rank (LTR).

We follow the categorization of Li (2011) and take his ranking taxonomy to locate our
own approach. According to Figure 1.1, ranking can nowadays be divided into two main
areas, rank creation and rank aggregation. Each of these areas can further be divided into
supervised and unsupervised approaches. Our work covers both main areas, i.e. creation

CHAPTER 1. INTRODUCTION 2

and aggregation, but we employ machine learning and thus follow strictly the supervised
approach.

Figure 1.1: A taxonomy of different ranking systems. Idea motivated by: Li (2011).

Parallel to the development of monolingual IR, i.e. retrieval of information in a single
language, methods that aim at IR across languages have been established: the task of
searching information within a collection in a language different to the query language is
called cross-language information retrieval (CLIR). As the need for such applications is not
obvious, we are providing some examples taken from Peters et al. (2012), which illustrate
reasonable uses for CLIR:

• a researcher searching for all available information on a topic without limiting his
search to certain languages

• a journalist searching for news articles and stories in a foreign language

• an investor acquiring first-hand knowledge about a region or country

• a traveler looking for nearby activities or local information

• a patent lawyer searching for relevant patents to register a customer’s patent in a
foreign country

With the growth of information electronically available in many different languages, the need
for such applications is also growing.

One sign of the growing importance and the increasing interest in cross-language in-
formation applications is the success of the CLEF Initiative1 (Conference and Labs of the
Evaluation Forum, formerly known as Cross-Language Evaluation Forum). The CLEF Ini-
tiative defines tracks and provides datasets for multilingual retrieval, mostly in European
languages. However, since their name changed in 2010 the tracks also have moved from a
cross-language focus to a wider range of different information retrieval applications.

Another important collection of increasing popularity in recent years is the NII Test
Collection for IR Systems (NTCIR). The corresponding Workshop2 is an annual event that
is usually held in Japan. The NTCIR defines cross-language tasks on information retrieval,

1http://www.clef-campaign.org/, accessed 10.09.2013
2http://ntcir.nii.ac.jp/about/, accessed 10.09.2013

http://www.clef-campaign.org/
http://ntcir.nii.ac.jp/about/

CHAPTER 1. INTRODUCTION 3

question answering and text summarization focused on East Asian and European languages.
We use parts of the NTCIR test collection on patent machine translation in this work.

A common way to address the CLIR problem is to extend an existing well-functioning IR
system by translating certain components of the system. Peters et al. (2012) distinguish
three different forms of translations that can be applied here:

• Query translation: the query is translated into the language of the document collection.

• Document translation: the document is translated into the language of the query.

• Both query and document translation: both languages are translated into a (not nec-
essarily artificial) “pivot language”.

Systems based on statistical machine translation (SMT) that follow the first approach
are the ones most often built today. The second approach cannot be applied in most cases,
because the computational cost of translating whole document collections is usually too
high. The first approach, however, is examined in various works, see e.g. Jehl et al. (2012),
Hieber et al. (2013) and Türe et al. (2012). The underlying strategy is often to take a
standard retrieval algorithm and combine it cleverly with an SMT-system. Such approaches
can benefit from integrated query expansion, where one term in the source language is
replaced by multiple terms in the target language.

The method we present is more related to the third approach, although we do not model
any underlying pivot language explicitly. Bai et al. (2010) present a model comparable to
ours where a matrix, the central component of the model, is decomposed and the resulting
two matrices project the query and document independently into a lower dimensional “pivot
language”-space. This idea is taken up again and described in detail in Chapter 6 on future
work.

Our contribution is to present a CLIR system which follows a different approach than
most CLIR systems today. Instead of concentrating on the cross-language part and tackling
the problem by applying statistical machine translation (SMT) in combination with standard
IR methods, we employ a completely supervised approach that learns a relevance metric for
ranking across languages without the need of parallel sentences. In this sense, our model is
more directly focused on the CLIR problem as a whole and can optimize both word relations
and document relevance simultaneously.

The final system we built combines sparse word-features and dense domain-specific fea-
tures in a manner that has not been done before. The resulting model is versatile as it can
be applied to any cross-language task where relevance matrices exist, and it is extendable as
it can integrate any ranking system that generates scores on query-document pairs.

1.1 Motivation

The basic model we examine is closely related to the one presented by Bai et al. (2010),
Chen et al. (2010), and Sokolov et al. (2013). This model is mathematically very clear

CHAPTER 1. INTRODUCTION 4

and has interesting properties regarding the ability to capture natural language phenomena
like polysemy and synonymy. These phenomena can also be captured by lower dimensional
representations such as latent semantic indexing (LSI) (Deerwester et al., 1990), however,
LSI is an unsupervised technique and our approach works on a supervised signal to extract
useful correlations.

The problem of the basic model we present in Section 2.3 is its high demand in terms
of resource requirements. As the models works on a quadratic expansion of term-pairs, the
memory requirements quickly become infeasible when applied to real-world datasets.

One way to address this problem is to employ a sparse representation of the model in
memory. Chen et al. (2010) successfully show how ℓ1-regularization (Section 2.2) helps to
maintain a sparse model that has also improved generalization capabilities. We will examine
ℓ1-regularization in a similar task for comparison and in a completely different task on cross-
language retrieval and evaluate in which cases this sparsity has the desired properties.

Another way to significantly reduce memory requirements is to apply hashing. The works
by Shi et al. (2009) showed that approximation of complex functions by randomization is a
technique widely used in many research areas and that hashing for machine learning perfectly
fits into this scheme. We examine hash kernels as a method to considerably reduce the
memory requirements of our model. The interesting question is whether we can implement
hashing in a way that, instead of increasing information loss, it increases retrieval quality.
We will further examine which other classic filtering methods are suited to reduce feature
space without harming the quality of the final retrieval model.

A new idea proposed by Bai et al. (2010) is correlated feature hashing (CFH), where hash
kernels are applied to words using a semantically motivated strategy. We will examine under
which conditions CFH is able to reduce feature space without losing important information
contained in the data. Thus, a central question of our work is how to reduce feature space
and at the same time improve retrieval quality.

Parallel to our examination of methods on a classic dataset for IR applications, we will
build and evaluate a system aimed at searching patents. Patent retrieval is an economically
highly relevant task. Patent infringement due to unsuccessful prior art search can endanger
the existence of whole companies. Although the necessity of cross-language approaches
was emphasized by Sarasúa and Corremans (2000) many years ago, a lot of work on
patent retrieval is still done on monolingual data first (Guo and Gomes 2009, Bashir and
Rauber 2010) and then extended to a cross-language application using (statistical) machine
translation systems (Piroi et al., 2011).

We will evaluate the basic model in a cross-language information retrieval (CLIR) task
on patents. A question is whether well-working methods from monolingual retrieval can be
applied to the cross-language task. Our task setups for the monolingual IR on a standard
dataset and for the cross-language patent domain are classic applications of supervised rank
creation (Li, 2011).

Motivated by the work ofGuo andGomes (2009), we have created a model optimized for
patent retrieval that combines both our sparse model and highly informative dense features
specifically defined on the patent domain. This combination of sparse and dense features is

CHAPTER 1. INTRODUCTION 5

a novel approach as far as we know.
Finally, by extending the idea of Wu et al. (2008) on an enhanced form of supervised

rank aggregation (see Figure 1.1), we examine the question whether our system would be
flexible enough to incorporate other, probably completely different ranking approaches to
further increase retrieval quality.

1.2 Structure of the Thesis

This thesis is divided into three main parts, of which the first explains theoretical methods
and implementation issues, the second part describes monolingual experiments and is thus
practically oriented, and the third part on cross-language experiments contains in addition
to the practical part the explanation of a new idea and its implementation.

In the first part, we started in Chapter 2 with an explanation of the idea behind informa-
tion retrieval and the components involved in standard systems, most notably the ranking
component. We will then explain the theoretical background of machine learning and how
this technique is applied in the “learning to rank” framework. We will then develop our basic
model and present methods for feature reduction and feature selection because the memory
and computational complexity is the main issue of our model. We conclude this part with a
technical description of the architecture we use and the implementation in Chapter 3.

The second part, provided by Chapter 4, examines the practical applicability of our
model in a monolingual retrieval task. After conducting preliminary experiments we will
start evaluating the methods for feature reduction and feature selection proposed in the
previous part. The expectation is to acquire experience with the model and to obtain results
that can then be compared to the experiments in the next part of this work.

Chapter 5 is the third main part, where we evaluate the system in a cross-language
information retrieval task on patent data. We will show how the model from the monolingual
task can be successfully applied in a cross-language setting and evaluate several techniques
for reducing model complexity. The development of a novel approach which combines the
model with highly informative domain knowledge features is the most important section of
this part. We will finish this chapter with a proof-of-concept experiment where we show that
our final system is able to successfully integrate completely different systems.

Finally, in Chapter 6 we will discuss our findings and present possible extensions of our
approach which we were considering during our work. In the last chapter of this thesis,
Chapter 7, we will review the research questions that we brought up in the current chapter.

6

Chapter 2

Methods

This chapter provides an introduction to the theory and the methods examined in our work.
We first explain in Section 2.1 the idea behind information retrieval and the components
involved in standard systems with a focus on the ranking component. Section 2.2 introduces
the methods needed for learning to rank, the application of machine learning to ranking. An
important element in this framework are word features, and in Section 2.3 we describe how
to extend the idea and develop our basic model. Due to the complexity of this model, it is
necessary to approximate the problem using hash kernels, a method we explain in Section 2.4.
Finally, Section 2.5 describes general strategies for feature selection and reduction and which
dangers are involved in their application. In addition to this, we locate the methods we
examine in our experiments in the feature selection and reduction context.

2.1 Information Retrieval

The motivation behind Information Retrieval (IR) is very old. IR in its basic sense exists
since mankind has collected information to retrieve it at a later time. Looking up a recipe in
a cookbook, reading the credit card number for payment, finding out on which weekday one’s
own birthday is next year – these are all applications of information retrieval. Information
retrieval in its broadest sense is not bound to textual information. It can also mean to find
out about the contents of a painting, the writing style of a text or the harmonies used in a
musical work. To narrow the general idea of IR to the sense interesting for us, we will cite
the definition given by Manning et al. (2008):

“Information retrieval (IR) is finding material (usually documents) of an unstruc-
tured nature (usually text) that satisfies an information need from within large
collections (usually stored on computers).”

Modern IR started in the 1950s (Singhal, 2001). When information became electroni-
cally available, techniques had to be developed to retrieve this information. With the rise of
computers in the following decades the amount of information available for a single system

CHAPTER 2. METHODS 7

constantly grew, bounded only by the hardware resources available. Larger systems were
already built by connecting computers together, usually for research purposes, which multi-
plied the available information within the network by the number of connected computers.

In the 1980s a new idea came up: nets of research computers should be connected among
each other through a “meta-net”. This idea was first realized as ARPANET and later
reborn as the Internet (Roberts, 1986), which nowadays is – with all its pros and cons –
an important motor for economic development and all kinds of research.

Parallel to this vast expansion of computer networks in size goes a natural increase of
information available. This made the development of special techniques necessary which
can handle this amount of information. These techniques to analyze, index, compress and
retrieve information are all part of information retrieval.

Information retrieval in the area of computer science has been a text oriented domain.
However, modern developments enable the application of retrieval algorithms on other types
of data, e.g. pictures. For example, automatic labeling of persons in a photo collection,
or object recognition apply algorithms very similar to those nowadays used in text-based
information retrieval. Our work examines text-based IR, so when we talk about information,
we usually mean the content of a document or a search query.

Indexing and Retrieval

To electronically retrieve information from a collection, the data needs to be available in an
appropriate format. In the case of documents, the electronic representation is basically a
large array of characters, a string, where words are separated by spaces, punctuation symbols,
special symbols such as dashes, etc.

If we search for information (e.g. keywords) in a document like this thesis, we would use
clever string matching algorithms like Knuth-Morris-Pratt (Knuth et al., 1977), but the
same idea cannot be applied to thousands or millions of documents because searching would
take too long. The difference is the scope of the search problem: in the case of a document,
we want to find out the exact position of the search term, while in the case of a collection, we
first need to know which documents are possible candidates before asking at which position
the information is to be found.

Thus, for large-scale retrieval, i.e. retrieval of information within millions or billions of
documents, we need a fast way to select possibly useful documents and a fast way to assess
importance of the documents with respect to the information need expressed by the search
query.

The issue of selecting possibly relevant documents in web-scale tasks is usually solved by
querying an inverted index (Knuth, 1973). An inverted index is a simple but efficient data
structure that can be applied to a variety of problems (see e.g. Section 3.2 on the construction
of mappings for correlated feature hashing). It is basically a list of documents associated to
a word. Figure 2.1 shows how an inverted index organizes terms and corresponding lists of
document identifiers called postings.

Creating an inverted index is a straightforward problem: the algorithm first initializes an

CHAPTER 2. METHODS 8

Figure 2.1: Structure of an inverted index with terms and associated lists of document IDs
(postings).

array of words each with an empty list of postings. It then iterates over all documents and all
words of the current document. For each word, it adds the document identifier (e.g. a pointer
or a filename) to the list of postings for this particular word. After removal of duplicate
entries in the postings list for each word the inverted index is ready. A comprehensive
description of modern approaches together with a sophisticated implementation on a Hadoop-
Cluster (see Section 3.1) that can be index collections of web-scale size is presented in Lin

and Dyer (2010).
Retrieval of documents containing certain words is simple given an inverted index. For

example, the information need is “term1 term2”, then the system has to take the postings
lists of term1 and term2, build the intersection, and the set of remaining document identifiers
is the result returned.

This type of searching is called boolean retrieval, because it only evaluates exact matches
of words. It is the oldest form of computer based IR and nowadays only very few systems
actively use boolean retrieval as an official search strategy (Manning et al., 2008, p. 14). A
positive aspect is that it supports boolean expressions, so terms can be combined with logic
operators such as AND, NOT and OR. In the example above, we assumed an implicit AND
between the terms, which was implemented using a set intersection operation. OR can be
implemented using the union, NOT using the complement. With a little modification, such
systems can even support more sophisticated operators like NEAR for proximity searches.

However, plain boolean systems have several drawbacks. For example, they cannot dis-
tinguish between more and less important words, because in their logic every term has the
same weight. What is even worse, they cannot see if a search word occurs one time or
hundred times in a document, a number that will most certainly affect the relevance of the
document. Thus, the boolean retrieval alone is usually too primitive to build a good system.

A more flexible model was described relatively early by Salton et al. (1975), but it
took some years until computers had enough power to apply this method to retrieval tasks
of larger scale. The basic idea behind the vector space model is that each document di is
represented by vector of length t = |D|, where D is the vocabulary of the collection:

CHAPTER 2. METHODS 9

di = (ti,1, . . . , ti,t) (2.1)

ti,j representing the weight of the jth term

This treats a document as a unordered collection of words, a set, and projects it into a t-
dimensional vector space. The dimensions are the weight of the term, which can be a binary
measure, or, more sensible, the number of occurrences of the term. Two documents (i, j) can
now be compared by computing a similarity coefficient sim(di,dj). This similarity measure
can be arbitrarily complex, but in most cases a simple measure like cosine similarity returns
very good results:

cos θ =
di · dj

||di|| · ||dj||

This expression can be further simplified if we require normalization of the vectors to unit
length, effectively removing the nominator:

sim(di,dj) = 〈di,dj〉 =
|D|
∑

k=1

ti,k · tj,k = d
⊺

idj (2.2)

Here, 〈·, ·〉 denotes the vector dot-product and thus estimating similarity between di and
dj reduces to calculating the inner product. Besides being computationally efficient and
elegant, this approach has many positive aspects. When similarity is calculated between a
query and a document, it is necessary to have only at least one matching term to assess a
score. And additionally, the weighting of terms can be further refined.

Such a refinement is TFIDF weighting, where term weights are not only values based on
their frequency in a document but also discounted by their overall count among all docu-
ments. The motivation behind this scheme is that terms frequently occurring in documents,
e.g. function words such as “a”, “the” or “and”, are irrelevant for the retrieval task (Jones,
1972). Whereas documents that contain words rare in the collection are very relevant with
respect to this word. Thus, according to TFIDF weighting, function words get very low
weights, and highly informative words receive high weights:

tfidft,d = tft,d · idft (2.3)

where idft = log
N

dft

In the formula above, tft,d is the term frequency of term t in document d, N is the total
number of documents, and dft is the document frequency of term t, i.e. the number of

CHAPTER 2. METHODS 10

documents where t occurs. TFIDF itself consists of two components, the term frequency
(TF), and the inverse document frequency (IDF). As TFIDF weighting only affects the
values inside the vectors, calculating similarity via dot-product stays exactly the same as
defined by formula 2.2.

Alternatively to boolean and vector space models exists a third variant, the probabilistic
model. We do not go into the details, because their application is not relevant for our work.
However, probabilistic models are a very important basic method for information retrieval
and thus must be mentioned here.

The difference between a vector space model and a probabilistic model is not that great.
Probabilistic models that are used today like Okapi BM25 receive vectors as input, but they
calculate the similarity by a formula based on probability theory rather than dot-products
in vector space (Jones et al., 2000). The model assumes that sim(q, d) is represented by a
conditional probability distribution P (R|q, d) where the relevance R can be either 1 (relevant)
or 0 (irrelevant).

Another model based on probability distributions are language models for IR (LMIR). In
the basic LMIR, sim(q, d) is represented by a conditional distribution P (q|Md) that expresses
the probability of a query q being generated by a language model Md defined by some
document d. An introduction on this topic can be found in Manning et al. (2008, ch. 12).

Ranking

The vector space model (as well as the probabilistic models) returns a score indicating
similarity. If the weighting is constructed in an clever way like with TFIDF, this score
indeed reflects some relevance of one document to another, or of a document to a search
query. In modern information retrieval, this “relevance” notion has to be further refined,
because relevance is not only a (more of less) elaborate method of matching terms. Relevance
can change over time, relevance is dependent on the application and on the type of collection
– in short, calculating a similarity that can be used as a reasonable relevance measure needs
more than just a vector space model and a dot-product.

BM25 is one of those approaches that aim to make the similarity score to better reflect
a relevance measure. However, BM25 still calculates term weights on a given corpus and
keeps them once and for all (as long as the collection does not change). A very well working
solution to estimate importance of web pages is PageRank (Page et al., 1999). PageRank
scores can be used to reorder a list returned by e.g. a vector space model. This way the final
model not only evaluates document similarity but also the importance of target documents.

Adding new modules is the key to make the retrieval process more flexible. Such a module
that optimizes the final ordering of retrieval results is named ranking component. Figure 2.2
illustrates its position in the most simple way to visualize a retrieval pipeline: It starts by
comparing a query to the contents of a document collection. This might happen on a subset
of the collection, e.g. if an indexing is implemented. Then, the system generates similarity or
relevance scores for the candidate documents to finally output the sorted list of documents
(or document identifiers). This ranking component is often quite complex; it can consist of

CHAPTER 2. METHODS 11

Figure 2.2: Function of the ranking component in a (very simplified) retrieval pipeline.

many submodules that are working together in a sophisticated way.

2.2 Learning to Rank

If several modules are combined, the next questions must be how to connect them. A natural
choice to answer this question is to use machine learning techniques and let the system find
the optimal combination by itself. This method has become a key technology in IR systems,
because it can easily incorporate many modules or features and finds the optimal combination
according to the intended purpose of the application.

For example in log files of web search engines, a lot of click-through data is collected,
where the user actively gives feedback which documents suited his information need best.
Evaluating such feedback for ranking of results is a very valuable source to create data for
training an improved ranking system. Joachims (2002) describes how to build a ranking
system based on a support vector machine (Cortes and Vapnik, 1995) that can efficiently
learn a ranking function on partial user feedback.

Machine Learning

Learning to Rank (LTR) is a supervised task, which means we start with an input space
X where the document or feature vectors exist and an output space Y containing labels
or grades. The connection between an input element x ∈ X and the corresponding label
y ∈ Y is given by an unknown joint probability distribution P (X ,Y). The task of LTR is to
estimate or “learn” this probability distribution P (X ,Y).

To asses a quality measure to the estimated probability distribution, the idea is to calcu-
late the risk function R(·), which is the expected loss l(·) with respect to the true probability
distribution P (X ,Y) (Li, 2011):

R(f) =

∫

X×Y

l(f(x), y)dP (x, y) (2.4)

Equation 2.4 applied to training data gives the empirical risk, which is the sum of losses l
over the whole training set:

CHAPTER 2. METHODS 12

R̂(f) =
1

m

m
∑

i=1

l(f(xi), yi) (2.5)

Finding the distribution P (X ,Y) is now reduced to the problem of minimizing the empirical
risk R̂(f). This phase of learning a function is called training and it is conducted on a certain
partition of the whole data set, the training set.

After training, the ranking function is evaluated against a different partition of the data
reserved for testing, the test set. The system basically calls the function f(q, d) with the
document data from the test partition and checks if the ranking function creates the expected
ranking. This phase is called test or testing. In between these two phases are often several
steps where optimal parameters have to be chosen empirically. In serious experiments, these
optimizations must be conducted neither on training nor on test data but on a third partition,
the development set. In some cases, e.g. in the experiments in Chapter 4, a development
set is not available, in which case the training set is used for parameter estimation. Tuning
settings on the test set is prohibitive, because it leads to unreliable results that do not apply
to unseen data.

Optimization Problem

An optimization problem is a mathematically well-known problem and there usually exist
many ways to find a solution. The selection of the appropriate solver depends on the type of
problem, e.g. linear or quadratic, and on the properties of the function and the constraints,
e.g. convex functions and convex sets (Boyd and Vandenberghe, 2004).

As Equation 2.5 is the key to turn the LTR task into an optimization problem, the
question is what are the properties of the function and which are the constraints. For a
start, the general optimization problem (OP) looks like this:

min
f

R(f) (2.6)

This means, we are searching for a function f that minimizes the expected risk R. As we
do not have access to all future data and furthermore this data is not labeled, we assume
that our sample of labeled data is independently and identically distributed (i.i.d.) as the
true distribution P (X ,Y). We can now learn a function f based on the empirical risk and
optimization problem 2.6 becomes minf

1
m

∑m

i=1 l(f(xi), yi).
Assuming our data resides in an arbitrary complex feature space where we can find the

expected ordering, learning to rank usually distinguishes three mutually exclusive approaches
regarding the basic definition of the ranking problem (see e.g. Chapelle andChang, 2011):

1. The pointwise approach treats the ranking problem as a classification, regression, or
ordinal regression problem. The basic idea is to learn parallel hyperplanes that sep-
arate the differently ranked data. To estimate the rank of a given document, it is
evaluated against each of the hyperplanes to find out to which union of halfspaces the

CHAPTER 2. METHODS 13

feature representation belongs. These partitions in feature space define the rank of
the document in question. Although the pointwise approach can be implemented on
practically all known linear models, it is computationally expensive.

2. The listwise approach is probably the most “natural” approach. Here, the idea is
to directly work on lists of ranked documents for training and prediction. The loss
function is thus defined over all documents corresponding to a query. The benefit of
this approach is that the results are easier to analyze as the structure of such groups is
maintained, and it can directly incorporate classic IR measures (see e.g. Section 3.3)
into the loss function. The drawback is that the loss function quickly becomes very
complex and, as IR measures are often discontinuous, the objective function sometimes
cannot be optimized by gradient based techniques.

3. The third strategy is the pairwise approach. The idea behind this approach is to learn
on the order of pairs. The training data for the learning system are pairs of documents
and the goal is to learn a function f that reproduces the original ordering. This is the
approach we follow in this work.

More information together with an extensive analysis of the point- and listwise approach can
be found in Li (2011).

Pairwise Approach in Primal Space

One famous implementation of the pairwise approach is the RankSVM (ranking support
vector machine) proposed by Joachims (2002). We start with the formulation of the un-
constrained objective function for the RankSVM (n = 2) given by Sculley (2009):

min
w

λ

n
||w||nn +

1

|T |
∑

((q,da,ya),(q,bb,yb))∈T

(1−w⊺(da − db) · sign(ya − yb))+ (2.7)

In this notation, (c)+ = max(0, c) so the expression within the sum is actually the hinge-loss
on a single example, w is the vector of parameters to learn, T is a set containing of all
possible tuples of queries q and two documents da and db with their corresponding labels
ya and yb (rank). The parameter λ is called the regularization parameter and controls how
much weight should be given to the n-norm of the weight vector.

It is important to note that two documents da and db that belong to the same relevance
group do not increase the sum as sign(ya− yb) = 0. Furthermore, (da− db) · sign(ya− yb) =
(db − da) · sign(yb − ya) which cuts the complexity of the OP by half.

The optimization problem 2.7 is a (convex) quadratic program (QP) which can be solved
by a variety of algorithms. A few years ago, the standard approach to solve the QP was
to transfer the primal problem into dual space and formulate the dual problem (see e.g.
Schölkopf and Smola, 2002). The main reasons were that duality theory provides a
convenient way to integrate the constraints into the dual problem, and that the dual problem

CHAPTER 2. METHODS 14

can be formulated with dot-products, making it possible to apply kernels (see Section 2.2).
After solving the dual problem, the solution can be transferred back by applying the KKT-
conditions (see e.g. Boyd and Vandenberghe 2004).

Chapelle (2007) showed that the QP of support vector machines (SVMs) (Cortes and
Vapnik, 1995) can be efficiently trained in primal space and that in some cases solutions
are even better because there is no theoretical guarantee that an approximate solution in
dual space is a good approximate solution in primal space.

The formulation of the optimization problem 2.7 is already an unconstrained QP, and
we further notice that if we restrict training to the half of pairs for which f((q,d+), y+) >
f((q,d−), y−), where d+ is a higher ranked document than d−, the sign(·) expression will
always be 1 and can be left out. A final transformation is to treat the regularization expend-
able and what is left is basically a large margin perceptron as proposed by Collobert and
Bengio (2004). For convenience, we define dj = (da

j − db
j) thus the loss for one training

pair (da
j ,d

b
j) can be written as:

lj(w) = (1−w⊺dj)+ (2.8)

Bottou and Bousquet (2008) report that in large-scale settings the strategy of stochastic
gradient descent (SGD) provides efficient training and very good generalization performance.
Sculley (2009) gives a clear formulation of the algorithm for the SGD approach of which
we give a slightly simplified variant in Algorithm 1.

Algorithm 1 Stochastic Pairwise Descent.

1: w0 ← ∅
2: for i = 1 to t do
3: ((qj ,d

+
j), (qj,d

−
j))← GetRandomPair(D)

4: dj ← (d−
j − d+

j)
5: wi ← wi−1 + η∇lj(wi)
6: end for

7: return wt

The function GetRandomPair(D) always returns a more (d+
j) and a lesser relevant doc-

ument (d−
j) with respect to a query (qj). The sampling of documents is done according to

a multipartite pairwise scheme, where pairs are randomly sampled from different relevance
levels as shown in Figure 2.3: pairs are only sampled from r2 ◦ r0, r2 ◦ r1, or r1 ◦ r0.

A further improvement related to magnitude-preserving ranking was suggested byCortes

et al. (2007). They define the hinge rank loss as a natural extension of the pairwise mis-
ranking loss in Equation 2.8. The central idea is to preserve the margin between documents
that belong to rank levels that are not adjacent, e.g. r2 ◦ r0 in Figure 2.3. For the pairwise
misranking loss, this results in:

lj(w) = (bj −w⊺xj)+ (2.9)

CHAPTER 2. METHODS 15

Figure 2.3: Multipartite pairwise ranking with three ranking levels r2,r1 and r0.

Now, the final stochastic subgradient can be easily derived:

∇lj(w) =

{

−xi if w⊺xi < bi
0 otherwise

This step completes the list of required components to build the LTR system.
The training and test procedure of the final ranking system are depicted in Figure 2.4.

In this figure, training instances consisting of queries q, pairs of documents (d+, d−) and
pairs of labels (y+, y−), are sent to the learning system. The learning system estimates a
function f(q, d) based on the statistics of the data. This function, the model, is then used
by the ranking system to evaluate test data, i.e. calculate rankings on previously unseen
query-document pairs (q, d). The ordering given by these predictions is then compared to
the expected ordering to estimate the quality of the model.

Figure 2.4: Pairwise learning to rank approach. Idea adopted from: Liu (2010)

Although SGD looks like a relatively poor optimization technique, Bottou and Bous-

quet (2008) pointed out that the generalization ability of SGD does not depend on the

CHAPTER 2. METHODS 16

training set size but on the number of gradient steps taken. Sculley (2009) examined
the performance of the pairwise sampling approach and showed that efficient SGD learners
reduce training time by orders-of-magnitude with no observable loss in performance. This
makes stochastic gradient descent an excellent training strategy for large-scale learning to
rank.

Regularization

At one point, we have simply discarded the regularization term present in the optimization
problem 2.7 to show the connection between the ranking perceptron we use and the classi-
cal RankSVM. However, regularization is an important technique to tackle the problem of
overfitting. The idea behind regularization is to influence the parameters of the function
(i.e. weights of the vector) in a way that the learned model will not adapt too much to the
training data. Two regularization schemes are frequently used, ℓ1- and ℓ2-regularization.

For the optimization problem 2.7, applying ℓ2-regularization (also known as ridge regres-
sion) means setting n = 2 and using the 2-norm in the first term. This effectively pushes
down larger weights and let smaller weights of w grow during optimization, resulting in a
dense model, i.e. a model with few zero parameters.

The other frequently used scheme is ℓ1-regularization, which was initially proposed as
Least Absolute Selection and Shrinkage Operator (LASSO) by Tibshirani (1996). The
parameter in the optimization problem 2.7 is n = 1, i.e. using the 1-norm in the first term.
This means to push all weights towards 0 regardless of their value during optimization. The
strategy results in a sparse model, a model with only few non-zero parameters. If we apply
this idea to the optimization problem (2.7), the resulting objective function becomes:

argmin
w

1

|T |
∑

(q,d+,d−)∈T

lw(q, d
+, d−) + λ||w||1 (2.10)

Any type of regularization must be carefully adjusted to the underlying task. It can support
the learning task as in Section 5.2, or it can spoil it as in Section 4.2. In our setup, we
evaluated ℓ1-regularization to enforce sparsity of the model. Applying this regularization in
the SGD framework is surprisingly simple. The update step in line 5 of Algorithm 1 with
ℓ1-regularization becomes:

wi+1 = w + η
∂

∂w
(lj(w)− λ

N

∑

i

|wi|)

The only difficulty of getting a non-differentiable weight in the case wi = 0 can be solved
by setting a subgradient. However, there are many ways to implement ℓ1-regularization in a
computationally more efficient way. Here, we only demonstrate how the gradient step works
in principle, but for a more detailed discussion, see e.g. Tsuruoka et al. (2009).

One final note on the regularization parameter λ: finding the right regularizer is expensive
because the space of possible λ-settings has to be searched extensively, usually in log space.

CHAPTER 2. METHODS 17

However, approaches for automatic regularization exist, e.g. Obozinski et al. (2010), but
implementing these ideas had to be moved to future work.

Kernels

In the machine learning framework, the basic assumption is that data contains some hidden
pattern and certain methods are able to extract these patterns. Data is represented by
features, or in other words, data is projected into a feature space, as with documents that
are projected into a vector space.

The idea of having a feature representation that is the projection of some data into a
feature space is very useful. This abstraction enables the use of alternative representations
of data, for example when data is mapped into a not so apparent, probably very high
dimensional feature space. A feature map from input space X into the feature space H is
be defined by:

Φ :X → H
x 7→ x := Φ(x)

Having such a feature map, the kernel is the dot product in feature space:

k :H×H → R

k(x, x′) = 〈Φ(x),Φ(x′)〉H (2.11)

This is basically the idea: Kernels calculate dot-products in a feature space. The exceptional
property of kernels is that although they work in a feature space, the mapping into this space
is hidden behind the kernel function and these can be applied to any algorithm that is based
on dot-products, e.g. linear classifiers such as perceptron (Rosenblatt, 1958) or SVM, but
also kNN-classifiers. Exchanging the dot-product by a kernel function and have the classifier
work in a different feature space is called the kernel trick.

To complete the kernel definition in 2.11, 〈·, ·〉H must respect the following properties to
be an inner product:

1. Bilinear form: 〈α1f1 + α2f2, g〉H = α1〈f1, g〉H + α2〈f2, g〉H
2. Symmetry: 〈f, g〉H = 〈g, f〉H
3. Positive definiteness: 〈f, f〉H ≥ 0, and 〈f, f〉H = 0 iff f = 0

Based on the inner product, we can now define a norm ||f ||H =
√

〈f, f〉H. Spaces in which
an inner product and a norm exist are called Hilbert spaces1.

1We are simplifying the definition of Hilbert spaces here. For a precise definition, see e.g. Hunter and
Nachtergaele (2001).

CHAPTER 2. METHODS 18

The reproducing kernel map is a special mapping that assigns to a point x ∈ X a kernel
function k(·, x):

Φ :X → R
X

x 7→ k(·, x)
In other words, with k(·, x) having the dimensionality of |X|, each pattern is represented by
its similarity to all other points in X .

The idea is now to create a feature space associated with Φ as shown in Schölkopf and
Smola (2002). The first step is to turn images of the input patterns under Φ into a vector
space. This is accomplished by creating the linear combination

f(·) :=
m
∑

i=1

αik(·, xi)

with m ∈ N, αi ∈ R and data points x1, . . . , xm ∈ X . The next step is to define a in-
ner product 〈f, g〉H :=

∑m

i=1

∑m′

j=1 αiβjk(xi, x
′
j), where additionally m′ ∈ N, βi ∈ R and

x1, . . . , xm′ ∈ X , and show that it respects the properties of inner products listed above.
Then, based on these definitions, Schölkopf and Smola (2002) prove that the con-

structed kernel has the reproducing kernel property and thus k satisfies:

〈f, k(·, x)〉H = f(x) (2.12)

Equation 2.12 is called the reproducing property and k is here the representer of evaluation.
In particular, for any x, x′ ∈ X

k(x, x′) = 〈k(·, x), k(·, x′)〉H
Thus, with k being a dot-product between feature maps, Φ(x) = k(·, x) is indeed a valid
feature map and a reproducing kernel is a valid kernel according to the original definition
given in 2.11.

As these reproducing kernel Hilbert spaces (RKHS) are spaces of functions such that all
evaluation functionals are continuous, they provide a powerful framework for the problem of
learning from data.

2.3 Word Features

In the classic vector space model for information retrieval reviewed in Section 2.1 a dot-
product is calculated on document vectors to determine the similarity between two docu-
ments. The result of this calculation is independent from the application, as there are no
tunable parameters that can influence the result. The learning to rank approach adds a
machine learning component that enables the system to adapt to certain information needs.
For both systems, the inputs are vectors that contain word frequencies as dimensions.

CHAPTER 2. METHODS 19

Quadratic Word Features

The basic LTR approach presented in Section 2.2 can be seen as learning a re-weighting of
frequencies if it is applied to word vectors. These models, from TFIDF to the basic LTR
approach based on word vectors, only work on matching words because non-matching words
cannot contribute to the similarity score. Another implication of these bag-of-words models
is that words are generally considered independent, an assumption that firstly downsizes the
problem and secondly works surprisingly well in many NLP tasks. Especially with limited
resources, this form of simplification was absolutely necessary until a few years.

Although successful, this independence assumption is definitely wrong in the context
of word meanings. Words can have similar or opposite meanings, and often the context
disambiguates the meaning of another word. As computers nowadays have access to con-
stantly growing resources, it became possible to take more and more context information
into account. One idea is to move from single word features to word pair features.

Consider a corpus of l documents and a vocabulary D, the expression {dt}lt=1 ⊂ R
D

denotes the set of documents and q ∈ R
D is a query. In analogy to the model described by

Equation 2.1, the jth component of q or d indicates the frequency of the word j, which can
be raw counts or TFIDF values, and the whole vector is usually normalized to unit length.
Using these definitions, we will now describe our basic model.

Basic Model

The basic model we consider is similar to the one initially proposed by Bai et al. (2010):

f(q,d) = q⊺Wd =

D
∑

i,j=1

qiWijdj (2.13)

Here, the score f(q,d) expresses the relevance of a document d to a query q.
Similarly to the construction of feature maps for kernels in Section 2.2 which transform

data from the sample space into the feature space, the following joint feature map projects
query-document pairs into a joint feature space:

Φ((i−1)D+j)(q,d) = (q⊗ d)ij = (qd⊺)ij (2.14)

With s = ((i− 1)D+ j) being the dimension correlated to a certain word pair in the feature
space, and qd⊺ being the outer product of the two vectors, the basic model can be rewritten
as:

f(q,d) = w · Φ(q,d) (2.15)

This way, the matrix-vector and vector-vector operation simplifies to a standard dot-product
and all methods and techniques described in Section 2.2 can be applied to this simplified
formulation of the basic model.

CHAPTER 2. METHODS 20

Properties

The basic model has some interesting properties: it can capture polysemy and synonymy,
and it captures dependencies between words, e.g. a word pair with high similarity can be
discounted with a negative entry if one of its words happens to occur with another word that
disambiguates the meaning. Assuming the documents are not too long, the model presented
can efficiently learn such correlations from data.

However, there are problems regarding computational cost. Although Moore’s law is still
active (with some minor modifications of its original form) and the number of transistors
is doubled every 18 month, the amount of memory required for this model is infeasible at
the moment. Even for small corpora like the 20newsgroup corpus (see Section 4.1) the
vocabulary size, i.e. the number of different types, reaches D = 125, 000. The model we
propose uses a matrix of size D×D which results in a weight vector of size 62.5 GB assuming
single precision, and twice the size for double precision. Today’s computers can handle this,
but on more complex corpora such as Wikipedia2, the number of different tokens quickly
exceeds millions and the space requirements grow up to multiple terabytes. This data has
to be kept in random access memory, otherwise learning and evaluating the model will be
slowed down by multiple orders of magnitude.

The high demands for resources and computational power require special solutions. As
the query and document vectors are usually sparse, they can be represented in a compressed
way in memory. However, the weight vector w cannot be easily compressed in the same way
because during learning the vector is constantly changing and any compression technique
will add a large overhead to the process.

During evaluation, computations can be reused as the system needs to calculate the
expression q⊺Wd for each candidate document d, so it is advisable to calculate repeating
terms only once. Bai et al. (2010) propose calculating the vector v = q⊺W once for each
query, and thus f(q,d) = v⊺d simplifies to a simple dot-product of vectors of dimension D.

2.4 Hash Kernels

Kernels are a very powerful mechanism but there are issues. One problem is that using
complex kernels, e.g. by combining multiple kernels to a new kernel, will eventually make any
data linearly separable, but in the worst case this leads to overfitting because for example in
an SVM, every data point might become a support-vector (Schölkopf and Smola, 2002).
Another problem for using large expansions of kernels is runtime performance.

The definition of a kernel has been given in Section 2.2. In the following, we denote the
domain of observations X and assume that H is a Reproducing Kernel Hilbert Space with
kernel k : X ×X → R.

2http://www.wikipedia.org/, accessed 24.09.2013

http://www.wikipedia.org/

CHAPTER 2. METHODS 21

Randomized Approximation

To address the two problems mentioned above in the introduction of this section, one line
of research is to keep the kernel simple. According to Shi et al. (2009), the idea of approxi-
mating an expansion to get more desirable computational properties has been independently
proposed by Kontorovich (2007) and Rahimi and Recht (2007). Let c ∈ C be a random
variable with measure P, and let φc : X → R be functions indexed by c. Then, a kernel of
the form

k(x, x′) = Ec∼P (c)[φc(x)φc(x
′)] (2.16)

can be approximated by sampling a set C = {c1, . . . , cn} ∼ P and expanding

k(x, x′) =
1

n

n
∑

i=1

φc(x)φc(x
′)

This is equivalent to approximating the feature map φc(x) by φ(x) = n− 1

2 (φc1(x), . . . , φcn(x)).
It is further possible to get Chernoff bounds for large deviations between k(x, x′) and k(x, x′)
if φc(x)φc(x

′) is bounded, i.e. φc(x)φc(x
′) ∈ [a, a + r] for all c, x and x′. Shi et al. (2009)

point out that this strategy has widespread applications, from which we name only three:

• Kontorovich (2007) shows how to design kernels on regular languages by sampling
from the class of languages.

• Schölkopf and Smola (2002) construct an empirical kernel map with C = X , P(c) =
P(x), and utilizes a kernel function κ with the property φc(x) = κ(c, x). In other words,
the sample points ci are placed on the training data.

• An early instantiation of Equation 2.16 was proposed by Watkins (2000) for the pair
HMM kernel k(x, y) = P (x, y|c). In this case, X and C are domains of biological
sequences, where the probability of observing x given the ancestor c is expressed by
φc(x) = P (x|c).

The last example illustrates a problem of random approximation: If φc(x) contains only
few significant terms, i.e. c is rarely an ancestor of x and x′, the number of samples to
obtain a good estimate becomes very large. Thus, the approximated feature map φ has to
be reduced further.

Locality Sensitive Hashing

In locality sensitive hashing (LSH) the basic idea is to project data into a low-dimensional
binary (Hamming) space. The values embedded in this space are generated by multiple hash

CHAPTER 2. METHODS 22

functions h1, . . . , hn, from which each must satisfy the locality sensitive hashing property
(Kulis and Grauman, 2012):

Pr[h(xi) = h(xj)] = sim(xi,xj)

Here, sim(x,y) ∈ [0, 1] is the similarity function to be approximated by LSH.
Charikar (2002) proposes a hash function that is based on rounding the product with

the normal vector of a random hyperplane:

hv =

{

1 if v⊺x ≥ 0
0 otherwise

The hyperplane defined by v is sampled from a multivariate Gaussian N (0, I) with I being
the identity and 0 being the null matrix allowing to obtain Chernoff bounds.

A different perspective is given by Indyk and Motwani (1998): the concentration of
measures due to the locality sensitive hashing property enables the dot product 〈φ(x), φ(x′)〉
to be approximated by

∑n

i=1〈vi, φ(x)〉〈vi, φ(x′)〉. Both problem formulations show that LSH
is again an application of random projections combined with hash functions.

Kernel Approximation

Shi et al. (2009) design a kernel based on pairwise independent hash functions h : I →
{1, . . . , n} indexed by the set I. Furthermore, they state φi(x), i ∈ I must be computed
efficiently. Their definition of the hash kernel is then:

k(x, x′) = 〈φ(x), φ(x′)〉 with φj(x) =
∑

i∈J ;h(i)=j

φi(x) (2.17)

This means that all coordinates i of φ(x) for which the hash function h(i) generates the same
number j are mapped to the same coordinate φj(x). We will apply this idea in the context
of limiting the parameter space and reducing the feature space.

Information Loss

A natural concern about hashing in machine learning algorithms is the obvious fact that
hash collisions harm performance. The birthday theorem helps to estimate how critical the
problem is: assuming a hash function that maps into a space of size n, the probability of a
collision reaches 0.5 with

√
n features. Thus, although depending on the number of feature,

collisions are relatively likely and each collision means information loss.
Having redundancy in features helps in many cases to avoid information loss. Shi et al.

(2009) examine a form of explicit redundancy, where a feature is actually mapped to multiple
values (buckets) in the space of size n. Their central observation is that information is lost
only when all hashed features collide with other features. Thus, the logic approach would
be to increase n by a factor c and then “duplicate” each feature c times.

CHAPTER 2. METHODS 23

However, the authors show that the probability of information loss can even go down
when n is constant and c increases. For this to see, they take a random function mapping
that maps l features c times into a space of size n and observe its behavior for all information
loss functions and distributions on n features. Then the probability over the random function
of having no information loss is bounded by:

1− l[1− (1− c/n)c + (lc/n)c]

The authors give the example of l = 105 and n = 108: with standard hashing (c = 1),
the bound is extremely high and estimations based on the birthday paradox show that the
probability of having a collision is almost certain. If c = 2, the probability of having a collision
drops to 1− 0.596 = 0.404, and with c = 3, it reaches a probability of 1− 0.9883 = 0.0117.
The exact proof of the bound is given in Shi et al. (2009).

2.5 Feature Selection and Reduction

Feature selection is a very important task: the goal is to select subsets of features that are
useful to build a good system. Thinking of the generalization capabilities of the learned
system, it is not advisable to use all features because such systems tend to overfit (see, e.g.
Murphy 2012). Occam’s Razor, a general principle that has proven to be valid across many
research fields, provides another justification for encouraging simplicity: “models should not
be more complex than necessary to explain the data” (von Luxburg and Schölkopf,
2011).

Selection of useful feature subsets has recently become a very important research field
in the area of machine learning. Modern applications like complex text processing or gene
expression array analysis involve many variables. Their number usually exceeds hundreds of
thousands and can even reach billions. Two developments are the motor for this :

• availability of large amounts of data

• increased computing performance

Although the latter seems to decrease the need of feature selection, in fact it is vice-versa:
as pointed out in the previous section, the increased computational power nowadays enables
methods and analyses that were not possible a few years ago. An example is the basic
model (see Section 2.3) which cannot be directly applied to a full size vocabulary on today’s
computers, at least not in a non-distributed setting.

Forward and Backward Feature Selection

Not all features are equally important: features can be relevant or irrelevant with respect to
a certain task. They can be dependent or independent, and sometimes the combination of
multiple features is needed to achieve good results. The approach of ranking all potential

CHAPTER 2. METHODS 24

relevant variables and selecting the top-k is sometimes suboptimal, because even redundant
variables can be important for building a certain classifier (Guyon and Elisseeff, 2003).
The goal is to select subsets of features that are useful to build a good classifier. Traditionally,
approaches for variable selection are divided into two groups:

• Filters select variables by ranking them using various correlation coefficient related
metrics (Kononenko 1995 and Forman 2003). They are model independent and are
usually applied as a preprocessing step to model selection and learning.

• Wrappers select subsets of variables according to the usefulness to the predictor. They
treat the predictor as a black box and search for the best features in the space of
all subsets. Since this problem is NP-hard, wrappers also suffer from computational
complexity (Radivojac et al., 2004).

While filters are relatively easy to apply, they can cause problems. Intuitively, a corre-
lation criteria seems to be a reasonable strategy to identify redundant variables, however,
Guyon and Elisseeff (2003) construct multiple cases that illustrate the problems of this
approach.

Figure 2.5 illustrates two cases where a variable is useless by itself but useful with others.
Each case is represented by four squared areas, where the top-left and bottom-right squares
are axis-projections of the datasets in the top-right and bottom-left square. Actually both
projections represent the same dataset mirrored at the diagonal.

−5 0 5−2 −1 0 1 2

−5

0

5

−2

−1

0

1

2

−0.5 0 0.5 1 1.5−0.5 0 0.5 1 1.5

−0.5

0

0.5

1

1.5

−0.5

0

0.5

1

1.5

Figure 2.5: Two artificial examples where features are relevant that are individually irrele-
vant. From: Guyon and Elisseeff (2003).

In the left example of Figure 2.5 the means for one direction are clearly separated (bottom-
right), for the other direction the datasets overlap completely (top-left), suggesting that the

CHAPTER 2. METHODS 25

latter variable is useless. However, a classifier is able to find a perfect separation in 2-
dimensional space, whereas a 1-dimensional separation would be imperfect in this case. The
right example is the famous XOR-case, where both variables seem to be completely useless,
however, the combination enables classifiers with kernels to find a perfect separation.

There are more examples in the original paper, but these two are enough to illustrate
the dangers of removing variables based on their usefulness. The possible price to pay is lost
information, which can have a severe influence on quality of the predictor. The two examples
are synthetic, so the impact on real-world tasks might be less. We will examine the effect of
several basic filter methods in Chapters 4 and 5.

Wrappers, as defined by Guyon and Elisseeff (2003), have a different problem: com-
putational complexity becomes infeasible if the feature space is large and the subset space is
searched in a “brute force” manner, i.e. trying out all possible permutations of feature com-
binations. However, applying search strategies for feature selection can be beneficial in both
reducing computational complexity and increasing generalization capability of the model,
because limiting the number of parameters automatically reduces the danger of overfitting.

Embedded Methods

The wrapper algorithm treats the predictor as a black box. In contrast to this, the feature
selection technique can be directly build into the predictor and be applied during train-
ing. Such approaches are called embedded methods as they are not wrappers by the given
definition, although the result is comparable (Lal et al., 2006).

A common technique is to formulate an objective function consisting of two components
that compete with each other :

1. reducing training error, i.e. the goodness of fit to be maximized

2. ensuring sparsity of the model, i.e. the number of variables to be minimized

This correspondence is formally derived and examined in detail by Weston et al. (2003).
The authors propose a model were the ℓ0-norm, i.e. the total number of variables, is ap-
proximated by a simple modification of the standard Support Vector Machine (Cortes and
Vapnik, 1995) that applies a re-scaling step of the data during training.

Algorithms that iteratively increase the number of variables are said to apply forward
feature selection. Respectively, algorithms that first consider the whole set of features and
then iteratively decrease the number do backward feature selection. Both types of algorithms
are usually implemented in a greedy fashion, i.e. they increase or decrease the number of
variables in each step.

One very simple way to establish feature selection is to use an ℓ1-regularizer for the
learning objective (see Section 3.2). Chen et al. (2010) examined the effect of several
variants of a linear model on different information retrieval tasks. Their best performing
model uses a ℓ1-regularizer in combination with a refitting of model weights. However, Bi

CHAPTER 2. METHODS 26

et al. (2003) showed that for certain applications it is sufficient to apply a ℓ1-norm regularizer
to set enough weights to zero to increase generalization capability of a model.

Limiting Parameter Space

Limiting feature space is an efficient way to reduce model complexity, but memory complexity
can also be reduced more directly by limiting the number of variables of the model. Instead
of allocating a possibly very large parameter array for the model in memory, the space
requirements can be reduced by applying a hash function.

Hashing is a technique to map a large (possibly infinite) input set to a smaller (finite)
output set. The underlying assumption is that the input space is relatively sparse and the
finite number of elements can be mapped into a fixed size table. The mapping itself is
calculated using a hash function, which reads an input key and outputs an index in the
table. Ideally, the size of the table is equivalent to the number of elements and each position
in the table holds exactly one element, meaning that the hash function is injective (“perfect
hashing”). Usually, the mapping is one-way as multiple elements are mapped to the same
position and additional overhead is required to keep track of keys and values, e.g. by using
linked lists for hash table entries.

As explained in Section 2.3, the memory for storing the learned matrix or an equivalent
weight vector is quadratically dependent on the vocabulary size. One way to reduce the
memory requirement is to apply a variation of the kernel trick (see Section 2.2), where a
high dimensional input vector x ∈ X is mapped to a lower dimensional feature space R

m

with φ : X → R
m. Thus, the parameter vector lies in the m-dimensional space as opposed

to the original input space. Weinberger et al. (2009) call this the hashing trick :

k(x, x′) = 〈φ(x), φ(x′)〉 with φj(x) =
∑

i∈J ;h(i)=j

φi(x) (2.18)

Thus, all coordinates i of φ(x) for which the hash function h(i) generates the same number
j are mapped to the same coordinate φj(x). Shi et al. (2009) show that this kind of hashing
preserves information in the same way as randomized projections for locality sensitive hashing
(Gionis et al., 1999).

Filter Methods

For now, we have explained the idea behind embedded (wrapper) methods for feature se-
lection. The other group of selection methods are filters, which are usually applied in a
preprocessing step and are thus independent from the learning method. In our setup, the
basic strategy is to filter the input space by applying certain methods, that usually aim at
reducing the number of distinct words in the collection.

CHAPTER 2. METHODS 27

Limited Vocabulary

Limiting the vocabulary by keeping only the top-k most frequent words in a corpus is the
most simple approach to reduce the input space. Throughout this thesis, we use the term
limited vocabulary equivalently to reduced dictionary.

Although rare keywords, i.e. words with high TDIDF value, are especially useful for
information retrieval tasks, experiments have shown that the information loss by removing
each word below a cutoff count in a corpus is not as dramatic as it seems (see e.g. Section 5.2).

The works of Bai et al. (2010) and Chen et al. (2010) both examine basically the model
presented in Section 2.3, and the authors use a limited vocabulary to control parameter
space. Our main motivation is similar: controlling the size of the weight vector and thus
reducing collisions of weights (see Section 3.1). Depending on the task, we experimented
with reduced dictionary sizes of 10,000 (monolingual) and 30,000 (cross-language).

Please note that vocabulary in our sense differs from the linguistic definition: every string
separated by spaces is counted, including punctuations, numbers, and special characters such
as brackets or dashes.

Correlated Feature Hashing

The basics of feature hashing were explained in Section 2.4. This idea can decrease the
memory requirements of the model substantially (See Section 3.1). The model can also be
extended to features of query-document pairs in the following way (Bai et al., 2010):

φj(q, d) =
∑

(s,t)∈{1,...,D2;h(s,t)=j

φs,t(q, d) (2.19)

Here, (s, t) is a single word pair between query and document and φs,t(·) indexes this word
pair, for example φs,t(·) = φ(s−1)D+t(·). This basically means features share weights if their
hash index is the same, i.e. h(s, t) = h(m,n) implies Wst = Wmn. The problem of this
approach is that collisions in the hash table are pseudo-random and result in sharing weights
between pairs that usually have nothing in common.

At the same time, many works exploit collisions in hash tables as a useful property. For
example, in locality sensitive hashing (Gionis et al., 1999) the central idea is to use a hash
function, where similar elements are hashed to close buckets. As Charikar (2002) shows,
there is no locality sensitive hash function corresponding to DICE coefficient (Dice, 1945)
and Overlap, which are two measures for set similarity often used in information retrieval
tasks. Regarding to his work, a very interesting approach is to actually learn such a hashing
function with techniques for LSH, e.g. as described in Shakhnarovich et al. (2003).

In this work, we examine non-LSH mappings based on DICE coefficient. Bai et al. (2010)
describe the construction algorithms for a mapping of words such that collisions occur for
words with close meaning. This is accomplished by first generating a list of D words sorted
by frequency. Then for each word i = 1, . . . ,D a variant of the DICE coefficient for words as
defined by Smadja et al. (1996) is calculated for the whole reduced vocabulary j = 1, . . . ,F :

CHAPTER 2. METHODS 28

DICE(i, j) =
2 · cooc(i, j)

occur(i) + occur(j)
(2.20)

Here, occur(i) is the number of occurrences of word i in the whole collection. The expression
cooc(i, j) is the number of times word i occurs together with word j. However, it is not clear
at which level (e.g. sentence or document) co-occurrence is evaluated. It is reasonable to
think of co-occurrence as a binary predicate: either two words occur together at a certain
level or they do not. A question arises if words occur multiple times within the area of
interest: how should multiple co-occurrences be handled in the most efficient way?

Melamed (1998) analyses different counting methods for the task of word co-occurrence
in parallel texts. Although the setting is different, the two counting schemes he outlines are
also applicable in our case:

cooc(u, v) = min(e(u), f(v)) (2.21)

cooc(u, v) = max(e(u), f(v)) (2.22)

The intuition behind Equation 2.21 is that co-occurrence is the number of times complete
pairs between u and v can be extracted, while Equation 2.22 expresses how often a term u
was observed in the vicinity of term v. These counting types can be understood as creating
unions and intersections on multisets, while the binary variant initially explained works on
normal sets.

This gives a list of F co-occurring words for a given word. By sorting the list by descend-
ing DICE score, the list contains a mapping of a word to correlated words where more corre-
lated entries are higher in the list. Following Bai et al. (2010), we define Sp(i) ∈ {1, . . . ,F}
as the index of the pth largest DICE score DICE(i, Sp(i)). Applying 2.19 results in the
mapping:

h(m,n) = (S1(m)− 1)F + S1(n) (2.23)

Or, in other words, a pair (m,n) ∈ D2 is mapped into a matrix of size F2.
This approach is called correlated feature hashing and it effectively reduces the feature

space from D2 to F2. A very useful property of this method is that F can be adjusted to
the needs for complexity and to available resources.

Although this method seems to delete less information than limiting the vocabulary, the
loss of content depends on the mapping. If this mapping is computed on a smaller corpus,
singletons3 are likely to have co-occurring words with the same DICE score, so there exists
a “plateau” of identical scores at the top. According to Equation 2.23, the algorithm will
select only the first word while the order depends on the data structure implemented to
organize the mapping in memory.

3Words that occur only once in the whole corpus.

CHAPTER 2. METHODS 29

As shown in Section 2.4, Shi et al. (2009) suggested to approximate a kernel by using a
sum of multiple feature maps based on hash functions as in 2.17 for the dot-product. They
prove that this construction can actively reduce the probability of information loss that
occurs when entries in the hash table collide (see Section 2.4).

Given the definition 2.18 and the mapping presented in 2.23, it is straightforward to
extend this idea to the feature map construction of hash kernels. Instead of selecting the
single word with the highest DICE-score and apply this to Equation 2.19, one would use the
top-k words to create k hash functions (mappings):

φj(q, d) =
∑

p=1,...,k

φs,t(q, d) (2.24)

(s, t) ∈ {1, . . . ,D2 : hp(s, t) = j

Analogous to Equation 2.23, the pth hash function is then defined as:

h(m,n) = (Sp(m)− 1)F + Sp(n)

Bai et al. (2010) call this approach correlated feature hashing with multiple binning and it
has the same reduction capabilities as correlated feature hashing. Additionally, it reduces
the problem of information loss by hash collisions by implementing the hash kernel idea
explained in Section 2.4.

Final Word on this Section

We end this section on methods for feature selection and reduction and the ideas we plan to
apply by pointing out that we were only able to present a very limited section of this field.
Feature selection is an active research area where many important developments happen at
the moment.

This introduction in aimed at giving an overview on the methods to explain the impor-
tance of this difficult task and to better understand the problems involved in it.

30

Chapter 3

Training and Test Framework

This chapter contains descriptions of the technical solutions and algorithms involved in our
work. We will first explain in Section 3.1 what the challenges are regarding complexity
during the training and testing phase, and how we use modern parallelization techniques in
our setup. Section 3.2 contains descriptions of our implementation to create and preprocess
data in the various ways we need for learning and evaluation. We also explain the tool we use
and how it can be applied to our problem. We finalize this chapter with Section 3.3, where
we describe different retrieval metrics and the significance test we use during evaluation.

3.1 Complexity

Using quadratic word features is a special challenge for both training and testing algorithms.
According to the law of Herdan-Heaps (Heaps, 1978), the number of words in any language
grows unbounded with the size of the text collection:

VR(n) = Knβ (3.1)

Here, VR is the number of distinct words in the vocabulary, n is the size of the collection,
and K and β are values empirically estimated.

Following this law, even in medium sized corpora the vocabulary can easily exceed a
million entries, making the creation of quadratic word features problematic: for example,
Bai et al. (2010) counted 2.5 million words in 1, 828, 645 English articles of their Wikipedia
corpus, resulting in 6.25 · 1012 entries in the parameter vector. Assuming single precision
floating point numbers (4 bytes), this would consume 25 Terabytes of random access memory
(RAM), and twice as much in the case of double precision numbers. Although this amount
of memory is available for distributed systems, the nature of the learning task normally
requires the weight vector to be kept completely in memory on a single machine.

However, the hashing trick (see Equation 2.18) enables in principle an arbitrary sized
parameter vector, where the implied information loss can be controlled by the overload

CHAPTER 3. TRAINING AND TEST FRAMEWORK 31

Type latency order of size [bytes]
Processor registers ≈ 1 102

Level 1 cache few cycles 104

Level 2 cache 10 to 50 cycles 105

Level 3 cache higher than L2 106

Main memory hundreds of cycles 109

Disk storage millions of cycles 1012

Table 3.1: Comparison of latency for different types of computer memory.

factor of the virtual hash table. A state-of-the-art implementation of a hash function is
MurmurHash1, of which different versions for various bit sizes (32/64/128) exist.

A reasonable compromise between speed and size is the version that calculates 32-bit wide
hashes, because the application interprets these hash values as addresses of parameters.
The next step with 64 bits will need twice the memory for each pointer and will lead to
significantly lower computing performance, while a certain amount of bits are mostly useless2.
Using 32 bits results in 232 ≈ 4.295 · 109 entries in the hash table. In the above example,
this would result in an overload factor of approximately 1, 455 for the hash table. As this
is the amount of average collisions per bucket, this setting would make it impossible for the
learner to extract useful information.

Thus, the main strategy must be reducing the feature space while trading-off the following
two aspects:

• Controlling model complexity, i.e. keeping the overload factor low

• Controlling feature representation, i.e. filtering with minimized information loss

A different aspect of memory complexity is illustrated in Table 3.1. The strong connection
between memory size and access performance shows that there is another reason to keep a
model small: going from L1-cache to main memory increases access latency by several orders
of magnitude, so it is important to keep an eye on data structures and model sizes to achieve
a system that performs well with respect to computation time. However, optimization of
algorithms on the hardware-level is a difficult, time-consuming, and very specialized task.
In the end it is unrewarding, because the better the optimization, the more it is specialized
strictly on a single specific task.

It is thus necessary to establish a feeling about trading off the amount of time for analyzing
a problem and optimizing the code against the time won by this optimization step. Having
the memory wall (see Table 3.1) in mind, it can often help to optimize execution time by very
simple yet effective measures. Keeping often accessed parameters within a certain address

1http://murmurhash.googlepages.com/, accessed 06.09.2013
240 bits are enough to address more than 1012 buckets, an amount that is rarely used up even on bigger

compute servers.

http://murmurhash.googlepages.com/

CHAPTER 3. TRAINING AND TEST FRAMEWORK 32

range will speed up frequent accesses by many orders of magnitude. Moving from hash tables
to vectors whenever possible can have a great impact on execution time because of built-in
memory cache organization and prefetching strategies.

Training and Test

The main factors that influence the resource requirements for the basic model 2.13 are data
size and the size of the parameter matrix. The learning strategy we follow is online learning,
so data is generally processed sequentially. For testing, we evaluate the data document by
document against all queries and calculate scores on the different pairs.

Training

Our approach relies completely on online learning, so all data is kept on disk and is processed
sequentially. As a consequence, we move the process of sampling random data pairs from
the learning tool to a utility that creates the training data on disk.

This strategy has several benefits: we heavily decrease the resource requirements during
learning. By avoiding to load large amounts of training data into RAM and generate random
pairs, we can use the additional memory resources to increase model complexity and/or learn
more models in parallel. If the training data resides as files on disk, comparing different
settings is very easy: many models running under different configurations can work on the
same data in parallel. The SGD-approach means that besides the model (i.e. the parameter
vector) a learner only needs to keep a pointer to the position in file containing the training
data. Finally, using a common training file ensures that all instances of the tool work on
the same “randomized” training data, so the results are better comparable even for smaller
training sets. The only drawback of this method is that the off-line data creation gets more
complex, bu this is a one-time action.

A critical aspect not mentioned yet is data creation for the quadratic model. Even
short vectors with 200 features will grow to a size of 40,000 after quadratic expansion.
A normal document can easily contain 1,000 words, which will expand quadratically to
1,000,000 features. Thus, it is not desirable to expand the vectors on disk. Fortunately,
the learning tool described in Section 3.2 addresses this problem by doing the quadratic
expansion on-the-fly.

To finally get the training data on disk, we need to establish a construction scheme that
simulates the SGD-idea described in Algorithm 1. A brief overview of the required steps to
create the appropriate training instances is given in Section 3.2.

Test

Testing implies basically the same computational problems as training complexity with the
difference that we do not need to simulate a random selection of pairs as in SGD. The näıve

CHAPTER 3. TRAINING AND TEST FRAMEWORK 33

approach to generate testing data for our evaluation would be to create all possible pairs of
queries and documents on disk and let the algorithm work his way through the list.

This is not desirable, because we would have to create a quadratic number of possible
pairs on the filesystem. This quickly reaches sizes that are difficult to handle. The solution
is to use the on-the-fly approach for the test data: the content of this data are queries and
documents, combined in a way that each query-document pair is evaluated by our model
and returns a score. It is thus much easier to take the list of query vectors and the list of
document vectors and create pairs on-line during evaluation.

A problem might arise when the document and the query collection do not fit into
memory, but even then the idea can be combined with reading queries and documents from
disk. This method has another positive aspect: it can be easily parallelized on distributed
systems, as the MapReduce approach described at the end of the section shows.

Parallelization Strategies

Modern algorithms and implementations have to be analyzed with respect to their scalabil-
ity. The previous section showed that there are challenges in memory and computational
complexity involved in our approach. This section will give a brief technical overview about
the main architectures for parallelized algorithms and which techniques can be applied in
our implementation.

We will only talk about one class of computer architectures defined in the taxonomy
by Flynn (1972), multiple-instruction-multiple-data (MIMD) machines. There is one more
classification that is interesting with respect to modern computer hardware, the single-
instruction-multiple-data (SIMD) class. SIMD machines are today mostly graphics process-
ing units (GPU), sometimes specified as general purpose GPUs (GPGPU) to emphasize their
use across graphics applications. Although they provide enormous computing power, their
application was out of the scope of this work.

Shared Memory Systems

Shared memory (SHM) systems are the most common group of computers today. Basically
every computer today has a Processor (CPU) with multiple cores that are able to execute
programs truly in parallel.

The memory logic of such a system is illustrated in Figure 3.2 (left). Each processor (P)
has access to all memory (M) available in the system. Access to a memory location is cached,
i.e. copied to a very fast cache-memory (C), that speeds up repeated access to the same
location by multiple orders of magnitude (see Table 3.1). This usually works well because
program and data have a high degree of locality, which means they access the same program
parts or data structures many times (e.g. running a loop or iterating over an array) .

For SHM, this strategy becomes problematic when data is written to memory, because
existing copies of the changed memory locations in all the caches must be invalidated. This
is accomplished by protocols that help monitoring memory changes and invalidating cache

CHAPTER 3. TRAINING AND TEST FRAMEWORK 34

entries if necessary. However, when multiple CPUs write to the same memory location,
the efficiency of the cache, i.e. the factor by which the cache is faster than main memory,
converges to 1 (cache thrashing). This is one of the problems that define the physical
boundaries for building SHM systems. The largest SHM systems today combine up to 128
cores, but the price/performance ratio is 20 times higher than for low-end server hardware
(Barroso and Hölzle, 2009, p. 32).

SHM systems are very easy to program, because they provide one shared view on the
data. For the machine learning application we use, this does not help much: if we update
the weight vector in parallel, cache thrashing occurs and at some point the parallel learning
process will be slower than running the process on a single core.

There are two small applications where the SHM approach is actively used by us: First,
we use OpenMP v3.0 (OpenMP Architecture Review Board, 2008) to sample training
data in parallel. Reading from memory does not imply any cache coherence problems, and
OpenMP is very simple to use: the programmer basically writes a sequential program and
marks certain sections of the code which are to be parallelized, and the compiler does the
rest. However, the result is rarely optimal and hand-crafted code using low-level functions
of the PThread library (Narlikar and Blelloch, 1998) can perform much better, at the
cost of non-portability and increased effort for development and debugging. Second, the task
of data preparation, especially reading from disk and parsing the data, can be moved to a
separate process. This does not give a huge increase in processing performance, but the gain
is constant and reliable.

A third application of the SHM approach exists within the Hadoop framework introduced
in Section 3.2. As the SHM is used for faster intra-process communication within the Hadoop
framework, we do not deliberately make use of SHM there.

P C
...

Connection Network

PM C M P C
...

Connection Network

PM C M

Figure 3.1: MIMD computing architectures: shared memory (left) and distributed memory
systems (right).

Distributed Memory Systems

The other strategy to build MIMD systems is to follow a distributed memory (DM) approach.
The basic idea is illustrated in Figure 3.1 (right). The main difference to the SHM idea is
that each computer has its own private memory so processors in the network cannot access
other processor’s data. Working only on private memory, the problem of cache coherence is

CHAPTER 3. TRAINING AND TEST FRAMEWORK 35

non-existent because it cannot happen that a CPU invalidates the cache contents of another
CPU. The drawback is that there is no sharing of data – non-private data must be requested
and received via messaging, which is generally very slow, at least several orders of magnitude
slower than standard memory access.

A very crucial problem in this programming framework is that programs can easily run
into race conditions, e.g. one processor 1 requests a message from processor 2, while pro-
cessor 2 requests a message from processor 1. The system is stalled, the two nodes are in a
“deadlock”. Thus, programming DM systems requires special algorithms and debugging is
extremely difficult.

The standard framework for programming DM systems is the Message Passing Interface
(MPI) (Message Passing Interface Forum, 2009). It provides a system for writing
Fortran77 and C programs that use messages for interprocessor communication. MPI was
invented in the 1990s and is today widely used for programming distributed memory systems.

The underlying strategy for writing MPI programs is different to program SHM systems.
The cost for data exchange is often the limiting factor, so data has to be distributed among
the nodes in a clever way. On one hand, nodes should be able to work independently as long
as possible, on the other hand data exchanges should be minimized. This is often a trade-off
situation and the optimal settings depend on the type and order of operations applied to the
data.

MapReduce

In recent years, other programming frameworks such as MapReduce (Dean andGhemawat,
2004) and DryadLinq (Yu et al., 2008) became very popular, because they move the com-
plexity involved in writing correct parallel code into a different abstraction layer, so the
programmer does not need to think about concurrency, data consistency, race conditions, or
data distribution.

The basic idea of MapReduce is related to the divide-and-conquer approach known from
other well-known algorithms like Quicksort. However, the idea of recursively dividing a
bigger problem into smaller subproblems until they are easily solvable is absent here. What
is similar is the strategy to distribute the data to make a big problem simpler and to aggregate
partial results.

MapReduce was built with processing large amounts of data in mind. In such, the whole
framework is optimized for applications that apply simple operations on large amounts of
data. It is suboptimal for applications where data has to be processed multiple times using
different operations, e.g. numerical calculations like matrix-matrix-multiplications.

In the MapReduce framework, the programmer typically specifies 2 functions, map and
reduce. The Mapper function usually works on partitions of data and emits partial results,
while the Reducer function collects partial results and emits (part of) the final result. Defin-
ing these two functions is basically all that has to be done from a programming point of work,
the framework is responsible for distributing the data, aggregating results, synchronization,
etc. As a side note, there are several optimizations possibilities by defining additional func-

CHAPTER 3. TRAINING AND TEST FRAMEWORK 36

tional elements called Combiners and Partitioners, that can speed up a map-reduce cycle
significantly. And further, MapReduce programming is especially about constructing clever
data structures that exploit the basic functionality of the framework. More details about
this can be found in the excellent textbook by Lin and Dyer (2010).

We will not go into the details, but it is interesting to see how our evaluation of retrieval
is implemented on MapReduce, although MapReduce is in general not suited for retrieval
tasks (Lin and Dyer, 2010, p. 86). The main difference between a real-world retrieval
application and evaluating retrieval systems is that in the former case, a person enters a
query and expects the retrieved results as fast as possible, while in the latter case a system
processes a list of queries and returns the results (e.g. documents and scores) for each query.
In addition to that, our system “searches” a collection by creating scores for all possible
query-document pairs and sorting this list descending by score.

Figure 3.2: MapReduce application for the “embarrassingly parallelizable” problem of re-
trieval system evaluation.

Such tasks are called “embarrassingly parallelizable” because there is no data dependency
between the processes. The evaluation pipeline for our retrieval system works as illustrated in
Figure 3.2: the set of queries Q is loaded by every Mapper, and the collection set of documents
D1, . . . , Dn is distributed among n Mappers. Each Mapper evaluates every query against the
partition of documents it has read into memory and emits the query-ID, document-ID, and
score to the MapReduce system. Then, the framework sends all retrieval results belonging
to one query to the same Reducer, where the retrieval results are sorted and finally written
to disk.

For our retrieval experiments we use a MapReduce cluster of 30 nodes. Every node
contains 2 CPUs with 4 cores each clocked at 2.4 GHz, 24 GB random access memory and

CHAPTER 3. TRAINING AND TEST FRAMEWORK 37

approximately 2.7 TB for the Hadoop filesystem HDFS. In total there are 240 cores, 720 GB
RAM and 87.4 TB available for data processing.

3.2 Implementation

The implementation of the system first requires preprocessing of the data to generate the
representation suitable for our information retrieval task. There is no need to create inverted
indexes for retrieval, because the system evaluates all documents as possible candidates for
the search query. Preprocessing involves applying the filter methods described in Section 2.5.

The second step is to generate data for training in a format that contains not only the
query, but also the pairwise difference of relevant and irrelevant documents (see Section 2.2).
This training data is then fed to the learning tool, which generates a model that captures
the patterns hidden inside the data (see Figure 2.4).

The models are tested on a Hadoop3-cluster, the JAVA4-based Open-Source version of
a MapReduce framework implementation. More details on the retrieval evaluation pipeline
were explained in the previous section.

Creating Data

To extract TFIDF-vectors from raw text data, we applied several tools written by Felix
Hieber for a project with Laura Jehl on CLIR using SMT models5 based on the cdec-
framework (Dyer et al., 2010). The TFIDF-vectors are then converted into a format that
can be read by our learning tool.

Either during vector creation or during format conversion we apply different filter meth-
ods which are described in detail in the corresponding sections of Chapters 4 and 5.

Test Data

Based on this vector representation, we create the testing data on-line. Even for small
corpora expanding data for testing will become cumbersome, because it would be required
to explicitly create all possible pairs between queries and documents. For the test part of
the 20NG corpus described in Chapter 4, this means creating 75322 = 56, 731, 024 lines of
data, and each line will on average contain approximately 290.62 ≈ 84, 451 entries, i.e. a
word and a value.

If the expansion of vectors is done on-line, we only need the basic set of vectors in the
appropriate format. In the example above, the query and document files both have 7532
lines of data with 290.6 entries on average.

3http://hadoop.apache.org/, accessed 01.08.2013
4http://www.java.com/, accessed 01.08.2013
5https://github.com/felleh/cdec/, accessed 06.09.2013

http://hadoop.apache.org/
http://www.java.com/
https://github.com/felleh/cdec/

CHAPTER 3. TRAINING AND TEST FRAMEWORK 38

Training Data

For training data, however, on-line data creation was initially applied during learning but
later removed due to performance issues. The structure of vectors for training is more com-
plex than for test. The main reason is that the basic representation contains query vectors
and differences of vectors of relevant and irrelevant documents, making on-line creation very
memory consuming. To create pair-wise vectors for SGD-based learning algorithms, it is
necessary to keep all data in memory, i.e. the query and document representations, and the
relations between queries and documents.

Creation of a single training instance follows these steps:

1. A query vector q is selected from the query pool.

2. A relevant document d+ is selected from the list of relevant documents for the query.

3. An irrelevant document d− is selected that is not on the list of relevant documents.

4. The three vectors are combined to build the pair (q,d+ − d−).

Another reason for moving from on-line to off-line training data besides memory con-
siderations is that once created on disk, such data can be used by different learners under
different settings simultaneously. Although training data can become large, it only has to
be created once.

Preprocessing

Feature reduction techniques such as limiting vocabulary and correlated feature hashing had
to be applied as a preprocessing step before TFIDF-creation, sparse vector conversion and
generation of training and test data takes place.

Limiting the vocabulary is a simple task. The first step is to go over the whole corpus
and create statistics on word counts. This list is sorted descending by count and then cut off
at the kth entry, resulting in a list of size k of the most frequent words. Finally, the corpus
is filtered by removing all words not present in this list.

The method of correlated feature hashing, requires a deeper analysis of the data. We
propose a fast method based on inverted indexes, that can be easily extended to a MapReduce
setting. At the moment, our implementation is single threaded, but fast enough to process
millions of documents within minutes on standard hardware.

The implementation of the algorithm that creates a mapping of a given word i to m
words from a limited vocabulary of size k works as follows:

1. Go through all documents and create an inverted index (lists of documents for each
word) as well as total counts for each word i.

2. Using the total counts for each i, create a limited vocabulary V ′ of top-k words.

CHAPTER 3. TRAINING AND TEST FRAMEWORK 39

3. Iterate over the inverted index and go through each document, creating co-occurrence
counts between i and each document word j ∈ V ′.

4. For each word j, calculate DICE-scores according to Equation 2.20 and sort the final
list descending by DICE.

5. The final mapping for a word i are the top-m words j from the list created under (4).

The current implementation consumes a lot of memory and there is much room for
improvement, e.g. the inverted index can be represented more efficiently in memory using
compression codes on gaps. However, this implementation is absolutely sufficient for the
tasks we examine. Lin and Dyer (2010) describe various aspects of the construction of an
inverted index in MapReduce, and by correctly applying typical design patterns for Hadoop
programming, the idea described above can be scaled up to work on much larger corpora.

Learning Tools

We started our work with a learning tool developed by Fendrich (2012). His tool Sol6 is a
toolkit written in C++ for fast learning of linear models using an SGD approach. The first
experiments with the basic model were conducted using this tool. Although initial experi-
ments on small data were promising, we were struck by the impact on memory complexity
for the quadratic model as soon as we moved to real-world data.

During the implementation of countermeasures like singular value decomposition (SVD)
to learn on decomposed low-rank matrices, we came across a tool named Vowpal Wabbit7

that already contained most of the things we wanted to implement and which was already
at a very high development stage at that time.

Vowpal Wabbit (VW) is a sophisticated learning tool that started as a project at Yahoo!
Research8 and is now continuing at Microsoft Research9. The project “Vowpal Wabbit (Fast
Learning)” is ongoing work developed and supported by many contributers. It has several
outstanding features, from which we name a few here.

VW implements several very fast learning algorithms for use with large datasets. In
addition to standard gradient descent it can also optimize using the Conjugate Gradient or
the L-BFGS method (Nocedal and Wright, 2006), a quasi-Newton approach that can be
applied when the Hessian is too large to be kept in memory. In addition to that, VW can
learn on mini batches.

VW does on-line learning, meaning that it can work on unbounded data sizes: practically,
we use data from hard disk, which is our limiting factor, but theoretically VW can work on
infinite data streams. The weight vector is kept in memory employing the hashing trick

6https://github.com/sfendrich/Sol, accessed 03.09.2013
7http://hunch.net/~vw/, accessed 06.09.2013
8http://labs.yahoo.com/, accessed 06.09.2013
9http://research.microsoft.com/, accessed 06.09.2013

https://github.com/sfendrich/Sol
http://hunch.net/~vw/
http://labs.yahoo.com/
http://research.microsoft.com/

CHAPTER 3. TRAINING AND TEST FRAMEWORK 40

(see Equation 2.18), so the number of features is in principle unbounded. The size of the
parameter space can be defined by exponents to the basis 2 (= 2x variables).

However, the best technical feature for us is the internal quadratic expansion of names-
paces. VW employs namespaces in the data format, and a command line switch during
learning enables on-line creation of quadratic features: this means, every feature in one
namespace is combined with every other features in the other namespace. Apparently, this
idea is so successful that the authors recently added a cubic switch to create cubic features
of three namespaces on-the-fly.

Constantly new features are integrated into the VW source. Besides many different opti-
mization algorithms VW provides an implementation for sparse singular velue decomposition
(SVD) based onKoren et al. (2009), a module to calculate Latent Dirichlet Allocation (Blei

et al., 2003), a clustering mode for Hadoop and MPI etc.
Finally, as VW brings together much more than all the components and techniques we

ever wanted, we decided to switch to Vowpal Wabbit as the general learning tool for all
future experiments of this work.

3.3 Evaluation

Evaluation of an IR system means running the system against a set of queries and documents
of known relevance and comparing the retrieved result with the expected result. The best
system is the one that gets the highest scores, while the score expresses how well a system
reproduces the relevance judgments for known query-document pairs.

Metrics

Information Retrieval metrics measure the effectiveness how relevant documents are retrieved
by a system. There are several metrics that became a quasi-standard over the years, pushed
especially by the annual Text REtreival Conference10 (TREC). TREC is a conference that
provides tracks, i.e. challenges on test problems where participating groups compete against
others on given datasets.

Representation of a metric aims at being simple and informative to enable objective
comparison of the retrieval performance of systems. However, different metrics address
different aspects of retrieval problems. In the following, we explain the metrics we use for
the experiments in Chapters 4 and 5, and why they are a good choice in our opinion.

Precision and Recall

In the field of information retrieval, the metrics precision and recall are calculated on sets
of retrieved and relevant documents. In words, precision is the fraction of documents that

10http://trec.nist.gov/, accessed 09.09.2013

http://trec.nist.gov/

CHAPTER 3. TRAINING AND TEST FRAMEWORK 41

Figure 3.3: A precision-recall curve with the classic sawtooth shape.

were correctly retrieved (“how many are correct”), while recall is the fraction of documents
that were successfully retrieved (“how many were found”).

Let R be the set of relevant documents and S be the set of all retrieved documents for
a given query. Then precision and recall can be defined in set notation as:

Precision =
|{R} ∩ {S}|
|{S}|

Recall =
|{R} ∩ {S}|
|{R}|

As both metrics are set-based, the calculation is done on limited subsets, e.g. the top-k
results of retrieval results.

If precision and recall are plotted in 2-dimensions as in Figure 3.3, the graph shows a
typical sawtooth shape: if the (k+ 1)th retrieved document is not relevant according to the
search, then recall will stay the same but precision drops, the curve goes straight down. If
the (k+1)th retrieved document is relevant, then precision and recall increase and the curve
goes diagonally up. The sawtooth shape is sometimes smoothed by plotting an interpolated
precision, i.e. the precision at a certain recall level r is the highest precision for any recall
level r′ ≥ r (Manning et al., 2008).

Although the information of a complete precision-recall-curve is very informative, the
curve is difficult to interpret and there are cases where it is better to have a single number,
for example when comparing several systems among each other.

The most simple way to reduce the graph to a single number is to calculate precision
until a certain cutoff position k in the retrieved list. Let L = (r1, . . . , rn) be a list with rm
being a binary value indicating the relevance of a document at position m. Then the value

CHAPTER 3. TRAINING AND TEST FRAMEWORK 42

P@k is defined as:

P@k(L) =
1

k

k
∑

i=1

ri (3.2)

The same can be calculated for recall, expressing the recall at a cutoff position k in L:

R@k(L) =
1

|R|
k

∑

i=1

ri (3.3)

While the precision metric from Equation 3.2 is frequently used, recall values based on
Equation 3.3 are rare.

Mean Average Precision

The metrics P@k and R@k are much easier to compare, but they still contain a parameter
k and it depends on the task (and probably its interpretation) which k should be applied.
Another idea to reduce the graph in Figure 3.3 to a single number is to calculate the area
under the precision-recall curve by integrating precision over the recall:

AP(q) =

∫ 1

0

pq(r) dr =
1

|Rq|

|{Sq}|
∑

i=1

(Pq(i) · ri)

Here, pq(r) is the precision-recall function for a single query q, and Pq(k) is the precision for
query q at cutoff position k (P@k). So, the average precision is the area of the precision-recall
curve for a certain information need q.

If the average precision is calculated for all queries and the average precision values are
averaged by taking the arithmetic mean, then the result is called mean average precision
(MAP):

MAP(Q) =
1

|Q|

|Q|
∑

q=1

AP(q)

For evaluation of our experiments in Chapters 4 and 5, we use the trec eval-script (v8.1)
provided by the TREC evaluation campaign11 to generate MAP scores. Although there
are many other metrics provided by this script, we will use only MAP because it is widely
accepted and scores can be compared to other works.

A short note on the range of values: MAP is defined such that it returns a value between
1.0 (perfect ranking) and 0 (completely wrong) and we use this range for reporting MAP
scores. However, when we speak of MAP points, we mean “percent” in the MAP range, i.e.
1 MAP point equals to 0.01 MAP score.

11http://trec.nist.gov/trec_eval, accessed 10.09.2013

http://trec.nist.gov/trec_eval

CHAPTER 3. TRAINING AND TEST FRAMEWORK 43

Other Metrics

In recent years, many other IR metrics have been developed, e.g. “Receiver Operating
Characteristics” (ROC), which creates a graph of the true positive rate against the false
positive rate, or “Normalized Discounted Cumulative Gain” (NDCG), a measure that can
be applied to non-binary relevance cases, just to name two that are frequently in use. NDCG
is the “cumulative information gain” of a set of queries and the returned list of top-k results
of different relevance, and then normalized so the optimal ranking is 1.0. Evaluating different
relevance levels is especially useful for testing web search applications: the motivation is that
a user expects to receive the most relevant entries within the first top-k results, preferable
on the first page.

As for MAP and NDCG, the underlying strategy is focused on precision, because in many
applications of information retrieval, the user wants the most relevant results to appear as
high as possible, e.g. on the first search results page or among the top-10 entries.

However, there are cases where the user is willing to review more than only the top-10
results, because it is important to find as many relevant documents as possible. Even for
these recall-oriented tasks standard precision-based IR measures are still frequently used.

One common recall-oriented task is patent retrieval, where the user searches for patents
that are relevant to a given patent (see Chapter 5, Section 5.1). The reliability of these
searches are of high economic importance, because missing a relevant patent can have a high
impact on validity of the given patent, and consequently on the inventor, the applicant, and
the attorney. Thus, a user of a patent search engine is willing to add extra effort to evaluate
a longer list, e.g. by grouping, sorting, or structuring the results in a post-processing step.

A recall oriented measure that was developed especially for evaluating patent retrieval
systems is the patent retrieval evaluation score (PRES) (Magdy and Jones, 2010). Its idea
is based on the normalized recall Rnorm, which measures basically the fraction between the
current system’s performance against the best case in terms of recall.

Let ri be the rank at which the ith document is retrieved, n being the number of relevant
documents and N the collection size, then the normalized recall is defined as:

Rnorm =
A2

A1 + A2
= 1−

∑

ri −
∑

i

n(N − n)
(3.4)

Figure 3.4 illustrates the idea behind Rnorm, which is the area between the actual and worst
case (A2) divided by the area between the best and the worst case (A1 + A2).

The problem with Rnorm is that it is calculated on the whole set collection. With millions
of documents in the retrieved list, the calculation will become very expensive. PRES ad-
dresses this issue by defining a different procedure for the worst case: the number of relevant
documents is assumed to be retrieved just after the number of documents checked by the
user, i.e. after position Nmax. The idea behind this strategy is that any document after
Nmax is missed by the user, and if all relevant documents are located after Nmax, the score
will be zero.

CHAPTER 3. TRAINING AND TEST FRAMEWORK 44

Figure 3.4: Connection between normalized recall and PRES metric for an example with 5
relevant documents. Combination of two illustrations from Magdy and Jones (2010).

Any document not retrieved before Nmax will contribute to the newly defined worst case.
This is achieved by replacing N in Equation 3.4 with Nmax + n, where n is the number of
relevant documents. After simplifying the expression the final score for PRES is:

PRES = 1− 1

Nmax

(∑

ri
n
− n+ 1

2

)

(3.5)

Equation 3.5 shows that PRES is a function of the recall of the system, the ranking of
retrieved results and the number of documents checked by the user. This combination
makes it an excellent choice for an additional metric for our experiments on patent data in
Chapter 5.

A detailed analysis of the PRES metric on 48 runs from the CLEF-IP 2009 patent retrieval
track (see Peters et al., 2010) is given in Magdy and Jones (2010). In their experiments,
the authors demonstrate that PRES agrees with MAP and Recall in more than 70% on a
pairwise comparison of the submissions, with a high correlation among the low and the high
ranked positions.

A final note on the range of values: similar to MAP, PRES returns a value between 1.0
for “perfect ranking” and 0 for “completely wrong” (everything ranked below Nmax). We
use this range for reporting scores, but when we mention PRES points, we mean “percent”
in the PRES range, i.e. 1 PRES point equals to 0.01 PRES score.

Significance Testing

A common strategy to find good parameters is to run a systems on the same data under
different parameter settings and analyze the score changes. The system with the highest
score is believed to have the better setting. This conclusion is often unquestioned because
metrics seem to be objective measures, but there is more to think of if one wants to draw
reliable conclusions based on score values.

It is necessary to estimate if a score change is significant such that a difference in systems
can be presumed, or is merely a result of random variations produced by the same system.

CHAPTER 3. TRAINING AND TEST FRAMEWORK 45

The test that gives an answer to this question is called significance test and it is based on
the method of hypothesis testing.

Given two systems X and Y with, for example, N topics, and two scores calculated
on the systems µOLD and µNEW , the method of hypothesis testing is as follows (Cohen,
1995): 1) Formulate a null hypothesis H0, typically saying that there is no difference between
the systems X and Y . 2) Create all possible 2N permutations between system X and Y ,
calculate the difference of scores and count how often it is greater than the difference of the
observed scores µOLD − µNEW . 3) The count divided by the number of permutations is the
achieved significance level or p-value12. 4) The p-value is the probability of achieving the
observed result by chance under the null hypothesis H0. In other words, p is the probability
of incorrectly rejecting H0 that the systems X and Y are equal. Thus, a low p-value indicates
that two systems are different and the change in score is significant.

However, there is a problem with the method described above. In IR systems, the topics
are usually queries for which retrieval accuracy is calculated. Even for only 50 queries a
system had to evaluate 250 ≈ 1030 permutations of data to calculate significance between
only two candidate systems or settings. Such a test that takes every possible permutation
into account is called an exact randomization test. Fortunately, it is in general not necessary
to do such an exhaustive analysis. The Monte-Carlo-method (Metropolis and Ulam,
1949) is a very efficient way to approximate systems that are too complex to be analyzed
exactly. The idea behind Monte-Carlo approximation is that it is sufficient to sample from
the set of all permutations and still achieve a relatively low standard error on the result.

The standard error of a proportion p is its standard deviation σ, which is in the case of
random sampling:

Standard error =

√

p(1− p)

k

Based on this formula, Ojala and Garriga (2010) show how to determine the number of
samples required to get a result with an standard error below a certain value:

lim
p→ 1

2

√

p− p2 =

√

1

4
⇒ Upper bound =

1

2
√
k

The idea of significance testing is rather old but became more popular in recent years because
computers make their application even on larger result sets possible (Noreen, 1989). A
sketch of the algorithm we use for significance testing is given in Riezler and Maxwell

(2005) in the context of statistical machine translation (SMT) (see Algorithm 2). This
algorithm can be applied to basically every case where the results of a system is represented
as a list of tuples of topics (e.g. queries and corresponding scores).

12This is a one-sided p-value. If the difference is calculated on absolute values, the result is a two-sided
p-value.

CHAPTER 3. TRAINING AND TEST FRAMEWORK 46

Algorithm 2 Approximate Randomization Test for Statistical Significance Testing. From:
Riezler and Maxwell (2005).

1: c← 0
2: Compute actual statistic of score differences |SX − SY | on test data
3: for random shuffles r = 0, . . . , R do

4: for sentences in test set do
5: Shuffle variable tuples between system X and Y with probability 0.5
6: end for

7: Compute pseudo-statistic |Sr
X − Sr

Y | on shuffled data
8: if |Sr

X − Sr
Y | ≥ |SX − SY | then

9: c← c + 1
10: end if

11: end for

12: p← (c+ 1)/(R+ 1)
13: Reject null hypothesis if p is less than or equal to specified rejection level.

Exactly the same approach was examined by (Smucker et al., 2007) for significance
testing of information retrieval metrics. The authors provide a script for significance testing
based on the output of the trec eval-script mentioned before, so we gratefully use this
implementation13 in our evaluation.

A final note on our evaluation settings regarding the significance level: unless otherwise
noted, we use a significance level of p = 0.01 to estimate statistical significance of a system
change when we compare models or systems.

13http://www.mansci.uwaterloo.ca/~msmucker/software.html, accessed 06.08.2013

http://www.mansci.uwaterloo.ca/~msmucker/software.html

47

Chapter 4

Monolingual Information Retrieval

In this chapter we examine the applicability of our model to monolingual information re-
trieval. We start in Section 4.1 with the description of the steps needed for data creation
and explain the task of monolingual information retrieval on the 20 NG corpus. After pre-
liminary considerations to motivate our future strategy, we start in Section 4.2 conducting
experiments aimed at our main concern, feature selection and reduction. We end this chapter
in Section 4.3 giving a roundup of the results of the experiments, hoping to transfer some of
the findings to the upcoming experiments.

4.1 Retrieval on the 20NG Corpus

The models we review in this chapter are variations of the basic model (Equation 2.13).
During the experiments, we use cosine similarity on normalized TFIDF vectors as baseline
and evaluate the following two variants of the model:

• learning the diagonal

• learning the full matrix

The results of the three systems trained under different settings are then compared in the
experiment’s Section 4.2.

Data

For the monolingual experiments throughout this chapter, we use the 20newsgroup (20NG)
corpus 1. This almost historic dataset is frequently used in IR tasks and there exist baselines
we can compare our results to.

The original 20NG dataset consists of approximately 20, 000 posts taken from 20 news-
groups (see Table 4.1). The archive we used for data set construction is the “bydate” version,

1http://qwone.com/~jason/20Newsgroups/, accessed 23.08.2013

http://qwone.com/~jason/20Newsgroups/

CHAPTER 4. MONOLINGUAL INFORMATION RETRIEVAL 48

comp.graphics rec.autos sci.crypt
comp.os.ms-windows.misc rec.motorcycles sci.electronics
comp.sys.ibm.pc.hardware rec.sport.baseball sci.med
comp.sys.mac.hardware rec.sport.hockey sci.space
comp.windows.x
misc.forsale talk.politics.misc talk.religion.misc

talk.politics.guns alt.atheism
talk.politics.mideast soc.religion.christian

Table 4.1: Overview of contained groups of the 20 newsgroup corpus as they are grouped on
the original web page.

which contains posts sorted by date and is already split into training (60%) and test (40%)
sets. Duplicates and newsgroup identifying headers were removed from the posts, leaving in
total 18, 846 documents.

We apply the following steps for preprocessing the documents: 1) All words are low-
ercased. 2) All numbers are removed. 3) Punctuation symbols are also removed. 4) the
documents are finally cleaned (e.g. multiple whitespaces removed).

Some statistics on the corpus after these preprocessing steps are listed in Table 4.2.
One important observation is that although the numbers of posts are relatively even among
newsgroups (between 999 and 628 posts), the lengths of posts depends on the newsgroup.
For example, posts in group misc.forsale have an average length of 142.35 words, posts in
group talk.politics.mideast contain more than three times more words on average, i.e. 509.6
words.

Task Description

The 20NG corpus is a standard dataset for many text applications of machine learning tasks.
It is mostly used for text classification and text clustering, however, it can also be applied
to ranking and other information retrieval tasks (Joachims, 1997).

In our setup, we evaluate the information retrieval task on the 20NG corpus as defined
in Chen et al. (2010): given a post of a newsgroup from Table 4.1, the task is to rank all
posts of this newsgroup higher than all posts of all other newsgroups.

4.2 Experiments

Our baseline, ranking by TFIDF scores, is actually very simple to calculate: the vectors are
normalized to unit length, so we just need to apply the basic model using the identity matrix
IN , i.e. a N × N matrix with the diagonal constrained to 1 and all other values set to 0.
This is already a relatively good baseline, because TFIDF is able to filter function words
and gives weight to content words. The latter words can sometimes be precise indicators for

CHAPTER 4. MONOLINGUAL INFORMATION RETRIEVAL 49

posts ∅ length
training documents 11,314 315.20
test documents 7,532 291.64
alt.atheism 799 357.32
comp.graphics 973 271.81
comp.os.ms-windows.misc 985 499.66
comp.sys.ibm.pc.hardware 982 206.65
comp.sys.mac.hardware 963 192.45
comp.windows.x 988 319.13
misc.forsale 975 142.35

rec.autos 990 230.00
rec.motorcycles 996 209.15
rec.sport.baseball 994 233.28
rec.sport.hockey 999 262.09
sci.crypt 991 343.69
sci.electronics 984 214.61
sci.med 990 305.67
sci.space 987 298.04
soc.religion.christian 997 393.88
talk.politics.guns 910 358.20
talk.politics.mideast 940 509.64

talk.politics.misc 775 451.37
talk.religion.misc 628 374.07
∅ per group 942.3 304.77

Table 4.2: Training and test splits and per group statistics for the 20NG corpus. Minimum
and maximum values are printed in boldface.

newsgroups: for example, the word “atheism” is likely to occur in a discussion within the
alt.atheism newsgroup and will rarely be observed in posts of other newsgroups.

Learning the diagonal does a re-weighting of terms in accordance to the IR task. This
approach is very useful in information retrieval, because the weight of a term (e.g. TFIDF or
word occurrence) is adjusted according to a certain information need. This results in higher
weights for words that are more important for newsgroup affiliation. This way learning the
diagonal adapts to the requirements of the task and will refine the initial TFIDF values.

The full matrix as the most powerful model is able to capture all possible relationships
between words. Each query word is paired with every document word to capture depen-
dencies such as synonymy, polysemy and antonymy. The models high capacity entails the
well-known problems of training complexity and especially overfitting. Thus, generalization
capabilities and overfitting are issues that have to be kept in mind.

CHAPTER 4. MONOLINGUAL INFORMATION RETRIEVAL 50

Convergence

A central question for SGD-based learning algorithms is how many training instances should
be processed until the model starts to degenerate. In the machine learning framework, the
perfect number is reached when the model performs best on unseen data.

The usual approach is to evaluate the model after n steps on development or held-out
data and calculate an error metric. As soon as the error metric stops falling and starts rising,
learning should be stopped, because this is what overfitting actually means.

Evaluating each model after n steps is a time-consuming task. Furthermore, the number
of examples required to reach the optimal point depends on multiple factors involving model
parameters, e.g. learning rate, feature representation, e.g. number of dimensions, kernels
used etc. We want to estimate a good example count, but we don’t want to do this for every
change of settings.

As it is too costly to do this evaluation for every model and parameter combination, we
first examined several standard cases to get an idea how many examples are needed and
at which settings the model is in danger of degenerating. Based on these observations, we
determine a number of training instances that represent a compromise between learning
complexity and task performance.

Progressive validation (Blum et al., 1999), a built-in feature of the VW learning tool we
use, showed up to be extremely helpful for getting error metrics during training. The basic
idea of progressive validation is to simulate hold-out estimates by incrementally testing on
unseen training data before it is actually send to the learning algorithm. The neat trick is to
create multiple hypothesis with corresponding error outputs during training and then sample
from the evaluates to get an estimate. The expected number of unseen examples used by
any hypothesis is then m−1

2
and the authors show that by preserving the same guarantee as

the holdout bound it is a good estimate of the generalization error.
The development of the progressive error during training on the 20NG dataset is displayed

in figures 4.1 and 4.2. For the diagonal model the error decreases very fast, while for the
quadratic model this takes considerably longer to reach the point where the error converges.

The progressive error and the empirical MAP scores on the test set plotted in Figure 4.3
show a high level of negative correlation to the progressive error. Judging from this result,
we conclude that 2 million pairs are a good starting point to get reliable results on the test
performance for the comparison of models and parameters.

Fixed vs. Decaying Learning Rate

As a first experiment, we compared fixed learning rate (FLR) against decaying learning rate
(DLR). The formula for the learning rate ηt used by the machine learning tool is:

ηt = λdk
(

t0
t0 + wt

)p

(4.1)

CHAPTER 4. MONOLINGUAL INFORMATION RETRIEVAL 51

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000

P
ro

gr
es

si
ve

 E
rr

or

Number of Examples

Error During Training on 20NG

diagonal model
quadratic model

Figure 4.1: Error at beginning of training.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 400000 800000 1.2e+06 1.6e+06 2e+06

P
ro

gr
es

si
ve

 E
rr

or

Number of Examples

Error During Training on 20NG

diagonal model
quadratic model

Figure 4.2: Convergence of the error.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0 400000 800000 1.2e+06 1.6e+06 2e+06

M
A

P

Number of Instances

Development of MAP Score

diagonal model
quadratic model
TFIDF baseline

Figure 4.3: MAP scores on test during training on 20NG.

The parameter t0 controls the influence of the sum of importance weights wt =
∑

t′<t it′ .
Usually these weights are set to 1 and the value wt represents the number of examples seen
so far. With the default value p = 0.5, the square root of the term in parenthesis is taken.
This has the effect of a moderately decreasing learning rate that converges to 0 very slowly.
Setting the parameters p = 0 and k = 0 actually sets a fixed learning rate that is equal to
the λ parameter.

Again, we looked at the progressive error (Figure 4.4) to estimate the number of required
training instances and evaluated the models on the test set. The predicted error for the
quadratic model seems to be wrong2 and does not correlate well to the MAP scores in
Figure 4.5. We also tried setting the learning rate to λ = 200, a value that Chen et al.
(2010) used in their experiments, but for us the results changed only marginally.

Figure 4.5 plots the MAP scores against the number of training instances. All four models

2This is actually the only time where the learning tool we use does not work as expected.

CHAPTER 4. MONOLINGUAL INFORMATION RETRIEVAL 52

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 400000 800000 1.2e+06 1.6e+06 2e+06

P
ro

gr
es

si
ve

 E
rr

or

Number of Instances

FLR Error During Training on 20NG

quadratic model
diagonal model

Figure 4.4: Error on diagonal model for fixed
learning rate λ = 0.5.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0 400000 800000 1.2e+06 1.6e+06 2e+06

M
A

P

Number of Instances

FLR and DLR Models

quadratic model, DLR
quadratic model,FLR
diagonal model, DLR
diagonal model,FLR

Figure 4.5: MAP scores on test set for DLR
and FLR learning modes.

beat the TFIDF-baseline of 0.2041 MAP after seeing 100,000 instances. Although there are
only few data points, the MAP-curves for FLR and DLR variants of the same model have
a similar shape with DLR achieving significantly higher scores. For the exact scores after 2
million training instances, see Table 4.3.

no train DLR FLR
identity 0.2041 – –
diagonal – 0.3050 0.2406
quadratic – 0.4948 0.4660

Table 4.3: Comparison of MAP scores for fixed and decaying learning rates (λ = 0.5) after
2 million examples.

To be sure that we had not accidentally selected a bad learning rate, we searched loga-
rithmically for useful learning rates in the interval from 10−3 to 103. The final result remains
unchanged: Table 4.4 illustrates that MAP score after processing 2 million instances does
not increase in any case.

learning rate 10−2 10−1 100 101 102 103 104

diagonal 0.2818 0.2574 0.2393 0.2353 0.2289 0.2264 0.2347
quadratic 0.2686 0.2976 0.2350 0.1116 0.1096 0.1096 0.1096

Table 4.4: MAP after 2 million examples and different fixed learning rates.

For SGD, a fixed learning rate generally complicates convergence, because every stochas-
tic update gets the same weight. Thus, it can happen that the algorithm “jumps around”
the optimal solution without ever reaching it. We conclude that in our setting a dynamic

CHAPTER 4. MONOLINGUAL INFORMATION RETRIEVAL 53

learning rate works considerably better than a fixed one, although other works successfully
applied a fixed learning rate to similar tasks using comparable models (Bai et al. 2010,
Chen et al. 2010).

Feature Selection

In this section, we start our experiments on methods that actively select useful features. The
first method is an embedded wrapper based on ℓ1-regularization (see Section 2.2). The second
selection method is actually an accidental discovery. There are various interpretations, but
from one perspective, it is a filter method, comparable to reducing the dictionary in a more
clever way that just applying a cutoff.

L1-Regularization

The idea of regularization is to increase generalization capabilities by adjusting the parame-
ters of the model with a certain strategy. From the optimization problem’s perspective, this
is accomplished by adding a regularization term to the objective function (see optimization
problem 2.7). This term usually involves a norm of the model parameters, which is in our
case the weight vector.

To enforce sparsity, we apply ℓ1-regularization known as LASSO (see Section 2.2). The
ℓ1-regularizer term in the optimization problem 2.10 effectively pushes the values to zero
in each step while each gradient update increases them. Regularization is useful because
it helps against overfitting and to get a better generalizing model. However, finding the
right regularizer is expensive as the space of possible regularization settings usually has to
be explicitly searched.

For our retrieval task on the 20NG corpus, we tried several values for ℓ1-regularization.
The MAP scores against the number of training instances are plotted in Figure 4.6, illus-
trating the effect of the regularization on MAP and convergence.

The graphs for λ values between 0 (regularization off) and 10−8 have very similar shapes.
As soon as the regularization term has enough weight to actively influence the model, the
MAP score drops at a certain point and overfitting occurs. This can be seen clearly in the
graph for λ = 10−6, but it is also present for λ = 10−7.

Table 2 summarizes the best achieved MAP scores and adds the corresponding model
sizes. The bottom line for our experiment on 20NG is: as soon as the regularization is able to
decrease model complexity, performance drops. The values indicate that enforcing sparsity
with ℓ1-regularization does not help in this case.

We did not test the influence of regularization on the diagonal model, because we could
not think of any positive effect for the diagonal case. Either the values are pushed to 0
(ℓ1-regularization) effectively removing weights, or the values are raised (ℓ2-regularization),
meaning that the model converges to the standard TFIDF model.

Our interpretation of the experimental results on ℓ1-regularization is that the underlying
task of identifying documents from the same newsgroup is not prone to overfitting because

CHAPTER 4. MONOLINGUAL INFORMATION RETRIEVAL 54

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 400000 800000 1.2e+06 1.6e+06 2e+06

M
A

P

Number of Instances

Convergence and Overfitting

lambda=0
lambda=10-8

lambda=10-7

lambda=10-6

Figure 4.6: Influence of ℓ1-regularization on convergence and overfitting.

10−6 10−7 10−8 10−9 0
best MAP 0.2892 0.4740 0.4943 0.4964 0.4966
(model size) 96M 759M 1038M 1068M 1073M

Table 4.5: Best MAP score achieved under different ℓ1-regularization settings and corre-
sponding model sizes.

there are many “correct” or “relevant” documents (a newsgroup has an average size of 942.3
posts) which include a lot of noise, so the danger of adapting “too close” to the training data
is small.

TFIDF Weighting Scheme

In this experiment we examined the influence of the TFIDF-weighting on the learning quality.
The DF-values, i.e. the document frequencies for words, are often calculated on a completely
separate collection of documents. For reasons already mentioned before, finding an appro-
priate document collection with similar properties is difficult, and the existing document set
is too small to be further divided. So, we were forced to use only the existing 20NG data but
applied three different counting schemes for calculating the DF-values needed for creating
the TFIDF vectors:

1. For training use DF-values from training set, for testing combine document frequencies
from training and test set.

2. For training and testing, use DF-values from the training set only.

CHAPTER 4. MONOLINGUAL INFORMATION RETRIEVAL 55

3. For training and testing, use DF-values from combined training and test set.

The best performing counting scheme of document frequencies is variant 2, as the results
in Table 4.6 clearly show. Although the differences to the other variants for identity and
the learned diagonal are not significant, for the quadratic model this variant performs con-
siderably better and exceeds the results reported by Chen et al. (2010) by a large margin
(Chen’s best system scores MAP 0.426).

train/train+test train only all
(variant 1) (variant 2) (variant 3)

identity 0.2041 0.2055 0.2041
diagonal 0.3041 0.3050 0.3045
quadratic 0.4660 0.4948 0.4632

Table 4.6: MAP score for different TFIDF construction schemes.

Our first interpretation for the lower scores of the first variant was that it uses different
DF-values and thus different word-document statistics for training and test set. This is
clearly a violation of the basic assumption for supervised machine learning, because training
and test set must be i.i.d., otherwise the learning performance is spoiled. Judging from the
last variant, this explanation cannot hold. Variant 3 was initially thought to give an upper
bound of achievable scores and we never planned to use this scheme for the experiments,
because it is prohibitive to transfer any statistical information from the test to the training
set.

The TFIDF construction we finally apply is variant 2: this scheme basically removes all
terms that are not part of the training set. The fact that both training and test must be
sampled from the same distribution is respected, but there is another aspect regarding hash
map collisions because of the hashing trick we apply to the parameter vector (Section 2.5).
Words not seen during training but encountered during test are either hashed to an empty
bucket or to an existing bucket. Hashing to an empty bucket will return a 0 weight and
discards the feature, practically doing no harm. Hashing to a non-empty bucket, however,
is an unwanted collision and will contribute to the information loss. Thus, removing those
features will never harm but it helps to reduce unwanted collisions.

We see variant 2 of the TFIDF construction as a selection method that removes rare
words for which no sufficient statistics exist. By doing so, this construction includes a very
rudimentary filter method for feature selection.

Reducing Feature Space

Reducing the feature space is a filter method that aims at reducing model complexity. How-
ever, in the case of the learning tool we use, the parameter space is fixed and weights are
hashed into this space. Determining model complexity based on the size of the model alone
is thus inaccurate.

CHAPTER 4. MONOLINGUAL INFORMATION RETRIEVAL 56

In this section, we examine two approaches to actively reduce the feature space of our
basic model by limiting the number of distinct words. The second approach is based on
hash kernels which we successfully apply to decrease information loss by increasing feature
redundancy.

Limited Vocabulary

The original vocabulary contains 115, 141 words with 45, 488 words occurring only once,
many of them being wrongly spelled words. These singletons are a problem for any learning
task, because word pairs build with them are rare and occur only in the training or in the
test set (or in neither). These pairs do not contribute positively to the learning task but
they merely increase the number of collisions.

An obvious way to reduce collisions is to limit the dictionary size. The most simple
approach applies a cutoff at a certain position in the word frequency table and keeps only
the top-k most frequent words. We limited the dictionary to 10, 000 words, which means
filtering everything besides the top 10, 000 most frequent words.

The decision to use 10, 000 words as vocabulary limit is not completely arbitrary. One
reason is that we want our results to be comparable to Chen et al. (2010). Another reason
is the reduced complexity for the model: on 10, 000 words, we can generate a maximum of
100, 000, 000 different word pairs which is much less than 115, 1412 on the original vocabulary
size.

With a perfect hash function, a parameter vector of size 108 would be sufficient to have no
collisions. Perfect hashing is just a theoretical idea here but a realistic estimate is given by
birthday paradox: with n buckets in the table the probability of getting a collision exceeds
0.5 for m ≈

√
2m · 0.5 =

√
m. This means, with

√
108 = 10, 000 entries the probability of

getting a collision is already at 0.5.
However, it is difficult to lower these bounds and not every collision results in information

loss that harms the learning task. As our learning tool uses a parameter vector of size 2b, we
set b = 27 for the quadratic model to get a vector of size 227 = 134, 217, 728. In the optimal
case, this parameter vector uses 227 × sizeof(float) = 536, 870, 912 bytes. For the diagonal
model, we set b = 18, i.e. 262,144 entries in the weight vector, which makes collisions not
completely unlikely but rare.

The current quadratic model requires about 2 GB for the model in memory and 1 GB
for the model on disk, which are very moderate hardware requirements making it possible
to train multiple models in parallel, e.g. to search for optimal configuration parameters.

full limited relative change
identity 0.2041 0.2054 1.006
diagonal 0.3050 0.2826 0.927
quadratic 0.4948 0.4536 0.917

Table 4.7: Influence of limited and full vocabulary on MAP for several models.

CHAPTER 4. MONOLINGUAL INFORMATION RETRIEVAL 57

Word Mappings
epidemic providers accine infected genes killer
liklihood contention acknowledge likelihood implying difficulties
chemotherapy radiation treatments occuring histories lone
painless cruel viewers painful execution gifs
tinnitus ears iss loud depression sleep

Table 4.8: Sample mappings created by correlated feature hashing on 20NG.

An interesting question concerning the limited vocabulary is if the information loss by
discarding words is lower than the loss by hash collisions. Table 4.7 lists MAP scores after
training different models on 2 million examples with limited and full vocabulary. For the
retrieval performance of the identity, the limiting makes no difference, because TFIDF is
already a relatively poor strategy for the retrieval task.

The rows for the diagonal and the quadratic model in Table 4.7 support the assumption
that limiting the dictionary destroys more information than the collisions because of hashing.
In fact, collisions seem to have less influence than expected: for the diagonal model, there
are theoretically 262, 144/10, 000 ≈ 26.14 buckets per feature, for the quadratic model only
134, 217, 728/100, 000, 000≈ 1.34. In both cases, the relative change in scores is comparable,
suggesting that the increased collisions do not spoil the model automatically.

Correlated Feature Hashing

The method named correlated feature hashing explained in Section 2.5 is another way to
effectively limit the vocabulary and thus reduce model complexity. The disadvantage of
using a simple cutoff based on vocabulary size is that information is destroyed as seen in the
previous experiment. In addition to this, it is a reasonable argument that for information
retrieval tasks the rare words are especially important, and these are the ones discarded while
limiting. On the other hand, a standard vector space model evaluates document matches in
vector space, so it is difficult to gain information from rare words and impossible to learn
something useful from singletons.

By applying correlated feature hashing (CFH), rare words are mapped to co-occurring
frequent words. This method is more sensitive to contained information than a simple cutoff
procedure. CFH concurrently increases learning coverage, because mid-frequent words can
contribute more to the learning objective than rare words. In addition to this, multiple
binning reduces the consequences of collisions as explained in Section 2.4. For the 20NG
corpus, we use CFH with 5 bins (k = 5, see Equation 2.24) and a base vocabulary size of
F = 10, 000 words to get comparable results.

Table 4.8 contains some examples terms with their five most correlated words among
the limited vocabulary sorted by DICE-score. Some mappings make sense, e.g. “epidemic”
and “chemotherapy” are mapped to words that mostly have an clear semantic relation.
It is interesting to see that CFH is able to select the correct form of a wrongly spelled

CHAPTER 4. MONOLINGUAL INFORMATION RETRIEVAL 58

word: for “liklihood” the correction “likelihood” is among the top correlated words. Other
semantic relations like antonyms are also recognized, for example the algorithm correctly
selects “painful” as a correlated word for “painless”.

However, due to the size and the nature of the corpus, there are several problems. A word
that is often wrongly spelled like “occuring” in the third row can become part of the limited
dictionary and will then be a valid target word for the mappings. In the 20NG corpus,
the wrongly spelled word “occuring” is contained 25 times, which explains the preference
for this string. Sometimes co-occurring words seem to be randomly selected because there
exists no obvious connection between the original word and the mapping. However, this
problem is less critical than it first seems: such words count or discount the mapped weight
of a source word, but in the long run only words that have a real semantic relation will push
the weight into the right direction. Words occurring too frequently in arbitrary mappings
will not contribute to the learning and their weight will eventually converge to zero.

Ideally, the CFH mappings are calculated on a separate data set. For the 20NG corpus,
this is difficult to accomplish, because the language in use is very special. On one hand, the
corpus contains many specialist’s terms of completely different subjects, e.g. atheism and
computer hardware. On the other hand, a lot of spelling errors and colloquial terms are
naturally contained in these discussion posts.

A mapping constructed on an external resource such as Wikipedia would therefore destroy
a lot of information when applied to the 20NG corpus, because all colloquial and misspelled
words will not get mapped. Thus, we decided to use 20NG for the mapping, but in order
not to accidentally transfer information from the training to the test data, we generated
the mapping for the training set using the training data only. Then, we compared the
performance on two variants of creating the CFH mapping for the test set:

1. Mapping for test data based on the whole corpus (training and test).

2. Mapping from training data only, effectively dropping all rare words not present in the
training data.

The motivation for the first variant is that we want to use as many information as possible.
As it is forbidden to transfer knowledge of word distributions from test to training, we use
the whole set only for testing. The second variant was first planned as a comparison how well
the first variant performs. The whole setup is comparable to the experiment we conducted
on the TFIDF counting schemes (see Section 4.2), and the result in fact revealed similarities.

Although the second variant apparently removes more information, the comparison of
rows “CFH (full)” (corresponding to variant 1) and “CFH (train)” (variant 2) in Table 4.9
illustrates that the model evaluated against the test data constructed with the training-only
mapping performs significantly better than if evaluated on test data constructed with a
mapping covering the full vocabulary.

The explanation is again related to the statistics hidden in the data: the task in machine
learning is to learn patterns, to reveal underlying structures by analyzing the distribution of

CHAPTER 4. MONOLINGUAL INFORMATION RETRIEVAL 59

data. It is almost certain that we add some information in the first mapping variant that uses
the full corpus, however, this goes together with a change of distribution of words. Patterns
learned on the training set do then appear only partially in the test set, and new patterns
hidden in the test set were never seen before. Thus, the score must go down, anything else
would mean we made an error.

CFH (full) CFH (train) CFH-1 full dict.
identity 0.2525 0.2619 0.1930 0.2041
diagonal 0.3795 0.4136 0.3000 0.3050
quadratic 0.5012 0.5289 0.3915 0.4948

Table 4.9: Comparison of MAP scores on different correlated feature mappings.

The third CFH-based value in Table 4.9 labeled “CFH-1” is a mapping where each word
is mapped only to the top-most correlated word. This performs much worse than the other
mappings and while it is on par with the diagonal on the full dictionary, it performs much
worse on the quadratic model. Apparently, the restriction to map each word only to exactly
one frequent word destroys too much information by discarding useful patterns in the data.

4.3 Results

The monolingual information retrieval experiments conducted on the 20NG corpus show that
the basic system performs very well in the IR task examined in this chapter. The model is
able to learn useful weights for word pairs as the comparison between identity and learned
diagonal reveals. The quadratic model further improves IR performance by capturing more
complex word relations such as synonymy, polysemy and antonymy.

Using hashing for the parameter vector did not show negative side effects in the exper-
iments. The hashing trick enables the model to use the full vocabulary which significantly
increases performance. The impact of the increased number of collisions is moderate com-
pared to the information gain.

A surprisingly effective way to reduce unwanted collisions is to remove words from test
data that were not observed during training. This is accomplished by using the DF-values
of the training set for calculating TFIDF vectors for the test set. This efficiently reduces
information loss as a consequence of collisions introduced by hashing.

We compare our work to the work of Chen et al. (2010), as they use a similar model but
follow a different strategy based on enforcing sparsity. Their results on fixed and decaying
learning rates are in accordance to ours: fixing the learning rate gives a significantly lower
score than using a decaying learning rate.

However, most of the MAP scores we obtained differ from those reported by Chen et al.
(2010). Using TFIDF scoring, our model achieves a MAP score of 0.204 compared to 0.185,
and for the learned diagonal we obtain 0.304 compared to 0.190. Apparently the authors
work on a slightly different dataset, as the difference for in TFIDF scores suggests.

CHAPTER 4. MONOLINGUAL INFORMATION RETRIEVAL 60

identity diagonal quadratic
FLR – 0.2406 0.4660
limited 0.2054 0.2826 0.4536
full, λ = 0, TFIDF v1 0.2041 0.3041 0.4660
TFIDF v2 (DF-train) †0.2055 †0.3050 †0.4948
λ = 10−6 – – 0.2892
λ = 10−7 – – 0.4740
λ = 10−8 – – 0.4943
CFH (k = 5, full) 0.2525 0.3795 0.5012
CFH (k = 5, train) †0.2619 †0.4136 †0.5289

Table 4.10: Overview of MAP scores under different configurations. Values preceded by (†)
indicate a significant change to the system in the previous row.

A way to intelligently reduce parameter space is to apply correlated feature hashing. This
reduces the dictionary in such that collisions become rare while the semantic content is not
spoiled. On a small corpus like 20NG, CFH is not always able to capture words with related
meanings, but still seems to preserve useful patterns in the data. With a MAP of 0.5289,
our final model achieves more than 10 MAP points more as the best model (Chen et al.
2010, Sparse-R, MAP 0.426).

However, we were not able to successfully enforce sparsity by using ℓ1-regularization.
Applying ℓ1-regularization for 20NG always decreases MAP score. In our experiments, the
regularization decreases MAP as soon as it affects the size of the model. Apparently, ℓ1-
regularization fails to select the useful features for the task. Although the nature of discussion
posts brings along a lot of noise, the model is able to find useful word correlations without
regularization.

Summarizing the experiments in this chapter, both diagonal and quadratic model showed
strong performance compared to the TFIDF baseline and to other works. Besides the positive
influence of CFH, the most interesting results is that the TFIDF construction scheme as well
as the CFH mapping affect the scores significantly if DF-counts respectively mappings are
calculated on the training data only.

61

Chapter 5

Cross-Language Information Retrieval

In this chapter, we examine how the basic models performs in a specialized cross-language
information retrieval task and describe a method how to combine different models in a novel
way. We start in Section 5.1 with the description of the task of bilingual patent retrieval
and present the data we use for training and testing. In Section 5.2 we conduct several
experiments on the sparse model to carefully select the best methods and optimal parameters
for our final model. This section is concluded by a short overview on the intermediate results.
We then present in Section 5.3 a novel method of combining sparse and dense models, where
we take the best model from the previous section and combine it with highly informative
domain knowledge features defined on the patent domain. At the end of the section, we
demonstrate the flexibility of our approach by integrating a completely different model from
another work. This chapter ends with Section 5.3, where we provide a conclusion on the
final results of the experiments on the sparse and the dense model.

5.1 Bilingual Patent Retrieval

The basic model introduced in chapter 2 performed remarkable well on the monolingual IR
task. Its advantage over standard retrieval models such as TFIDF or BM25 is that it is
able to learn not only a useful re-weighting of matching terms (as for the diagonal model in
Section 4.2), but also to consider all possible word pairs and weigh them according to the
given task.

This quadratic model is able to capture different word relations that are not restricted
to the diagonal of the matrix, where only direct word matches count. A logical step is
to apply the quadratic model on word pairs that are not from the same language. Here,
standard TFIDF score and the diagonal model cannot be applied in a reasonable way, but
the quadratic model has the potential to develop a useful similarity or relevance measure to
retrieve information from a collection written in a language other than the query language.

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 62

Data

The data we used for training and testing the cross-language information retrieval (CLIR)
model is based on patents. There are several reasons for this, most notably, patents have a
clear structure and are written in a very precise language.

Fortunately, we were able to use data created by our research group especially for CLIR on
patents. This corpus named BoostCLIR1 is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License2 and was created during the works of
Sokolov et al. (2013).

The data was constructed following a method described byGraf andAzzopardi (2008),
where relevance judgments are extracted based on the citations of a patent: a patent p that
is cited by another patent q is considered relevant to q. If the citation was added by an
examiner, it is considered higher relevant than if the citation was added by the applicant.
A special case is if patent p and q are in the same family, i.e. the patents are related to
the same invention but granted by different authorities. Then, patent p is considered highly
relevant for patent q. The relevance matrix based on these rules is:

Mij =

3 if patent pi and pj belong to the same family
2 if patent pi cites pj by the examiner
1 if patent pi cites pj by the applicant
0 otherwise

(5.1)

A similar construction algorithm was suggested by Guo and Gomes (2009), but the authors
did not implement the highest rank based on family relation, because they evaluated a
monolingual patent task.

The relevance judgments were extracted from the MAREC3 corpus, the document data
from a combination of MAREC and the NTCIR4 patent data. As MAREC contains only
English abstracts, the corresponding Japanese abstracts were extracted from the NTCIR
corpus to build the final resource with Japanese query patents and English document patents.
Table 5.1 contains an overview on the document sizes, relevant links between documents
based on the matrix (5.1), the average number of terms in patent abstracts and the sizes of
the English and Japanese vocabulary, Den and Djp.

The final corpus we use contains only Japanese and English abstracts and document IDs.
Since we use the bag-of-words model to learn the CLIR model, we consider short documents
as beneficial for our method. The highly specialized vocabulary of patents is another positive
aspect that makes correlations between certain terms more useful than for other data sets.

Finally, for the experiments in Section 5.3 involving domain knowledge features, we ex-
tracted additional meta-information using a script originally by Ruppert (2013) which we

1http://www.cl.uni-heidelberg.de/statnlpgroup/boostclir/
2http://creativecommons.org/licenses/by-nc-sa/3.0/
3http://www.ifs.tuwien.ac.at/imp/marec.shtml
4http://research.nii.ac.jp/ntcir/data/data-en.html

http://www.cl.uni-heidelberg.de/statnlpgroup/boostclir/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.ifs.tuwien.ac.at/imp/marec.shtml
http://research.nii.ac.jp/ntcir/data/data-en.html

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 63

all train dev test

docsen 1,088,127 888,127 100,000 100,000
docsjp 111,061 107,061 2,000 2,000
rel. links 1,473,904 1,422,253 25,173 26,478
∅ lenen 135.63 136.98 128.79 128.48
∅ lenjp 154.43 154.34 157.00 156.97
Den 365,553 305,257 110,637 111,214
Djp 60,470 59,284 10,014 9,834

Table 5.1: Characteristics of the Japanese-English patent corpus. The value ∅ len{en,jp}

denotes the average number of words per abstract, |D{en,jp}| is the number of distinct words.

modified to our needs. The meta-information is read by our system and the dense features
are created on-line by querying a database.

Task Description

For cross-language information retrieval experiments we examine the application of prior
art search: given a patent application, the task is to retrieve a list of existing patents
that are relevant, i.e. considered useful as prior art by applicants and examiners. It is
important to extend this idea to the cross-language setup, because prior art disclosures are
valid independently of the language used.

5.2 Experiments on the Sparse Model

The initial experiments are aimed at finding the number of training instances required to
further evaluate the system. As in the previous chapter, we first observe how the error curve
and the score function converge with the data. Then, we compare several preprocessing
steps and their impact on the learning task. Feature selection and several filter methods for
feature space reduction are in the focus of this section. At the end of this section we give a
brief intermediate analysis on the results of the sparse model.

Preparation

In accordance to the monolingual experiments, we started with observing how the error
curve behaves and how fast the function converges during training. This lets us estimate the
number of training instances required to compare models under different settings.

Again, we plotted the progressive error curve (Blum et al., 1999) for the unregularized
basic model. The TFIDF-vectors to generate the training data were built according to variant
2 in Section 4.2. For comparison, we also plotted binarized vectors, where all individual word
weights are removed s.t. a word is either present (value 1.0) or absent (value 0).

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 64

 0

 0.5

 1

 1.5

 2

 0 1e+06 2e+06 3e+06 4e+06 5e+06

P
ro

gr
es

si
ve

 E
rr

or

Number of Instances

Error During Training

TFIDF
binarized

Figure 5.1: Progressive error during training on TFIDF and binarized data.

Figure 5.1 demonstrates that the error during learning on binarized data drops faster
than for TFIDF. The explanation is that TFIDF enriches the vector representation so that
the learning converges much slower. Judging from the error graph, we decided to use approx-
imately 5 million training instances for the first experiments. After this amount of instances
both models seem to perform reasonably well, although the TFIDF model will benefit from
more training.

Vector Binarization

When we first applied the basic model to the cross-language task, the results were disap-
pointing. The scores evaluated on the development set were very low, although we tried
different training sizes and regularization parameters. In fact, the results were so bad, that
we searched for errors in each step of the preprocesssing pipeline, the learning module, and
the evaluation, but we could not find the source of the problem. Meant as a sanity check we
finally learned on training data that was prepared for a completely different model based on
boosting where the vectors were binarized – and the basic model started to work.

Figure 5.2 contains an interesting range of the extensive search for the right model pa-
rameters. The lower graph represents the scores after training with TFIDF vectors varying
λ for ℓ1-regularization between 0 and 10−6 and trained on 5 million instances. The changes
of score are marginal and the area where the scores reside is not worth discussing. However,
the upper graph depicts the same λ-region while training on binarized vectors. Here, the
binarization gave a huge increase in MAP score by a factor of approximately 12 compared
to the TFIDF variant.

In a final attempt to rescue the TFIDF idea we mixed TFIDF and binarized vectors.

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 65

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

1.00*10-9 1.00*10-8 1.00*10-7

M
A

P

L1-Regularization

Binarized and TFIDF Vectors

Binarized
TFIDF

Figure 5.2: Comparison of learning on bina-
rized vs. TFIDF vectors.

 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

 0.11
 0.12
 0.13
 0.14

1.00*10-9 1.00*10-8 1.00*10-7

M
A

P

L1-Regularization

Mixed Vector Models

Q:binary, D:tfidf
Q:tfidf, D:binary

Figure 5.3: Test after training on mixed vec-
tor models.

The experiment was to use for both training and testing binarized vectors on one side, and
TFIDF vectors on the other. The result graphs of MAP score against learning with different
ℓ1-regularization settings are plotted in Figure 5.3.

For reasonable low λ both systems achieve similar scores and perform much better than
the “pure” TFIDF-approach. With increasing regularization the models’ scores diverge with
a remarkable higher score for the model that uses binarized Japanese and TFIDF English
vectors. This might indicate that the problem with TFIDF scores comes mainly from the
Japanese side. However, the model cannot beat the scores of the system using only binary
vectors (Figure 5.2).

Judging from the results in Figure 5.3, we did a final experiment on the model with
binary query- and TFIDF document-vectors, where we increased the number of training
instances by running multiple epochs over the data. For the settings we checked, λ =
{10−9, 5 · 10−9, 10−8, 5 · 10−8} increasing training data does not help and the scores degrade
after the first epoch. Thus, we decided not to put more effort into training on TFIDF
weighted vectors at this point.

Our explanation for the disappointing performance of the TFIDF model is based on the
fundamental differences between the two languages Japanese and English: as a consequence,
TFIDF weights do not supply useful information for learning a similarity metric but merely
add noise, making it more difficult for the learner to extract useful patterns. This assumption
is supported by the observation that leaving one side binarized increases performance.

Binarization basically flattens the data and this makes it easier for the algorithm to select
the pairs and extract the structures that contribute most to the learning objective.

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 66

Stop Word Removal

In the field of information retrieval, stop (or function) word removal is a standard method to
simplify the model and remove noise. Function words are the grammatical “glue” between
other words in sentences, but they carry practically no lexical information. As soon as they
are taken out of the context and put into a bag-of-words as in our model, they become
completely useless.

There exist various lists of stop words not only for languages but also for tasks, because
it depends on the type of text which words can be removed without harming the retrieval
performance. From the retrieval point of view, stop words are useless because they virtually
occur in every sentence, thus returning a match for every document. TFIDF weighting
exactly addresses this problem, because in those cases the inverse DF-component of the
weighting becomes very small (DF is high), assigning such words very low weights.

english a, an, and, by, for, in, is, of, the, to, with
japanese が, こと, さ, し, する, た, て, で, と, に, の, は, れ, を

図, 手段, 提供, 解決, 課題, 選択

Table 5.2: Words removed because their TFIDF weight is below 10−10.

Instead of applying questionable stop word lists that may not work well for our purpose,
we simply use the TFIDF weighting as a criterion for stop word removal. If the TFIDF-value
is below 10−10, we discard the term as its weight is to low to contribute in a useful way. Table
5.2 lists the words that we removed based on their weight.

The English side needs no explanation, they are unquestionable function words. For the
Japanese words, the first line contains hiragana particles which are in fact true function
words, such as の (“of”) and は (“is”). The second line contains more complex words in
kanji characters. These words still occur very often in this type of text, as the string 課題
means “abstract” in English, and 選択 図 are the “provided figures”. In fact they represent
the headings for corresponding sections and are present in every Japanese document of our
corpus. This demonstrates that TFIDF-based stop word filtering is favorable because it can
capture special properties of the underlying documents.

The filtered words are only few in numbers, but deleting them had an unexpectedly
positive influence on the retrieval performance. The MAP scores went up by up to 10% as
shown in Figure 5.4. We conclude that for our bag-of-words model based on unigrams stop
words only add noise. However, higher order models like bi- or tri-grams are able to capture
the information contained in these function words.

Finally, an important point to note is that the optimal regularization parameter λ depends
on the preprocessing of words. As the curves in Figure 5.4 illustrate, the optimal λ is below
10−8 for the full vocabulary, while it is slightly above this value after stop word filtering.

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 67

 0.145

 0.15

 0.155

 0.16

 0.165

 0.17

 0.175

 0.18

 0.185

 0.19

 0.195

1.00*10-9 1.00*10-8 1.00*10-7

M
A

P

L1-Regularization

Stop Word Filtering

Stopword Filtering
Removed Punctuation

Figure 5.4: Effect of TFIDF induced stop word filtering on MAP score.

SGD Sampling Schemes

The 20NG training corpus from the previous chapter contains 20 newsgroups with 376 posts
on average in each group. For pairwise training, the idea is to select a positive and a
negative example, i.e. a post from the same and a post from a different newsgroup. So, for
each “query document” on average 376− 1 = 375 positive and 7532− 376 = 7156 negative
examples exist. The total number of possible training pairs is thus enormous and still very
high if each positive example is to be considered at least once for training.

As for the patent corpus, the number of relevant documents per query is small (≈ 10
according to our experiments) and this makes it possible to think of sampling schemes for
(q, d+, d−) other than selecting queries and documents completely independent:

1. Select a query q, sample a positive and a negative document (d+, d−) and create the
training instance (q, d+ − d−), then start over. This is what we usually do.

2. Select a query q, then sample n document pairs (d+, d−), each gives (q, d+ − d−).

3. Select a query q, then iterate over all relevant documents d+ and sample an irrelevant
counterpart d−, returning a sequence of (q, d+ − d−) instances.

For the sake of completeness we name a fourth scheme, i.e. building all possible pairs (d+, d−)
for a given query q. This is in most cases impractical: even on the small sized 20NG corpus
this would mean to create over 2.8 million pairs for each query.

For our patent corpus, the ratio of positive and negative documents is completely differ-
ent to the 20NG corpus. For a single patent, there are approximately 10 relevant patents on

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 68

average. Thus, it is not only possible to randomly sample query-document-pairs indepen-
dently as in the 20NG experiments, but it is also possible to randomly draw a query and
then create pairs involving all relevant documents.

Figure 5.5: (left) For each of the three queries, a single random document-document pair
is sampled. (right) The alternative scheme proposes to pair a single query with all relevant
documents and random irrelevant documents. Here, both schemes generate three pairs
(q, d+ − d−).

Figure 5.5 illustrates the difference between the sampling schemes. The left figure corre-
sponds to variant 1, and the right figure to the last scheme (variant 3). Variant 2 is a special
case of variant 3 and means selecting a subset of n triples from the right figure.

Although differences should vanish in the long run, Table 5.6 shows a clear advantage for
the alternative sampling scheme. One explanation is based on the “translating aspect” of
the model: concentrating on one query and looking at 10 times more word pairs containing
the current query words adds more useful information to the learning task than looking at
the same number of more randomly chosen word pairs that have less structure and thus add
more noise.

We applied the best regularization parameter so far, λ = 10−8, and trained three models
with training data created as described above. The files created according to schemes 1 and
2 contain exactly 5 million training instances, variant 3 has 5,057,980 training instances due
to rounding errors. To see at which point overfitting starts, we let the algorithm pass 10
times over the data. The result is shown in Figure 5.6.

Right after training on approximately 5 million instances, the achieved scores are already
quite different. While scheme 1 and 2 start at similar levels, variant 3 is a half MAP point
above. This advance remains until all variants start to degrade because of overfitting. Even
more interesting is the observation that variant 3 reaches the level between 4 and 5 epochs,
while variant 2 needs 7 epochs to reach its peak.

The differences are not high, at least between variant 2 and 3, but there is a clear advan-
tage for the new sampling schemes over the old one. Under optimal conditions (data size,
regularization parameter, learning rate) all variants should lead to similar results. However,
in our experiments the new scheme returns initially higher scores and converges faster, so
from now on, we are using the new sampling scheme to create the SGD training instances.

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 69

 0.19

 0.192

 0.194

 0.196

 0.198

 0.2

 0.202

 1 2 3 4 5 6 7 8 9 10

M
A

P

Epochs

Sampling Schemes for Query-Document pairs

variant 1
variant 2
variant 3

Figure 5.6: Influence of different query-document-document sampling schemes on MAP score
with regularization parameter λ = 10−8.

Feature Selection

The previous experiment on stop word filtering has already shown that feature selection
based on ℓ1-regularization helps to improve generalization capabilities. So, in contrast to the
same experiments on the 20NG corpus (see Section 4.2), this time regularization actually
helps. It was already suggested in Section 4.3 that retrieval on the 20NG corpus is an
extraordinary task because of the specific properties of the newsgroup data.

This time again, we are using the DF-tables from the training set to construct the devel-
opment and test set data and we observed an increase in score. The argument of conserving
the same distribution does still apply, although the vector binarization step makes this ar-
gument less convincing.

Enforcing Sparsity

In general, the set of all possible word pairs contains a lot of noise. This is even more true
here, because the word patterns inside the two languages are completely different. Applying
an ℓ1-regularizer that actively pushes low values to 0 enforces sparsity of the model and helps
to give more weight to useful word correlations, increasing generalization capabilities of the
final model.

Figures 5.2, 5.3 and 5.4 illustrate that if the parameter is chosen wisely, regularization
improves the model significantly and the regularized model has a clear advantage over other
models in terms of generalization capability. To see the amount of sparsity actually achieved,
Table 5.3 lists the sizes of the models from the comparison. The last row contains the size

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 70

epoch 1 2 3 4 5 6 7 8 9
sampling 1 57.7M 28.1M 18.1M 13.0M 10.2M 8.3M 7.1M 6.1M 5.3M
sampling 2 47.0M 23.7M 15.7M 11.5M 9.0M 7.4M 6.2M 5.3M 4.7M
sampling 3 25.6M 10.2M 5.7M 3.7M 2.7M 2.0M 1.6m 1.3M 1.2M
λ = 0 2,402.4M

Table 5.3: Model sizes indicating sparsity of differently trained models. Numbers are in
megabytes (106 bytes), ℓ1-regularization parameter is λ = 10−8 for all three variants.

of the unregularized model as an “upper bound”. A notably observation is the fact that
variant 3, where each query is paired with all relevant documents and random irrelevant
ones, has not only the highest score but also results in the smallest model.

It should be emphasized that we were only training on 5 million instances and it is
possible that increasing the training data changes this picture in favor to lower λ-values. In
the following experiments, we use a regularization parameter of λ = 10−8 unless otherwise
noted.

Reducing Feature Space

For feature space reduction we examined the same strategies as for monolingual data. Thus,
we are conducting experiments that basically aim at analyzing the impact of the filter meth-
ods limited vocabulary and correlated feature hashing.

Limited Vocabulary

The average length of documents of the unmodified patent corpus is 178.8 words on average
for Japanese compared to 134.8 for English, and the size of the vocabulary is 60,470 distinct
words for the Japanese side and 365,553 for the English side (see Table 5.1).

This discrepancy in counts is a pointer to the fundamental differences between the two
languages. One reason for the huge difference in raw counts is the fact that Japanese kanji
characters have multiple meanings depending on the context. Those characters were im-
ported from China, and in some cases multiple times under different circumstances. The
existing meanings were preserved and new senses added, thus written Japanese today is a
very condensed and efficiently encoded language.

Limiting the vocabulary is a way primarily to reduce model and training complexity.
In the case of a hashed parameter vector, limiting the vocabulary also reduces unwanted
collisions and thus decreases this kind of information loss. In our experiment we applied a
limited dictionary of 30, 000 words in the way described in Section 3.2.

The expectation was that a simple action like cutting off the dictionary at 30,000 words
must degrade performance significantly, but the experiment’s result were different. As Ta-
ble 5.4 demonstrates, the scores are almost exactly on par with our best model so far, i.e.
the model using implicit stop word filtering and the new sampling scheme, which was also

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 71

epochs 1 2 3 4 5 6 7
standard 0.1959 0.2000 0.2009 0.2010 0.2011 0.2007 0.2000
model size 25.6M 10.2M 5.69M 3.71M 2.67M 2.04M 1.62M
limited 0.1952 0.2002 0.2009 0.2010 0.2008 0.2005 0.2002
model size 17.9M 7.17M 4.08M 2.69M 1.92M 1.49M 1.23M

Table 5.4: MAP scores and model sizes for two models using full and limited vocabulary.
The ℓ1-regularization parameter is set to λ = 10−8 in both cases.

used for creating the data with the limited vocabulary. The model sizes, however, are much
smaller because the limited dictionary leads to less collisions and noise. With less noise, the
algorithm can better extract useful patterns, although the process of reducing the dictionary
also means information loss.

One important aspect is that the amount of reduction is not even between the two
languages. For the Japanese side, about 50% of the types are discarded, for the English
side approximately 92% are removed. So, using the described limiting approach, there is
much less information removed from the Japanese than from the English texts. After the
reduction the algorithm might be able to connect Japanese to English words better because
some useful patterns in the patents are still preserved.

Number Normalization and Simplification

The idea behind number normalization is to convert any value into a format that can be
compared among each other. For example, 1.0 and 1 describe the same number, but a
term-based information retrieval system will normally fail to recognize this identity.

Correct and reliable normalization of numerical values is a complex task. For example,
imagine the memory capacity of a computer device is “256 GB”. Depending on the type
of device, this number has to be converted differently: in the case of memory modules its
256 GB = 256 × 10243 = 274, 877, 906, 944 ≈ 2, 7488 · 1011 bytes, in the case of hard drive
space its approximately 2, 56 · 1011 bytes. There are too many complicated aspects and for
this reason we decided not to put too much effort in normalizing numbers correctly.

We implemented a “poor-man’s-normalization” scheme based on simple regular expres-
sions. The method is to replace all digits by a special token. The capital “N” is used for
this, because the rest of the text is lowercased. For example, “128” and “999” will both
be replaced by “NNN”, which might not seem useful at first. However, we believed that
this conversion increases overlap between relevant patents, because such patents are likely
to mention similar types of numbers. From this perspective, this simplification step is a
reasonable strategy to improve coverage.

The result of the trade-off experiment comparing information loss and higher overlap
by number simplification can be found in Figure 5.7. Number simplification actually helps
and increases scores compared to the best model so far (standard model with λ = 10−8).
Although the increase is low, we found that the difference between the 5th epoch of the

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 72

standard model (MAP = 0.2011) and the 4th epoch after simplification (MAP = 0.2055) is
significant according to the randomization test described in Section 3.3.

 0.195

 0.196

 0.197

 0.198

 0.199

 0.2

 0.201

 0.202

 0.203

 0.204

 0.205

 0.206

 1 2 3 4 5 6 7 8 9 10

M
A

P

Epochs

Feature Reduction Methods

Num.simpl.
qStem

SW Filtering

Figure 5.7: Comparison of different feature reduction methods. Number simplification and
stemming both improve MAP, but for qStem the score change is only significant at p = 0.05.

Stemming and Lemmatization

The original idea was to leave as much as possible of the data untouched and let the machine
learning select informative terms or pairs. Different inflections of verbs and declensions
of nouns and adjectives will be identified and grouped by the learning algorithm as long
as enough data is available. The previous experiment on number simplification already
suggested that simplifying the data supports identification of useful terms.

Lemmatizing is a standard approach in information retrieval to remove noise and increase
coverage between terms. The idea is to reduce every grammatical form to the most basic
form, its lemma. However, lemmatizing is a difficult task: a lot of linguistic effort has to
be put into a tool that reliably generates the lemma for a given word, because sometimes
the word can be of different types and must be disambiguated by the context or the syntax
structure.

A much easier approach is stemming, where the grammatical forms are simply reduced to
the stem of the original word. For the English language, an efficient implementation can be
achieved by applying a few rules based on regular expressions. A well known example that
works on English texts is the Porter stemmer (Porter, 1980). Although the quality of the
result is often bad from a linguistic perspective, we look at this idea as a feature reduction
technique to increase overlap.

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 73

punct. filt. + TFIDF filtering + Number simpl. + qStem
∅ vector lengthjp 67.15 50.71 49.23 41.53
Djp 59,410 59,389 57,459 50,342

Table 5.5: Average length of documents and vocabulary sizes after several filtering steps.

Before explaining the stemming approach we applied, a brief explanation of the three
character systems in written Japanese is helpful. Japanese written language consists of
three types of characters: hiragana (ひらがな), katakana (カタカナ) and kanji (漢字). It
was already mentioned that kanji are “imported” Chinese characters, so these are usually
content words. Function words are always written in hiragana and also grammatical mod-
ifiers that are attached to content words. The remaining group, katakana, is reserved for
words imported from language families other than Chinese. For example, “kon-pyuu-ta” (コ
ンピュータ) is the English imported word for “computer”.

Japanese is a agglutinative language, where verbs show a high degree of inflection. Ad-
jectives are also highly inflected, but nouns only very little. For example, the plural of a
noun is only identified by the context. Finding the correct lemma for a given Japanese word
is a task we never considered seriously, but we thought of a very simple method based on the
characteristics of the Japanese writing system. As practically all function words and gram-
matical forms are written in hiragana and content words are (almost) always in katakana or
kanji, a radical approach is to remove hiragana characters completely from the text. In the
following, we call this harsh form of stemming qStem (“quick’n’dirty stemming” or “query
stemming”).

Deleting all hiragana characters changes statistics on document length and vocabulary.
These changes after subsequently applying several filtering steps are listed in Table 5.5. The
method qStem has a high impact on document length and vocabulary size. All in all, the
document length changes by almost 40%, while the vocabulary is reduced by 16%. Thus,
while the learning complexity is significantly reduced, we hope to keep the most “informative”
part of the vocabulary.

It must be noted that hiragana words are not always functional words and grammatical
endings. In fact, any kanji character can also be written in hiragana and in rare cases, e.g.
where the sense is clear and the kanji character is very complex, hiragana is preferred. These
words, although they might be useful, get discarded during the filtering as described above.

From a linguistic point of view, this filtering is a questionable method, nevertheless
the results in Figure 5.7 show that this form of lemmatizing helps to increase MAP for
the retrieval task. However, the gain over the standard method is low and is in fact only
significant at p = 0.05, thus not clearly supporting a definite positive contribution.

Correlated Feature Hashing

Correlated feature hashing has been shown to be very effective in the monolingual exper-
iments in chapter 4. For the monolingual task, the biggest advantage is the decrease of

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 74

word mappings

supersampler interpolates interpolator greatest interpolating offsets
N.N-N.Nk.sub.N NN.N-NN as.sub.N wo.sub.N ceo.sub.N sno.sub.N
aminoglucoside antibiotic liposome self-regulating ineffective toxic
suspend-to-disk reload reboot routines save saved

cracks cracks crack cracking cracked scratches

Table 5.6: Sample mappings generated by correlated feature hashing on patent abstracts.

features while preserving information contained in the features. Additionally, hashing into
multiple bins minimizes the harm of collisions.

For the cross-language task, it was not clear if these two properties contribute in the
same way. Here, the system not only learns the characteristics of the information need, but
also an implicit translation table of word pairs from different languages. By increasing the
number of words per document, there are more possibilities to connect source and target
words, making it more difficult for the model to extract information.

In all previous experiments on the cross-language task, reducing complexity helped the
model to learn useful patterns. Even in the case of limiting the vocabulary, the model was
on par with the standard model, and if the information had been preserved, it would have
worked even better. Thus, we decided to first apply the CFH-algorithm with a mapping
of 30,000 words to the English side only. On the Japanese side with approximately 60,000
words, we applied all the described filtering steps except qStem.

Due to memory limitation on the Hadoop-cluster, it was necessary to use not more than
29 bits to address the parameter vector, which results in a 4 GB matrix of approximately
23, 000 × 23, 000 size. Exactly 536, 870, 912 buckets are available for features, that are in
the case of the full vocabulary 365, 553 × 60, 470 = 22, 104, 989, 910 possible word pairs.
This means 41, 17 collisions per bucket on average, which explains why the standard model’s
performance is so low.

With correlated feature hashing for English and filtering of the Japanese side the number
of possible word pairs is reduced to 30, 000×57, 459 = 1, 723, 770, 000 resulting in an overload
factor of 3.21 for each bucket on average. This is still not optimal, but we hoped to see
improvements under optimized regularization settings. Again, we generated the mappings
on the training set and applied them on all sets, effectively filtering out all words that did
not occur in the training set and hashing (“mapping”) the remaining words to the 5 most
correlated buckets (“frequent words”).

Table 5.6 lists some example entries from the CFH tables created on the English doc-
uments of the patent data. Compared to the examples in Table 4.8 on the 20NG corpus,
these entries make more sense. There are still some strangely mapped terms, but for most
of the words the CFH works. The example in the second row contains the mapping of a
complex molecule structure to simpler components, and demonstrates exemplary the results
of number simplification. The last line is the mapping for the word “cracks” which is a

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 75

frequent word itself. This mapping is well understandable and makes perfect sense.
As for the 20NG corpus, correlated feature hashing changes the length of the documents

significantly. After this mapping, the length of the documents grows by a factor of 5, but
there are frequent repetitions and after stop word removal (Section 5.2) the length of the
documents grows roughly by a factor of 3. This fundamental change in data characteristics
requires a new tuning of the ℓ1-regularization parameter λ. We searched for the best λ in log
space and compared the results to the graph of the best model so far, which is the standard
model with number simplification from Section 5.2.

The result of the search for λ is shown in Figure 5.8. The results are encouraging, because
correlated feature hashing actually boosts MAP by more than 2 points. Please remember
that the standard model gets slightly better after 4 runs over the data, but in the scale of
the figure this increase is very small.

As we are getting our system in shape for the final evaluation, we also compared the
PRES scores, our final metric introduced in Section 3.3, to select the optimal system to
test on. This time we compared the two best systems (Figure 5.9). The behavior of the
PRES scores is almost the same as MAP, but there are differences in detail. For MAP,
the optimal regularization parameter lies between 7 · 10−9 and 8 · 10−9. For PRES, the
optimal regularization parameter is λ = 9 · 10−9 and the shape of the curve is much steeper,
making it easier to identify the optimum. Interestingly, at the lower left both models perform
similar according to PRES, while the model without stemming performs better according to
MAP. With increased λ this preference switches for MAP, but PRES seems more stable in
promoting the variant with qStem.

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

1.00*10-9 1.00*10-8 1.00*10-7

M
A

P

L1-Regularization

Correlated Feature Hashing

CFH
2 x CFH

CFH+qStem
Num.simpl.

Figure 5.8: Searching for the optimal λ according to MAP.

Until now, we had applied CFH only to the English side. One question was whether CFH
can further increase the retrieval performance when applied to both sides. For this to find

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 76

 0.39

 0.4

 0.41

 0.42

 0.43

 0.44

 0.45

 0.46

 0.47

 0.48

 0.49

 0.5

1.00*10-9 1.00*10-8 1.00*10-7

P
R

E
S

L1-Regularization

CFH and Regularization

CFH
2 x CFH

CFH+qStem

Figure 5.9: Searching for the optimal λ according to PRES.

out, we created mappings for the Japanese side in exactly the same way as for the English
side, i.e. created the mappings on the training corpus with k = 5 and F = 30, 000, and
applied these mappings to training, development and test set.

This mapping of course increased the length of Japanese documents by a factor of ap-
proximately 3. This time, the results in Figure 5.9 showed no increase for PRES and in
Figure 5.8 a huge decrease in MAP. Our explanation is that CFH on one hand reduces the
vocabulary, but on the other hand increases the number of features per document by increas-
ing the document’s length. Specific words might be good indicators for relevance, pushing
certain documents very high. With CFH, the impact of such terms is softened, resulting in
overall lower precision but higher recall.

The final step would be to find out the optimal number of training instances that gives
the best performance before overfitting. We learned multiple passes on the data with settings
for the best model so far, i.e. CFH for English and qStem for Japanese. The result was
that performance degrades slightly after the second epoch, indicating that overfitting already
started. We then tried to learn on data splits, but the result was even worse, most probably
due to a technical problem with the learning toolkit.

Our explanation for the early overfitting of the best model is that by increasing the
number of words per document by a factor of 3 (as CFH does), the system actually sees
three times more data as in the non-CFH case. As a simple rule of thumb, overfitting should
then occur three times earlier, which means according to Figure 5.7 approximately after 4

3
of

the original data. So, we conclude that after the first epoch we are already relatively close
to the optimum and stopped further investigations in this direction, accepting that we loose
a few additional points here.

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 77

Intermediate Results

We will now briefly summarize the evolution of our sparse model documented in Table 5.7.
These scores are again discussed in the final section of this chapter.

In the first experiments we discovered the problem of using TFIDF weights in our task.
By moving to binarized vectors, the model started to extract useful patterns. For further
improvements, ℓ1-regularization had to be applied to actively remove irrelevant features.
Still, the model trained on the completely unmodified data had problems.

Our TFIDF-motivated method of stop words removal increased PRES and MAP scores
over the unmodified model significantly. A somewhat unexpected result was the positive
effect of the sampling scheme on the learning performance. We moved from completely
random query-document-document training instances to sequences of tuples that contained
all relevant documents for a certain query.

Simple variants of classic IR filtering methods such as stemming and number simplifica-
tion further improved scores, but the change was not always significant. Besides stop word
filtering, CFH made the largest contribution to the final scores. For the CFH model with
number simplification, additionally applying the qStem method finally showed a significant
change.

PRES MAP

dev test dev test

unmodified 0.3315 0.1765
TFIDF stop words †0.4196 †0.1927
new sampling †0.4252 †0.2011
qStem †0.4452 0.2035
Num.simpl. ‡0.4481 ‡0.2055
CFH+Num.simpl. †0.4882 †0.2185
CFH+Num.simpl.+qStem †0.4930 †0.2216
final model λ = 9 · 10−9 0.4933 0.4994 0.2227 0.2301

Table 5.7: Intermediate and final results documenting the evolution of the sparse model.
Changes preceded by (†) are significant to the previous row, (‡) indicates a significant change
over the second previous row.

Concluding this section, the best model so far uses CFH on the English side, qStem on the
Japanese side, and is trained on approximately 5 million instances with an ℓ1-regularization
parameter λ = 9 · 10−9. This is the model we use for further experiments in the rest of this
chapter.

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 78

5.3 Combining Sparse and Dense Models

The final approach presented in this thesis is a novel method where we combine the result of
the sparse model with dense features. The basic idea is to take the scores of the best model
of the previous Section 5.2, add dense features that we think of to be useful, and train a
dense model on the newly created data. Combining different rankings has been done various
times with different strategies in mind. It is the central idea of rank aggregation which was
shortly mentioned in the introduction in chapter 1. The new approach combines dense and
sparse features by “plugging” the output of the sparse model as a dense feature into the new
model. In this new model, we do not simply re-rank the top-k ranked outputs of several
ranking systems as in standard rank aggregation applications, but we have access to the full
list of documents and use this information for learning.

Dense Features

We take the score of our sparse model as a feature and add domain knowledge features
inspired by the work of Guo and Gomes (2009). The first step is to define a feature map
that takes pairs of patents (pi, pj) and returns the dense features we want. Formally, the
resulting vector Φ can be constructed as follows:

Φ(pi, pj) = (φ1(pi, pj), . . . , φn(pi, pj))

Each φk, with k = 1, . . . , n, is a function that returns a single dense feature, for example the
score our sparse model assigns to the pair (pi, pj). This way we can easily add or remove
features that we think of to be useful. After training, we can compare the learned weights
to find out which features are most or least useful for the task.

Score Feature

The score feature does not need further explanation. We simply take the best sparse model
so far (see Section 5.2) and define our function according to the basic model:

φscore(pi, pj) = p
⊺

iWpj

By definition, the function φscore returns a real valued score for each patent pair (pi, pj).

Binary Features

The remaining features are binary values defined on common properties of the two patents.
A short description of each feature follows here:

• Same IPC class : every patent has assigned one or more IPC codes (see Figure 5.10
for an example). For this feature, we compare the first four characters of the code, i.e.

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 79

Figure 5.10: Example of the complete classification symbols A01B 33/00 and A01B 33/08

combining codes for section, class, subclass and main group or subgroup. Idea from: “Inter-
national Patent Classification (Version 2013)”, WIPO.

the section, class and subclass code, and call this function IPC3. If all three codes are
equal between pi and pj , this feature becomes active.

φipc3(pi, pj) =

{

1 if IPC3(pi) ∩ IPC3(pj) 6= ∅
0 otherwise

This is certainly a strong feature: being in the same IPC-section, class and subclass
should raise the possibility of relevance.

• Common inventor : patents have at least one inventor defined. This feature looks at
the intersection of the inventors of patents pi and pj . If there is at least one common
inventor, this feature is 1, otherwise 0.

φinventor(pi, pj) =

{

1 if Inventors(pi) ∩ Inventors(pj) 6= ∅
0 otherwise

The motivation for this feature is that an inventor is likely to make a new invention
based on his previous work.

• Assignee: this is the legal owner of a patent, called assignee in the U.S. and applicant
elsewhere. This feature compares the contents of the field named “applicant” in the
patent data.

φassignee(pi, pj) =

{

1 if Assingee(pi) = Assingee(pj)
0 otherwise

The assumption is that patents belonging to the same assignee are more likely to be
relevant to each other.

• Independent applicants : this feature captures if both applicants of the two patents are
independent.

φindependent(pi, pj) =

{

1 if IndependentApp(pi) = IndependentApp(pj)
0 otherwise

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 80

One possible scenario for this feature is that patents by independent applicants are
more likely to build up on other patents by independent applicants.

• Claims : This feature compares the number of claims the patents make and fires if the
number lies in some common interval.

φn
claims(pi, pj) =

{

1 if |Claims(pi)| ∈ Cn ∧ |Claims(pi)| ∈ Cn

0 otherwise

The intervals are C1 = {0}, C2 = {1, . . . , 5}, C3 = {6, . . . , 10}, and C3 = {11, . . . ,∞},
defining four binary features in total.

Claims define the boundaries of patent protection. They follow a certain structure
describing the underlying invention in a precise language often using legal terms. Thus,
a possible motivation for this feature is: two patents that both contain many claims are
more likely to be relevant to each other than two patents that made only few claims.

• Geographic location: The motivation of this feature is to infer information about rele-
vance based on geographic data on the first inventors of both patents.

φ[f](pi, pj) =

{

1 if Address[f](pi) ∩Address[f](pj) 6= ∅
0 otherwise

In this notation, Address[f](p) returns the address field f of the inventor of patent
p, where f = {Country, State,City}. This gives a total of three binary features on
geographic information.

The idea behind this feature is that two inventors working at the same place are more
likely to cite each other’s patents than inventors working at different locations.

The set-style definition of common address fields is due to the fact that we had to
keep multiple addresses for a single inventor, so InventorAddr(·) actually returns a
set. More information on this can found in the next section on the construction of
features.

• Sections and Classes : The idea for these newly added features comes from the as-
sumption that the IPC3 feature might be too strict in comparing always the first three
elements of the IPC-code. By looking also at IPC sections and classes, this feature
enables a finer evaluation of the code.

φn
ipc[1,2](pi, pj) =

{

1 if | IPC[1,2](pi) ∩ IPC[1,2](pi)| ∈ Pn

0 otherwise

The used sets are P1 = {0}, P2 = {1}, P3 = {2}, P4 = {3, . . . ,∞}. The notation is
similar to the first IPC-feature: IPC1(p) is the set of sections of IPC-codes for patent
p, IPC2(p) the set of sections and classes. This returns four features for each of the
two components, i.e. 8 in total.

To summarize, this gives 19 binary features plus one score feature resulting in a total of 20
dense features.

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 81

Construction

Most of the data required to construct the dense feature map φ is available in the MAREC
patent corpus. Having this data, the function φn simplifies to a comparison or intersection
creation of corresponding entries.

However, the locality features are not easily accessible and are completely missing in the
Japanese patents we use. Our solution was to create an inventor’s address database based
on the data from MAREC. This data structure, actually a hash table, maps inventor names
to corresponding addresses. For this task it was very helpful that all data fields contain only
latin characters, so we hoped that our comparisons are relatively reliable. However, during
the implementation of the database, we observed numerous inconsistencies in the address
fields. For U.S. patents, the addresses are mostly error free, but the list of problems with
foreign patent addresses is endless.

An exemplary problem is the city field for Japanese addresses. Here are a few examples
of the variants found for the city name Kyoto:

• Most often, “Kyoto” is entered. This is what we hoped to always encounter.

• “Kyoto-shi” is also frequently used. This is actually the full Japanese name for “City
of Kyoto”.

• Sometimes, “Kyoto-fu” is found, which is the prefecture of Kyoto. This is a large area
of 4, 612 km2 including the city of Kyoto.

• Other patent applicants translated the Japanese name, providing “Kyoto City” or
“Kyoto-city” for the city field.

• A difficult example is the specification “Fushimi-ku”, which is actually a ward of Kyoto,
so it is part of the city of Kyoto.

These are some of the problems encountered on the spelling of a relatively famous Japanese
city. We found more irritating examples where city fields contain almost complete addresses,
e.g. “Kaminoge, Setagaya-ku, Tokyo”: it is the area Kaminoge in the Setagaya ward of
Tokyo. A deceitful example is “Minato-ku”, which can be one of the 23 wards of Tokyo, or
it can be a ward of Osaka.

We expected less problems with German addresses, but our hopes were dashed: we
counted more than 40 different variants to spell the city name “Munich”. Several problems
are due to the missing characters on the English keyboard, so “München” is usually entered
as “Munchen”, but surprisingly, “Munich” sometimes becomes “Münich” in the data.

To come to an end, we implemented a set of approximately 100 rules of regular expressions
that corrected the most common errors found in city names. If multiple specifications were
encountered like in the Japanese example above, they were broken up into multiple addresses.
In the example above, we would create three city specifications, i.e. “Kaminoge”, ”Setagaya-
ku”, and “Tokyo” – geographically wrong, but we aimed for coverage.

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 82

To lower the impact of the problems mentioned above, we finally implemented an in-
exact comparison algorithm based on Levenshtein-distance (Levenshtein, 1966). The
Levenshtein-algorithm returns the edit distance, i.e. number of basic operations to convert
a source string s into a target string t. The basic operations are substitution and insertion.
For our comparison, we defined that two city names match if 0 ≤ edit distance(s, t) ≤
1, but this strategy punishes longer names. As additional match criterion we defined
edit distance(s, t)/min(|s|, |t|) ≤ 0.2. This means, for longer strings we allow an edit dis-
tance of 0.2 times the length of the shorter of both strings. For example, a string with 10
characters can match a 12 character string if the edit distance is not greater than 2.

Learning with Dense Features

Learning with dense features is very similar to learning with sparse features. We took the
same learning toolkit as before, Vowpal Wabbit, and fed it with differences of dense feature
vectors together with relevance judgments to train a ranking perceptron.

We first created pairs of higher and lower ranked English patents with respect to a given
Japanese patent, x = (Φ(pjp, p

+
en),Φ(pjp, p

−
en)), where p+en is ranked higher than p−en. For

convenience, we define the difference between the two feature vectors x = Φ(pjp, p
+
en) −

Φ(pjp, p
−
en).

This time there are 20 dense features without any quadratic expansion, so the objective
function simplifies to a perceptron for pairwise ranking (Shen and Joshi, 2005). In our
case, we use a margin ranking perceptron as presented by Collobert and Bengio (2004):

min
w

L(w)

where L(w) =
1

N

N
∑

i=1

li

=
1

N

N
∑

i=1

(bi −w⊺xi)+ (5.2)

This is exactly the optimization problem as we have described in Section 2.2. Again, we
use stochastic gradient descent as learning algorithm. According to Equation 5.2, the loss
function on a single example is

li(w) = (bi −w⊺xi)+

from which the following SGD update rule can be derived exactly as for Equation 2.9:

∇li(w) =

{

−xi if w⊺xi < bi
0 otherwise

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 83

Everything left to do is to create learning data for the tool and start training. For the score
feature, we use Vowpal Wabbit’s code as a library, which is actually one of the key features of
VW. Technically, we create a program instance in memory with the appropriate parameters
and the model, and can then send vectors and receive scores comparable to a client-server
model. Given a tuple (pjp, p

+
en, p

−
en), where p+en is a more relevant and p−en a lesser relevant

patent with respect to pjp, we create two scores φscore(pjp, p
+
en) and φscore(pjp, p

−
en) which fill

the corresponding dimension of the two feature vectors Φ(pjp, p
+
en) and Φ(pjp, p

−
en).

To add the domain knowledge features to Φ, we implemented an in-memory database
which is based on hash tables for fast access. The database expects a patent ID and the
field-type as parameter, and returns the requested meta-data. Then, our code only needs to
compare fields or build intersections of sets and count the elements.

The geographic location are the remaining features of Φ and these were difficult to im-
plement. As mentioned before, we had to cope with various issues related to the address
data. The application of the Levenshtein-algorithm for the comparison of city names catches
some errors, but we were not sure if the additional information will make up for the noise
we introduce with this feature.

Experiment

In the final experiment we evaluate the model using all features described above and also
do an ablation experiment where single features (or feature-groups) are left out for both
training and testing to see its contribution.

The results of the dense model in comparison to the sparse model are listed in 5.8.
Unfortunately, we cannot directly compare these results to the work by Sokolov et al.
(2013), because we use different test-dev-splits: we started tuning our experiments on the
test partition and thus later had to switch development and test set, so we were not forced
to repeat all experiments that were done before.

PRES MAP

dev test dev test

sparse model 0.4933 0.4994 0.2227 0.2301
dense model 0.6933 0.6881 0.2891 0.2901

Table 5.8: MAP scores of the two final models based on sparse and dense features.

However, the numbers for the new method are encouraging and in Section 5.3 we re-tune
our model and provide an argument under which circumstances the numbers are comparable
to the results of Sokolov et al. (2013) to some extent.

Contribution of Single Features

To determine the contribution of each dense features, we conducted an ablation experiment
where our dense model is trained and tested without the features we want to examine. The

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 84

idea is that an ablation experiment gives us important information how much a feature
contributes to the patent CLIR task.

feature weight PRES MAP

all – 0.6933 0.2891
φscore 1.411876 †0.4861 †0.1871
φipc3 0.945277 †0.6507 †0.2816
φinventor 0.239652 †0.6907 †0.2773
φassignee 0.017165 †0.6929 0.2888
φindependent 0.043821 0.6934 0.2891
φ1
claims (0) 0.051620

φ2
claims (1-5) 0.024788

φ3
claims (6-10) -0.000341

φ4
claims (11+) 0.021732 0.6932 0.2889

φ1
ipc1 (0) 0.000417

φ2
ipc1 (1) 0.079988

φ3
ipc1 (2) -0.025161

φ4
ipc1 (3+) -0.100250 0.6933 0.2890

φ1
ipc2 (0) -0.278392

φ2
ipc2 (1) 0.003336

φ3
ipc2 (2) 0.210527

φ4
ipc2 (3+) 0.406972 †0.6881 †0.2843

φcity 0.057727
φstate -0.016517
φcountry -0.022161 †0.6935 0.2897

Table 5.9: Weights of features and the influence of features / feature groups on the scores
for the development set. Values preceded by (†) indicate a significant change compared to
“all“ system.

The creation of the training data for this task is straightforward: we have already the
dense data, so we just need to switch off certain features in the training set. This can be
accomplished by restricting training to certain namespaces of the data, or simply by creating
new sets where the features in question are left out. The latter approach, which we followed
here, has the nice property of generating models that are compatible to our testing setup.

This property comes from the fact that the new models simply have zero weight at the
position of the left out feature, thus we can use exactly the same test setup as for the normal
dense model. This makes the execution of the single experiments very comfortable.

Table 5.9 lists the results of the experiment where we switched off each single feature
described in Section 5.3. Additionally, the table contains the weights for each feature after
training the normal dense model (row “all”). According to the test described in Section 3.3,

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 85

most features are significant, at least according to one of the two metrics. Only the changes
for the features φindependent, φclaims and φipc1 do not indicate a significantly different system.

Looking at the weights, the φscore feature is by far the most important, especially because
this real value is not normalized and lies roughly between 4 and −2. The PRES and MAP
values in row φscore are the model’s scores without the sparse system. Compared to our
sparse model, the impact of the domain knowledge features is impressive. A model trained
on these features alone almost reaches the PRES scores of the final sparse model and is
better than the unmodified sparse model with respect to MAP.

The second most important is the φipc3 feature. It is quite reasonable that having a
common IPC-Code in section, class and subclass is a high indicator for relevance, because
then both patents are basically covering the same area. The next level would be the group
category, which is probably too fine grained – but this is speculation, we did not create a
feature to verify this.

The third most important is the φ4
ipc2 feature, where a correlation in section and class

for more than 3 IPC-codes is a strong indicator of relevance. However, this might be a rare
case as we have not checked how often this happens in the data. The feature for having no
common IPC-codes that match in section and class has the highest negative weight. This is
a strong indicator that two patents are coming from completely different areas. Nevertheless,
the weights for the features φipc1 that fire when 2 or more common sections occur is negative
too, which suggests that common section membership is in general not a good indicator for
relevance, because the classes contained in a section are often too diverse5.

Having a common inventor is by its weight a strong feature too. This supports our initial
assumption that an inventor is indeed likely to build on his previous work and to cite his
own patents.

The contribution of the geographic location features, φcity, φstate and φcountry, was disap-
pointing, especially with the complexity of the construction in mind. However, the data we
had to use to construct this features contains a lot of noise. Thus, it is likely if this feature
is based on cleaner address data, it will contribute more to the task.

We only checked certain groups of features in this experiment. It would be interesting to
conduct more experiments on the single features within a group to estimate their contribution
to the task, but due to time constraints we had to move this to future work.

Incorporating New Models

In the final section about combining dense and sparse models, we take a different look on
the model presented in the previous section. This model which we call the dense model for
short, combines a sparse model together with dense features and learns a new model on the
data. This combination is accomplished by putting the sparse model score as a feature into
the dense model.

5For a complete list of current IPC-codes showing the diversity of classes and subclasses within a
section, see http://www.wipo.int/classifications/ipc/en/ITsupport/Version20130101/index.html,
accessed 02.09.2013

http://www.wipo.int/classifications/ipc/en/ITsupport/Version20130101/index.html

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 86

If we look at the dense features as single learners, the resulting model can be seen as
an implementation of a multi-layer network, where sparse representations of data (words
pairs, patent meta-data6) are the input data, the input layer emits dense features (IPC-
information, addresses, scores) to the output layer, which finally generates the output. Figure
5.11 illustrates this perspective, where the sparse model is one component Kn of the input
layer, the inputs xn are documents, addresses, or meta data, and the single unit output layer
M is our dense model.

The idea to treat features as (base) learners is a basic strategy of the boosting approach
to machine learning (Friedman, 1999). In boosting, the method is to incrementally create a
combination of base learners where the weight of each learner is adjusted by the residual of the
current function. This clarifies why our approach cannot be considered a boosting method:
we are not looking at residuals and we are not incrementally combining base learners. Our
work is related to the method of linearly combining rankers as described in Wu et al.
(2008). In this work, the authors directly optimize a non-smooth retrieval score like NDCG
by training a LambdaRank model (Burges et al., 2006) using previous model scores as
inputs. In contrast to this, we are optimizing the loss based on the relevance given by the
data.

Figure 5.11: A different view of the combined model: multi-layer learning.

The network idea, however, inspired us to think of an extension of the dense model: the
modularity of the approach enables us to plug in and out features (or learners) in a very
flexible way. Thus, it is easily possible to add completely new modules of almost arbitrary
complexity. One practical limitation of our current setup is that the new module should be
written in a compiler-language to include the object code directly into the existing framework.

As a proof-of-concept of the idea presented above, we take the bigram model of the
linboost implementation written by Sokolov et al. (2013) as a new module and use it as
a feature in our dense model. The linboost approach applies the idea of boosting to CLIR
and has performed exceptionally well on the patent retrieval task. The scores achieved by
the single and the combined systems are compared in Table 5.10.

6If meta-data is represented by a binary vector, it is sparse.

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 87

Remarkable are the relatively high scores achieved on the precision based MAP metric.
In this respect, our sparse model can beat the unigram-based Boost-1g model. However, for
the recall oriented patent retrieval task, PRES scores are more important. In PRES metric,
only our dense model can clearly outperform the unigram-based Boost-1g model and lies
only slightly below the excellent performing bigram-based Boost-2g model.

The most interesting setup is of course the combination of our best model and the single
best model by Sokolov et al. (2013). This combination shows the strongest performance
for the PRES and MAP metrics and the changes over the plain Boost-2g and our standard
dense model are both significant. This demonstrates that the idea of incorporating new
modules actually works and that the system is able to combine “the best of both worlds”.

PRES MAP

dev test dev test

sparse model 0.4994 0.4933 0.2301 0.2227
Boost-1g 0.5850 0.6122 0.2064 0.1982
Boost-2g 0.6900 0.7196 0.2526 0.2474
std. dense model 0.6881 0.6933 0.2901 0.2891
dense w/ Boost-2g ‡†0.7164 ‡†0.7213 ‡†0.3030 ‡†0.3022

Table 5.10: The final scores on the sparse model, the dense model and the combined model.
Scores on Boost-2g were copied from Sokolov et al. (2013) for comparison. Values preceded
by symbols indicate a significant change compared to the standard dense model (†) and to
the Boost-2g model (‡).

Please note that in order to combine both models, we needed to optimize the sparse
model on the same test set as the linboost model. As we had exchanged development and
test set at the beginning, we needed to select the best model on our test for the combined
model and evaluate the final on our development set. Fortunately, in both cases the model
with ℓ1-regularization λ = 9 · 10−9 performs best. As we were not able to optimize the
number of training instances, the best sparse model according to the score on our test set is
the same model as the one according to our development set. Thus, after exchanging test
and development set we can use the same setup and same models to train and evaluate the
combined system.

Sokolov et al. (2013) present a combination of scores based on a Borda Count method
(Aslam and Montague, 2001), which is according to the taxonomy in Figure 1.1 an un-
supervised method for rank aggregation. Compared to their method, we are not restricted
to top-k results. As long as k is relatively large and the number of combined modules small,
this is practically not a limitation. At one point, however, the intersection of top-k results
will become too small to learn weights that generalize well. In these cases, our model can
perform better because it always takes the full list of retrieved documents into account.

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 88

5.4 Final Results

In this chapter, we started with the monolingual retrieval model from the previous chapter
and transferred it into a cross-language setup. The advantage of the approach over other
cross-language retrieval systems is the ability to learn word dependencies across languages
in a pure machine learning setup. As the basic system is able to capture some important
aspects of human language such as polysemy and synonymy, it represents an extremely
flexible approach that can be applied to arbitrary languages.

In the first experiments we discovered that using TFIDF weighted vectors is suboptimal
for the CLIR task we examined. After moving to binarized vectors, the model started to
improve. Experiments on mixed vectors, i.e. binarized on one side and TFIDF on the other
side, revealed interesting results. However, we did not find a direction for further experiments
that indicated an advantage over the plain binarized system.

Unlike on the monolingual system examined in the previous chapter, ℓ1-regularization
has a positive influence on the cross-language model. Enforcing sparsity by ℓ1-regularization
not only keeps the model small but also supports the learning process by selecting useful
features.

The TFIDF-motivated stop word removal increased PRES and MAP scores over the
unmodified model significantly. Our explanation is that in our unigram-model setup, words
with very low TFIDF-value must be considered noise and at the same time they become
promoted by the binarization of the vectors.

An interesting result was the increased learning performance by exchanging the sampling
scheme of query-document-document training instances. To our understanding, using a
richer sampling scheme where sequences of tuples are created in a clever way that better
supports the parallel learning of translation table and IR-similarity measure, which are both
encoded simultaneously in the weight matrix M of the basic model.

Our method of number simplification had a surprisingly positive effect on the retrieval
performance. This is due to the reduction in vocabulary, especially rare words, which not
only decreases collisions in the hash table, but also increases coverage between near-similar
terms such as parts of chemical formulas.

On top of these filtering methods, CFH with multiple binning to 5 bins made the largest
contribution to the final scores. There are various reasons for this. CFH reduces the vocabu-
lary, which actively reduces collisions in the parameter vector. At the same time, it increases
the overlap between a query and a document by hashing to multiple bins – effectively, this
a term-expansion on the query- and the document-side. Finally, CFH employs the hashing
trick to reduce information loss originating from collisions in the hash table.

The last modification of the sparse CFH model with number simplification was adding
the qStem method. In our previous experiments it was undecidable if qStem contributes to
the scores. For the CFH model, applying qStem finally showed a significant change. After
tuning the regularization parameter, we determined the final sparse model.

The final retrieval performance of our sparse system is on par with other unigram-based
state-of-the-art systems. However, the unigram approach is limited. We think that for

CHAPTER 5. CROSS-LANGUAGE INFORMATION RETRIEVAL 89

PRES MAP

dev test dev test

unmodified sparse model 0.3315 0.1765
TFIDF stop words †0.4196 †0.1927
new sampling †0.4252 †0.2011
+ Number simplification †0.4481 †0.2055
+ CFH (k = 5) †0.4882 †0.2185
+ qStem †0.4930 †0.2216
best sparse model 0.4933 0.4994 0.2227 0.2301
domain knowledge feat. †0.4861 †0.1871
final dense model 0.6933 0.6881 0.2891 0.2901

Table 5.11: Intermediate and final results for the sparse and the dense model. Values
preceded by (†) indicate a significant change to the previous row’s system.

further improvements, the integration of higher order n-grams or the construction of other
features that better capture language structure is necessary.

The dense model combines the score of the sparse model as a dense feature with domain
knowledge features. These hand-crafted features defined on the patent domain showed a
very strong performance for both PRES and MAP scores. A model trained on the 19
binary domain knowledge features alone almost reaches the PRES scores of the final sparse
model and additionally beats MAP compared to the unmodified sparse model. However,
the combination of score and domain knowledge features resulted in very high values for the
PRES and MAP metric. Our interpretation is that both systems follow completely different
approaches and their results are “linearly independent”7. Thus, the combination trained
with machine learning techniques must give an increase in final performance.

Finally, we showed the versatility of our approach by integrating a completely different
system as a new module. Retrieval results of the combined system showed that our dense
system is in fact easily extensible and can make use of any system that generates ranking
scores based on query-document pairs. The core component of the final dense model uses
practically no memory, so limits on the number of modules are defined by the implementa-
tions of the single modules.

7This can be taken literally: if each query-document pair is a dimension and the rank is the value, then
two systems generating different rankings are linearly independent.

90

Chapter 6

Discussion and Outlook

In this chapter we summarize the results of the experiments on monolingual and cross-
language information retrieval. Section 6.1 will list the most important findings of our
work and outlines strengths and weaknesses of our approach in a discussion. Section 6.2 is
dedicated to future work that came across our mind during working on this thesis. In this
last section, we talk about three aspects: First, matrix decomposition and latent Dirichlet
allocation aim at feature reduction. Second, distributed algorithms and the implementation
of fast-response systems with MPI describe ways to improve the system from a technical
point of view. Third, integrating other systems continues the idea of combining different
models in the dense model and mentions two concrete examples.

6.1 Discussion

In this work we examined the applicability of the basic model presented in Section 2.3 to
a monolingual and to a cross-language retrieval task. In the monolingual setup evaluated
on the 20NG corpus, the basic model had been applied in two different ways: learning the
diagonal, i.e. a re-weighting of TFIDF values, and learning the full matrix. Compared
to a plain TFIDF baseline, both models showed a strong increase in retrieval performance
regarding the MAP metric, with the quadratic model performing much better than the
diagonal model.

The quadratic model is able to learn word relations beyond direct matches, thus it is
theoretically applicable in cross-language information retrieval task. Our experiments on
the BoostCLIR corpus (see Section 5.1) showed that the basic model can be successfully
applied to the CLIR task of patent prior art search across languages.

The quadratic dependency on vocabulary size of the basic system implicates among
other things the problem of parameter complexity. We applied an approach presented by
Weinberger et al. (2009) that hashes arbitrary large parameter spaces into smaller tables.
Although this entails new problems such as information loss in case of collisions, it enabled
us to use the full vocabulary for monolingual and cross-language experiments instead of a

CHAPTER 6. DISCUSSION AND OUTLOOK 91

limited dictionary.
Limited dictionaries are often used for retrieval experiments comparable to ours (Bai

et al. 2010, Chen et al. 2010). However, our experiments in Section 4.2 showed that it is
preferable to use the full dictionary in combination with hashing. In the monolingual setup,
the positive impact of using all available data clearly surpasses the information loss that
results from collisions in the parameter table. In the cross-language setup, the situation was
undecidable: the experiment in Section 5.2 did not reveal a clear advantage for any of the
two models. From a machine learning point of view, we opted for the full vocabulary and
let the algorithm decide which features to use.

However, our experiments on the TFIDF weighting schemes revealed that collisions oc-
cur relatively often with a normal sized vocabulary. Section 4.2 showed that the increase
in retrieval performance for the quadratic model by filtering out all words not present in
the training data is substantial. The reason is that during training there is no statistical
information available for these words, and during testing they might collide with existing
entries. In a non-hashed setup, these words or word pairs simply get a 0-weight and do
not contribute, but with parameter hashing they can collide with existing entries and thus
contribute erroneously. Thus, in settings that use hashed weight vectors such a filtering step
generally improves performance, especially if the hashed weight matrix is dense.

For the cross-language task, the TFIDF weighting was inapplicable. Experiments that
examined one-sided non-binary weighting improved the results, but did note achieve the
performance of binarized vectors. The implicit stop word filtering of TFIDF, however, has
proven to be very useful for our task. This “TFIDF induced stop word filtering” significantly
reduces noise in the data and helps to promote useful features, as we have examined in
Section 5.2. In contrast to static stop word filtering through lists, it is able to adapt to
certain properties of the data, e.g. particular words that are generally unusual but occur
frequently in the corpus.

The biggest contribution to the retrieval performance of both systems came from the
application of correlated feature hashing (CFH). We applied the variant with 5 bins in both
cases, meaning that a single feature is hashed1 to the 5 most correlated words in the corpus.
Again, we observed a clear advantage when we create the mapping for both train and test
on the training data only. An experiment with mappings created on the whole set was not
conducted because in our opinion, this would carry over statistical information from the test
to the training set.

There are various reasons for the positive influence of CFH in our setup. First, the
method reduces the vocabulary and consequently reduces collisions in the hashed parameter
vector. Second, it increases the overlap between a query and a document by hashing words
to multiple bins; it was already mentioned in chapter 3.2 that this can be seen as a form of
term expansion for information retrieval on either one or both sides. Third, CFH employs
the hashing trick to reduce information loss because of parameter collisions in the hash table

1Although CFH creates a mapping, the subsequent hashing into the parameter vector makes the mapping
behave like a hashing.

CHAPTER 6. DISCUSSION AND OUTLOOK 92

(Shi et al., 2009).
The method of ℓ1-regularization for feature selection did not work equally well in both

tasks. For monolingual IR, ℓ1-regularization was unable to select useful features. With active
regularization, the performance always decreases. This was unexpected and we believe that
the reason lies in the data and the task. The 20NG corpus is probably too small and too
specialized to benefit from this type of regularization. Nevertheless, it contains a lot of noise,
e.g. spelling errors or colloquial language, and we expected ℓ1-regularization to help reducing
this noise, but this was not the case.

Other works such as the one by Chen et al. (2010) successfully applied ℓ1-regularization
to enforce a sparse model on the same dataset. In contrast to their results, our scores without
regularization are significantly higher for the models with the learned diagonal and the full
matrix. Even the TFIDF baseline is a bit higher, so we speculate that our preprocessing is
the reason for the difference. In the end, our quadratic model surpasses the sparse model
from their work by more than 10 MAP points.

On the cross-language dataset, the application of ℓ1-regularization showed a completely
different behavior: in this case, regularization is necessary and supports the algorithm to
extract useful features. The final models we learned are relatively sparse, e.g. the best model
we found in the experiments contains approximately 1, 000, 000 unigram relations in a space
of 50, 000 · 30, 000 = 1, 500, 000, 000 possible pairs. This model is comparable with other
unigram-based approaches: the Boost-1g (Sokolov et al., 2013) achieves a considerably
higher PRES, but lower MAP score.

In our opinion, the unigram-based approach cannot be improved considerably more. We
applied several filtering steps that resulted in statistically significant gains, however, the
absolute increase is small. It would be interesting to extend the model with bigram-features,
although the problem of increased model complexity remains unresolved at the moment.

We continued our investigation of the cross-language retrieval task on patents by creating
a new model that incorporates special dense features defined on patent pairs. In addition
to the domain knowledge features (Guo and Gomes, 2009), we used the score of the sparse
model as a feature. This approach was extremely successful to further increase retrieval
performance. As we use machine learning to train the model, a good approach is to define
as many features as possible and let the machine learning application select useful weights.

The final dense model we examined shows strong performance on the patent retrieval
task. According to MAP and PRES metric, our system scores highest in comparison to
other SMT-based CLIR systems on the same dataset (Sokolov et al., 2013). Our system is
even considerably better in MAP score than the best model based on bigrams, Boost-2g, but
we are below by the PRES metric. The good results we achieved illustrates the usefulness
of hand-crafted features for specialized tasks such as patent retrieval.

In a proof-of-concept experiment we showed that this model is able to easily incorporate
other models. The idea of using multiple scores as dense features in combination with other
highly informative (domain knowledge) features is extremely flexible and very powerful. The
final model we examined in Section 5.3 is able to efficiently combine multiple CLIR systems
and shows significant performance gains over each single system.

CHAPTER 6. DISCUSSION AND OUTLOOK 93

6.2 Future Work

Matrix Decomposition

One of the standard methods in information retrieval is singular value decomposition (SVD).
The basic idea is to approximate a term-document matrix by one of lower rank. By cleverly
constructing the matrix, the system is able to capture typical language phenomena like
polysemy and synonymy. Actually, the matrix calculates similarity scores between query- and
document-vectors in a lower dimensional “semantic” space, thus the name latent semantic
indexing (LSI) or latent semantic analysis (LSA) for the application of SVD to text data.

The problem of LSI is its cost. For larger document collections, the initial matrix to
calculate the SVD has high memory requirements (vocabulary × documents). Distributed
computing can help, but then performance issues come up, because the computation itself
is expensive. And finally, there is no way to optimize the similarity metric with respect to a
certain information need, because LSI is an completely unsupervised task.

A different approach for matrix factorization was proposed by Koren et al. (2009). They
describe how matrix factorization can be applied to the problem of recommender systems.
Here, the problem is to find recommendations for a user based on his previous preferences.
This is accomplished by projecting both user and target items into a lower dimensional
latent space. The difference to LSI is that this approach does not use SVD to calculate the
projection, but it can learn from a supervised signal that contains previous selections made
by the user.

Bai et al. (2010) transfer this idea to retrieval and call it supervised semantic indexing
(SSI). Their approach is to approximate the matrix M used in a model similar to our basic
model by the following equation:

M = U⊺V (6.1)

Here, U and V are N × D matrices. Putting this decomposed matrix into the basic model
actually means to project q and d into a latent space of dimension N and calculate a dot-
product there:

q⊺(U⊺V)d = (q⊺U⊺)(Vd) = (Uq)⊺(Vd)

This illustrates that the two matrices of the decomposition, U and V, project query and
document independently. Furthermore, the matrices U and V can have different number
of columns (but not rows), which makes them ideal for the application in a cross-language
setup where the vocabulary sizes are usually uneven.

The independence of the matrix components enables a handy update formula for pairwise
ranking that is based on the SGD strategy and modifies the components in sequence (Bai

et al., 2010):

U ← U + λV(d+ − d−)q⊺

V ← V + λVq(d+ − d−)⊺

}

if bi − f(q,d+) + f(q,d−) > 0

CHAPTER 6. DISCUSSION AND OUTLOOK 94

Bai et al. (2010) have successfully tested this idea on a cross-language task based on
Wikipedia article retrieval. In fact, the learning tool we used, Vowpal Wabbit, has a mode
for matrix decomposition that follows the idea of the recommender systems approach by
Koren et al. (2009). However, quick experiments under this configuration did not return
useful results. The reason might be the differences in the implementation of the decomposed
matrix, because the recommender systems are trained on sparse vectors, while the vectors for
the basic model of our IR system have many features. Still, it is a very interesting approach
and we would like to examine this further.

Latent Dirichlet Allocation

Another modern and very successful approach for dimension reduction is latent Dirichlet
allocation (LDA) first described by Blei et al. (2003). Methods based on LDA became very
popular in recent years. LDA is a generative hierarchical Bayesian model where documents
are modeled as mixtures of underlying topics. These topics are again mixtures of topic
probabilities.

The intuition behind LDA is that the following generative process creates the documents
w in a corpus D (Blei et al., 2003):

1. Choose N ∼ Poisson(ξ)

2. Choose q ∼ Dir(α).

3. For each of the N words wn:

a Choose a topic zn ∼ Multinomial(θ).

b Choose a word wn from p(wn|zn, β), a multinomial probability conditioned on the
topic zn.

Here, N is a normal distribution, θ is the multinomial distribution over topics, and α and
β are hyperparameters that control the sparsity of the topic distribution. Assuming this
model, the idea is to induce these topic probabilities to the document. Methods such as Ex-
pectation Maximization (EM), Variational Bayes and Monte-Carlo-Markov-Chain (MCMC)
have proven to be efficient methods to estimate the latent multinomial variables in an unsu-
pervised setup.

This, in turn, gives the topic probabilities for a document which provides an explicit
representation of the document. Our idea is to use this low dimensional document repre-
sentation, actually a mixture of topics, to learn a relevance matrix as in the basic model in
Section 2.3. The fact that we do not know which topics we obtain is in fact not relevant,
because as long as we learn the matrix, any possible pairing is considered by the model.

One positive aspect of this model is that it would be very fast to train as soon as the
low-dimensional vectors are created. Typically the latent dimensions are only a few hundred
in numbers, thus the resulting model is very small. However, the inflexibility of the LDA

CHAPTER 6. DISCUSSION AND OUTLOOK 95

model is a disadvantage. Changing the corpus, i.e. by adding documents, or using an unseen
document as query, makes it theoretically necessary to recreate the topics and re-learn the
whole model.

Heinrich (2008) describes a method based on Gibbs sampling that is able to induce
topic distributions on new documents without a rerun of the topic-creation process. They
emphasize that this is an approximative solution, so after substantial changes to the corpus,
the performance will al well degrade and it is necessary to recreate the topics and retrain
the model.

Distributed Algorithms

The system we used for the sparse model was trained on a dataset of approximately 1 million
documents (see Table 5.1). These documents can be combined for training in several ways,
and we found out that 5 million training instances already return to good results. However,
a dataset like MAREC (see Section 5.1) contains 19 million documents, which means to
increase the training complexity by a factor of approximately 20. For the sparse models
we trained, this would mean training times of several days per model. More data helps
when complexity increases, so there is no end to the demand in computational power of such
systems.

Agarwal et al. (2011) show how to build a “terascale linear learning system” that is
aimed at optimizing a problem similar to the optimization problem defined by our basic
model. The contribution of their paper is the implementation of an AllReduce-operation in
the Hadoop/MapReduce-framework, that follows the communication scheme of the function
with the same name in the Message Passing Interface framework (MPI). Their AllReduce-
operation, however, is more sophisticated in terms of fault-tolerance and can automatically
average local gradients with respect to a “confidence” value for each feature.

A similar approach based on a different task but still in a parallel computing setup is
multitask-learning. Simianer et al. (2012) presented such a method applied to SMT and
trained different models on different partitions of data to combine the partial results in
an intelligent manner that also promotes useful features. They call their method multitask-
learning with ℓ1/ℓ2-regularization and they prove the efficiency of this approach in a machine
translation task.

These ideas can in principle be applied to our learning setup. In multitask-learning, the
strategy is to train systems on different tasks and then combine these systems in a manner
that increases overall system quality. The question in our setup is how to define tasks that
are suitable for this type of learning. It could be beneficial to use patents from certain
sections or classes, or grouped by years or origin.

The paper that first described ℓ1- and ℓ2-regularization for joint covariate selection was
published by Obozinski et al. (2010). In this article the authors describe a intriguing
approach that is able to automatically tune the ℓ1/ℓ2-regularization parameters. Judging
from the strong influence of this parameter in our work (see e.g. figures 5.8 and 5.9) and the
expensive parameter search, this is a fascinating idea that could be helpful in many different

CHAPTER 6. DISCUSSION AND OUTLOOK 96

setups.
Thus, these two aspects, distributed learning and automatic parameter estimation, are

two directions we would like to follow in the future.

Fast-Response Retrieval with MPI

The current implementation is slow compared to other retrieval systems. As we have already
mentioned in Section 3.1, the focus was not to implement a fast running system but to create
a flexible model where different configurations can be exchanged and tested easily.

Evaluations of our dense model are expensive. It is required to have the sparse model, the
database and the dense model simultaneously running. Testing 2000 query patents against
a collection of 100,000 patents takes about 20 minutes on our 30-node Hadoop-cluster (with
240 cores), which are about 167,000 checked pairs per second. This means if a user sends a
query to a patent database like MAREC with 19 million patents, it would take approximately
2 minutes to process the query until he will be presented a single result.

In addition to this, Hadoop is a system that is not optimized for retrieval tasks. In
fact, it is completely unsuitable for fast-response systems, because the overhead of starting a
job in the MapReduce-framework alone consumes tens of seconds and can be even longer if
other Hadoop jobs are running in parallel. The application of evaluation is not problematic
regarding this delay, because we are evaluating many queries against many documents, and
the delay until we have the result is less relevant.

For fast-response systems, a low latency is crucial. It is thus advisable to move away from
the Hadoop-framework to a distributed system that has lower latency by design. We now
describe a distributed system that is based on MPI. This systems addresses two problems of
the current setup:

1. High latency due to Hadoop-job setup.

2. Slow document retrieval on large corpora.

Even by increasing the number of Hadoop-cluster nodes, the overhead of starting a Hadoop-
process does not change. This latency in the order of tens of seconds up to a minute is a
natural barrier for Hadoop-based jobs and this makes such systems prohibitive for normal
retrieval task, where the user wants feedback as fast as possible.

Thus, the only way to change this problem is to move from a Hadoop-based architecture
to a distributed system that was built with low-latency technology in mind: we think of a
distributed memory systems based on MPI. The largest MPI-nodes available to us have 40
cores per machine. As these are more powerful than the Hadoop-nodes, we optimistically
assume 80,000 patent evaluations per second. To achieve sub-second response time, we would
need in the best case 237 such machines (19 · 106/80, 000 = 237.5), and this is still far to
optimistic, because we had not considered the necessary messaging overhead to broadcast
the query to all nodes and to reduce the partial results.

CHAPTER 6. DISCUSSION AND OUTLOOK 97

Our solution is to use the fact that the basic model is linear in each of its arguments.
We can thus employ k-means clustering, an unsupervised method for grouping data, as a
pre-processing step generating artificial “representers”, i.e. the centroids, for each cluster
group.

Moving from one cluster to another along a line in the space where our documents are
embedded changes the score linearly. Given a query q, we can start by generating k scores
against the k-centroids of each cluster. The two best representers, i.e. the two centroids
that return the highest relevance score for q, denote the two clusters where the documents
of interest are located. Figure 6.1 illustrates the idea: 1) We evaluate a query q against k
artificial data points. 2) We select the top-2 clusters by highest retrieval score. 3) Now, we
only need to evaluate our query against the documents in these two clusters to find the best
scoring documents.

Figure 6.1: Voronoi-diagram showing clusters with their centroids and a query q in document
space.

This way we can considerably reduce the number of calculations by several orders of
magnitude. For example, assuming clusters with 10,000 elements on average, we will have
1,900 cluster centroids. Our system has to evaluate first the query against 1,900 centroids,
then sort the results and select the top-2 clusters. These cluster contain 2 × 10, 0000 docu-
ments, thus the total number of documents to evaluate drops to roughly 22, 000. With the
assumption that our MPI-node can execute 80, 000 evaluations per second, we are well below
the targeted one-second latency.

However, this sounds too good to be true, and indeed there are several aspects we left
out. First, we need to calculate the centroids of 19 million data points in a space that
exceeds 350,000 dimensions (see e.g. Table 5.1 on vocabulary size) – this is a task of its own
dimension. Second, we need to get the relevant parts of the patent data into memory. The
MAREC corpus is too large to load it into memory on a single machine (approx. 620 GB
text files), so it is necessary to distribute the documents on several machines and use MPI

CHAPTER 6. DISCUSSION AND OUTLOOK 98

to send the query and aggregate the results through messages. A third aspect is that there
is no guarantee that we find the optimal solution by looking only at the members of the two
nearest clusters. Assuming the data points are well distributed, the probability of misses is
very low, but these bounds have to be evaluated.

The first two issues are technically solvable, but there is one additional point that pro-
hibits the use of this method in combination with our best dense model: the idea behind
k-means construction for pre-selection depends on the properties of the basic model, which
we implemented in our sparse model. The dense model, however, uses a different approach
and the required linearity in arguments does not hold there.

Integrating Other Systems

We have already proven the extensibility of our model in Section 5.3 by successfully incor-
porating the Boost-2g model into our dense model. Viewing the dense model as one layer of
a multi-layer learner almost advises to add more models to this system.

Highly probable candidates for integration as a module into the dense model come from
Hieber et al. (2013) and Jehl et al. (2012). Both follow more classical CLIR approaches
based on translations of query terms and full query sentences. For combination of different
models, a high diversity of approaches is beneficial. If all modules more or less generate the
same ranking, than the dense model cannot improve anything. However, if the models follow
different approaches, the dense model can find the optimal combination.

Sokolov et al. (2013) presented a system where their SMT-based model is combined
with the Boost-2g model using an unsupervised method called Borda counts. We can simply
continue to improve this result by integrating these two systems as a feature into our dense
model. It would be very interesting to examine how the addition of the other SMT-based
systems can further improve the final retrieval performance.

However, affordable computer resources are limited. Judging from our experience with
the model, we believe we can integrate several modules and still run evaluation tests in sub-
hour time on the Hadoop-cluster. If we need more than that, there is still the possibility to
move to MPI, which is in the medium run a good choice for the retrieval part of such systems
and due to its scalability not at all a bad choice for training systems of growing complexity.

99

Chapter 7

Conclusion

We presented a retrieval system based on a learning to rank approach that goes beyond the
weighting of single terms by taking all possible word-pairs into account. Such systems natu-
rally have high demands in memory and computational complexity, because the parameter
space they work on is quadratic in the size of the vocabulary.

Several methods that aim at controlling the resource usage were examined in this work.
To solve the optimization problem efficiently, we used a stochastic gradient approach that can
theoretically work on an unlimited number of training points. This has become a standard
technique especially in applications where the number of parameters is very high and contains
noise, as it is often the case in natural language processing tasks.

We implemented a tool that created static training data on disk using the combination of
the stochastic approach and pairwise ranking, so we were able to compare different settings
of the learner on the same data set. A very sophisticated and resource conserving feature of
our learning tools is the on-line expansion of quadratic vectors. This reduces the required
disk space by several orders of magnitude, makes better use of the I/O-performance and
decreases the time needed to train the models significantly.

Regarding feature space reduction, we compared several methods that aim directly at
reducing the parameter space. Hashing the weight vector has proven to be a very effective
method to reduce the memory requirements of a system down to a small fraction of the initial
requirements. However, hashing can affect the learning process negatively if the problem of
collisions is not adequately considered.

An efficient way to employ hashing and reduce collisions is to use correlated feature
hashing with multiple bins, where multiple hash functions are constructed that hash similar
words to similar buckets. The way these mappings are constructed is completely different to
other approaches such as locality sensitive hashing. The result and the final retrieval quality
we observed proves that the method is suitable to reduce feature space on one hand, and
increase retrieval quality on the other hand.

While moving to the cross-language system, we found out that not all settings that
worked well on the monolingual setting can be applied to the cross-language task. To our
surprise, the TFIDF-vectors were not suited for the task of learning relevance and word

CHAPTER 7. CONCLUSION 100

relations simultaneously. Another difference is that ℓ1-regularization did not work well in
the monolingual setup, but it was absolutely necessary in the cross-language task to achieve
a descent performance.

The monolingual and the cross-language task reacted differently to the limiting of the
dictionary for feature space reduction. While in the monolingual setup the performance
degraded significantly for the quadratic model, there were practically no differences in the
cross-language quadratic model’s case. Nevertheless, we did not find a conclusive explanation
for this. After all, the monolingual model behaved not exactly as expected in many respects,
which we attribute to the data and the task. However, we achieved unexpectedly high
retrieval performance with the monolingual quadratic model.

Besides methods that had only very little effect in the cross-language setting, we also
employed several other reduction methods which increased the retrieval performance con-
siderably. By carefully analyzing each contribution it was gratifying to find out that the
improvement of the single methods, each of them changing the previous system significantly,
all added up in the end to the final result. The method of correlated feature hashing showed
a strong positive influence to the retrieval performance for both tasks and is thus a method
that we can definitely recommend, especially in combination with systems that work with
hashed parameter spaces due to their high dimensionality.

One of the initial questions was that if we can learn a relevance metric and at the
same time learn bilingual correlations of terms from a supervised signal based on cross-
language retrieval. Our final experiments on the sparse model achieved ranking performance
on par with other unigram-based systems and this proves that cross-language retrieval must
not necessarily contain a module for machine translation. We have further shown that a
relatively simple machine learning approach is able to capture complex word-relations across
languages.

The probably most surprising result is the success of the model which integrated the
sparse model into the dense model. To our knowledge, a comparable approach to combine
highly informative features with sparse features from a completely different model has not
been done before. We have empirically shown that the model is able to integrate a (the-
oretically) arbitrary number of ranking modules optimally, because the best combination
is learned using machine learning techniques on the full ranking. This is the difference to
supervised rank aggregation, and it emphasizes that our model blurs the line which is drawn
between rank creation and rank aggregation.

101

Bibliography

Agarwal, Alekh, O. Chapelle, M. Dud́ık and J. Langford (2011). A Reliable
Effective Terascale Linear Learning System. CoRR, abs/1110.4198.

Aslam, Javed A. and M. H. Montague (2001). Models for Metasearch. In Croft,

W. Bruce, D. J. Harper, D. H. Kraft and J. Zobel, eds.: SIGIR, pp. 275–284.
ACM.

Bai, Bing, J. Weston, D. Grangier, R. Collobert, K. Sadamasa, Y. Qi,
O. Chapelle and K. Q. Weinberger (2010). Learning to rank with (a lot of) word
features . Inf. Retr., 13(3):291–314.

Barroso, Luiz André and U. Hölzle (2009). The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines . Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers.

Bashir, Shariq and A. Rauber (2010). Improving Retrievability of Patents in Prior-
Art Search. In Gurrin, Cathal, Y. He, G. Kazai, U. Kruschwitz, S. Little,
T. Roelleke, S. M. Rüger and K. van Rijsbergen, eds.: ECIR, vol. 5993 of Lecture
Notes in Computer Science, pp. 457–470. Springer.

Bi, Jinbo, K. P. Bennett, M. J. Embrechts, C. M. Breneman and M. Song (2003).
Dimensionality Reduction via Sparse Support Vector Machines . Journal of Machine Learn-
ing Research, 3:1229–1243.

Blei, David M., A. Y. Ng, M. I. Jordan and J. Lafferty (2003). Latent Dirichlet
allocation. Journal of Machine Learning Research, 3:2003.

Blum, Avrim, A. Kalai and J. Langford (1999). Beating the Hold-Out: Bounds for
K-fold and Progressive Cross-Validation. In Ben-David, Shai and P. M. Long, eds.:
COLT , pp. 203–208. ACM.

Bottou, Léon and O. Bousquet (2008). The Tradeoffs of Large Scale Learning . In
Platt, J.C., D. Koller, Y. Singer and S. Roweis, eds.: Advances in Neural Infor-
mation Processing Systems , vol. 20, pp. 161–168. NIPS Foundation (http://books.nips.cc).

BIBLIOGRAPHY 102

Boyd, Stephen and L. Vandenberghe (2004). Convex Optimization. Cambridge Uni-
versity Press.

Burges, Christopher J. C., R. Ragno and Q. V. Le (2006). Learning to Rank with
Nonsmooth Cost Functions . In Schölkopf, Bernhard, J. Platt and T. Hoffman,
eds.: NIPS , pp. 193–200. MIT Press.

Chapelle, Olivier (2007). Training a Support Vector Machine in the Primal . Neural
Computation, 19(5):1155–1178.

Chapelle, Olivier and Y. Chang (2011). Yahoo! Learning to Rank Challenge Overview .
Journal of Machine Learning Research - Proceedings Track, 14:1–24.

Charikar, Moses (2002). Similarity Estimation Techniques from Rounding Algorithms .
In STOC , pp. 380–388.

Chen, Xi, B. Bai, Y. Qi, Q. Lin and J. G. Carbonell (2010). Learning Preferences
with Millions of Parameters by Enforcing Sparsity . In Webb, Geoffrey I., B. L. 0001,
C. Zhang, D. Gunopulos and X. Wu, eds.: ICDM , pp. 779–784. IEEE Computer
Society.

Cohen, Paul R. (1995). Empirical Methods for Artificial Intelligence. MIT Press, Cam-
bridge.

Collobert, Ronan and S. Bengio (2004). Links between perceptrons, MLPs and SVMs .
In Brodley, Carla E., ed.: ICML, vol. 69 of ACM International Conference Proceeding
Series . ACM.

Cortes, Corinna, M. Mohri and A. Rastogi (2007). Magnitude-preserving ranking
algorithms . In Ghahramani, Zoubin, ed.: ICML, vol. 227 of ACM International Con-
ference Proceeding Series , pp. 169–176. ACM.

Cortes, Corinna andV. N. Vapnik (1995). Support Vector Networks . Machine Learning,
20:273–297.

Dean, Jeffrey and S. Ghemawat (2004). MapReduce: Simplified Data Processing on
Large Clusters .

Deerwester, Scott, S. T. Dumais, G. W. Furnas, T. K. L and R. Harshman

(1990). Indexing by latent semantic analysis . Journal of the American Society for Infor-
mation Science, 41:391–407.

Dice, Lee Raymond (1945). Measures of the Amount of Ecologic Association Between
Species . Ecology, 26(3):297–302.

BIBLIOGRAPHY 103

Dyer, Chris, A. Lopez, J. Ganitkevitch, J. Weese, F. Ture, P. Blunsom, H. Se-

tiawan, V. Eidelman and P. Resnik (2010). cdec: A Decoder, Alignment, and Learning
Framework for Finite-State and Context-Free Translation Models . In Proceedings of the
Association for Computational Linguistics (ACL).

Fendrich, Sascha (2012). Sol – Stochastic Learning Toolkit . Technical Report, Depart-
ment of Computational Linguistics, Heidelberg University.

Flynn, Michael J. (1972). Some Computer Organizations and Their Effectiveness . Com-
puters, IEEE Transactions on, C-21(9):948–960.

Forman, George (2003). An Extensive Empirical Study of Feature Selection Metrics for
Text Classification. Journal of Machine Learning Research, 3:1289–1305.

Friedman, Jerome H. (1999). Greedy Function Approximation: A Gradient Boosting
Machine. Annals of Statistics, 29(5):1189–1232.

Gionis, Aristides, P. Indyk and R. Motwani (1999). Similarity Search in High Di-
mensions via Hashing . In VLDB ’99: Proceedings of the 25th International Conference
on Very Large Data Bases , pp. 518–529, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Graf, E. and L. Azzopardi (2008). A methodology for building a patent test collection
for prior art search. In The Second International Workshop on Evaluating Information
Access (EVIA).

Guo, Yunsong and C. P. Gomes (2009). Ranking Structured Documents: A Large Margin
Based Approach for Patent Prior Art Search. In Boutilier, Craig, ed.: IJCAI , pp.
1058–1064.

Guyon, I. and A. Elisseeff (2003). An introduction to variable and feature selection.
The Journal of Machine Learning Research, 3:1157–1182.

Heaps, H. S. (1978). Information Retrieval: Computational and Theoretical Aspects . Aca-
demic Press, Inc., Orlando, FL, USA.

Heinrich, Gregor (2008). Parameter estimation for text analysis . Tech-
nical note version 2 (1: 2005), vsonix GmbH and University of Leipzig,
http://www.arbylon.net/publications/text-est.pdf.

Hieber, Felix, L. Jehl and S. Riezler (2013). Task Alternation in Parallel Sentence
Retrieval for Twitter Translation. In Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2: Short Papers), pp. 323–327, Sofia,
Bulgaria. Association for Computational Linguistics.

BIBLIOGRAPHY 104

Hunter, John K. and B. Nachtergaele (2001). Applied Analysis . World Scientific
Publishing Company Incorporated.

Indyk, Piotr and R. Motwani (1998). Approximate Nearest Neighbors: Towards Remov-
ing the Curse of Dimensionality . In STOC , pp. 604–613.

Jehl, Laura, F. Hieber and S. Riezler (2012). Twitter translation using translation-
based cross-lingual retrieval . In Proceedings of the Seventh Workshop on Statistical Ma-
chine Translation, WMT ’12, pp. 410–421, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Joachims, Thorsten (1997). A Probabilistic Analysis of the Rocchio Algorithm with
TFIDF for Text Categorization. In Proceedings of the 14th International Conference on
Machine Learning .

Joachims, Thorsten (2002). Optimizing search engines using clickthrough data. In KDD
’02: Proceedings of the eighth ACM SIGKDD international conference on Knowledge dis-
covery and data mining , pp. 133–142, New York, NY, USA. ACM.

Jones, Karen Spärck (1972). A statistical interpretation of term specificity and its ap-
plication in retrieval . Journal of Documentation 28, pp. 11–21.

Jones, Karen Spärck, S. Walker and S. E. Robertson (2000). A probabilistic model
of information retrieval: development and comparative experiments - Part 2 . Information
Processing and Management, 36(6):809–840.

Knuth, Donald E. (1973). The Art of Computer Programming, Volume III: Sorting and
Searching . Addison-Wesley.

Knuth, Donald E., J. H. Morris and V. R. Pratt (1977). Fast Pattern Matching in
Strings . SIAM Journal of Computing, 6(2):323–350.

Kononenko, Igor (1995). On Biases in Estimating Multi-Valued Attributes . In IJCAI ,
pp. 1034–1040. Morgan Kaufmann.

Kontorovich, Leonid (2007). A Universal Kernel for Learning Regular Languages . In
MLG .

Koren, Yehuda, R. M. Bell and C. Volinsky (2009). Matrix Factorization Techniques
for Recommender Systems . IEEE Computer, 42(8):30–37.

Kulis, Brian and K. Grauman (2012). Kernelized Locality-Sensitive Hashing . IEEE
Trans. Pattern Anal. Mach. Intell., 34(6):1092–1104.

BIBLIOGRAPHY 105

Lal, ThomasNavin, O. Chapelle, J. Weston and A. Elisseeff (2006). Embedded
Methods . In Guyon, Isabelle, M. Nikravesh, S. Gunn and L. Zadeh, eds.: Feature
Extraction, vol. 207 of Studies in Fuzziness and Soft Computing , pp. 137–165. Springer
Berlin Heidelberg.

Levenshtein, Vladimir (1966). Binary Codes Capable of Correcting Deletions and In-
sertions and Reversals . Soviet Physics Doklady, 10(8):707–710.

Li, Hang (2011). Learning to Rank for Information Retrieval and Natural Language Process-
ing . Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers.

Lin, Jimmy and C. Dyer (2010). Data-Intensive Text Processing with MapReduce. Syn-
thesis Lectures on Human Language Technologies. Morgan & Claypool Publishers.

Liu, Tie-Yan (2010). Learning to Rank for Information Retrieval . Springer-Verlag New
York Inc.

Luxburg, Ulrike von and B. Schölkopf (2011). Statistical Learning Theory: Models,
Concepts, and Results . In Gabbay, D. M., S. Hartmann and J. H. Woods, eds.:
Handbook of the History of Logic Vol. 10: Inductive Logic, vol. 10, pp. 651 – 706. Elsevier
North Holland, Amsterdam, Netherlands.

Magdy, Walid and G. J. F. Jones (2010). PRES: a score metric for evaluating
recall-oriented information retrieval applications . In Crestani, Fabio, S. Marchand-

Maillet, H.-H. Chen, E. N. Efthimiadis and J. Savoy, eds.: SIGIR, pp. 611–618.
ACM.

Manning, Christopher D., P. Raghavan and H. Schuetze (2008). Introduction to
Information Retrieval . Cambridge University Press.

Melamed, I. Dan (1998). Models of Co-occurrence. CoRR, cmp-lg/9805003.

Message Passing Interface Forum (2009). MPI: A Message-Passing Interface Stan-
dard, Version 2.2 . Specification.

Metropolis, Nicholas and S. Ulam (1949). The Monte Carlo method . J. Am. Stat. As-
soc., 44:335.

Murphy, Kevin P. (2012). Machine Learning: A Probabilistic Perspective (Adaptive Com-
putation and Machine Learning series). The MIT Press.

Narlikar, Girija J. and G. E. Blelloch (1998). Pthreads for Dynamic Parallelism.
Technical Report

Nocedal, Jorge and S. J. Wright (2006). Numerical optimization.

BIBLIOGRAPHY 106

Noreen, Eric W. (1989). Computer-intensive methods for testing hypotheses . A Wiley-
Interscience publication. Wiley, New York, NY [u.a.].

Obozinski, Guillaume, B. Taskar and M. I. Jordan (2010). Joint covariate selection
and joint subspace selection for multiple classification problems . Statistics and Computing,
20(2):231–252.

Ojala, Markus and G. C. Garriga (2010). Permutation Tests for Studying Classifier
Performance. Journal of Machine Learning Research, 11:1833–1863.

OpenMP Architecture Review Board (2008). OpenMP Application Program Interface
Version 3.0 .

Page, Lawrence, S. Brin, R. Motwani and T. Winograd (1999). The PageRank
Citation Ranking: Bringing Order to the Web. Technical Report, Stanford University.

Peters, Carol, M. Braschler and P. Clough (2012). Multilingual Information Re-
trieval - From Research To Practice. Springer.

Peters, Carol, G. M. D. Nunzio, M. Kurimo, T. Mandl, D. Mostefa, A. Peñas

and G. Roda, eds. (2010). Multilingual Information Access Evaluation I. Text Re-
trieval Experiments, 10th Workshop of the Cross-Language Evaluation Forum, CLEF
2009, Corfu, Greece, September 30 - October 2, 2009, Revised Selected Papers , vol. 6241
of Lecture Notes in Computer Science. Springer.

Piroi, Florina, M. Lupu,A. Hanbury andV. Zenz (2011). CLEF-IP 2011: Retrieval in
the Intellectual Property Domain. In Petras, Vivien, P. Forner and P. D. Clough,
eds.: CLEF (Notebook Papers/Labs/Workshop).

Porter, Martin F. (1980). An Algorithm for Suffix Stripping . Program, 14(3):130–137.

Radivojac, Predrag, Z. Obradovic, A. K. Dunker and S. Vucetic (2004). Fea-
ture Selection Filters Based on the Permutation Test . In Boulicaut, Jean-François,
F. Esposito, F. Giannotti andD. Pedreschi, eds.: ECML, vol. 3201 of Lecture Notes
in Computer Science, pp. 334–346. Springer.

Rahimi, Ali and B. Recht (2007). Random Features for Large-Scale Kernel Machines .
In Platt, John C., D. Koller, Y. Singer and S. T. Roweis, eds.: NIPS . Curran
Associates, Inc.

Riezler, Stefan and J. T. Maxwell (2005). On Some Pitfalls in Automatic Evaluation
and Significance Testing for MT . In Proceedings of the ACL Workshop on Intrinsic and
Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pp. 57–64,
Ann Arbor, Michigan. Association for Computational Linguistics.

BIBLIOGRAPHY 107

Roberts, Larry (1986). The Arpanet and computer networks . In Proceedings of the ACM
Conference on The history of personal workstations , HPW ’86, pp. 51–58, New York, NY,
USA. ACM.

Rosenblatt, Frank (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological Reviews, 65(6):386–408.

Ruppert, Eugen (2013). Cross-Lingual Patent Retrieval for Large Data Collections . Mas-
ter’s thesis, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany.

Salton, Gerard, A. Wong and C.-S. Yang (1975). A Vector Space Model for Automatic
Indexing . Communications of the ACM, 18(11):613––620.

Sarasúa, Leo and G. Corremans (2000). Cross Lingual Issues in Patent Retrieval .

Schölkopf, Bernhard and A. J. Smola (2002). Learning with Kernels . MIT Press.

Sculley, D. (2009). Large Scale Learning to Rank . In NIPS 2009 Workshop on Advances
in Ranking .

Shakhnarovich, Gregory, P. A. Viola and T. Darrell (2003). Fast Pose Estimation
with Parameter-Sensitive Hashing . In ICCV , pp. 750–759. IEEE Computer Society.

Shen, Libin and A. K. Joshi (2005). Ranking and Reranking with Perceptron. Machine
Learning, 60(1-3):73–96.

Shi, Qinfeng, J. Petterson, G. Dror, J. Langford, A. Smola and S. Vish-

wanathan (2009). Hash Kernels for Structured Data. J. Mach. Learn. Res., 10:2615–2637.

Simianer, Patrick, S. Riezler and C. Dyer (2012). Joint Feature Selection in Dis-
tributed Stochastic Learning for Large-Scale Discriminative Training in SMT . In ACL
(1), pp. 11–21. The Association for Computer Linguistics.

Singhal, Amit (2001). Modern Information Retrieval: A Brief Overview . IEEE Data Eng.
Bull., 24(4):35–43.

Smadja, Frank, K. R. McKeown and V. Hatzivassiloglou (1996). Translating
Collocations for Bilingual Lexicons: A Statistical Approach. Computational Linguistics,
22(1):1–38.

Smucker, Mark D., J. Allan and B. Carterette (2007). A comparison of statistical
significance tests for information retrieval evaluation. In CIKM ’07: Proceedings of the
sixteenth ACM conference on Conference on information and knowledge management , pp.
623–632, New York, NY, USA. ACM.

BIBLIOGRAPHY 108

Sokolov, Artem, L. Jehl, F. Hieber and S. Riezler (2013). Boosting Cross-Language
Retrieval by Learning Bilingual Phrase Associations from Relevance Rankings . In Proceed-
ings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).

Tibshirani, Robert (1996). Regression Shrinkage and Selection via the Lasso. Journal of
the Royal Statistical Society (Series B), 58:267–288.

Tsuruoka, Yoshimasa, J. Tsujii and S. Ananiadou (2009). Stochastic Gradient De-
scent Training for L1-regularized Log-linear Models with Cumulative Penalty . In Su, Keh-

Yih, J. Su and J. Wiebe, eds.: ACL/IJCNLP , pp. 477–485. The Association for Com-
puter Linguistics.

Türe, Ferhan, J. J. Lin and D. W. Oard (2012). Combining Statistical Translation
Techniques for Cross-Language Information Retrieval . In COLING’12 , pp. 2685–2702.

Watkins, Chris (2000). Dynamic Alignment Kernels . In Smola, A. and P. Bartlett,
eds.: Advances in Large Margin Classifiers , ch. 3, pp. 39–50. MIT Press, Cambridge, MA,
USA.

Weinberger, Kilian Q., A. Dasgupta, J. Attenberg, J. Langford and A. J.

Smola (2009). Feature Hashing for Large Scale Multitask Learning . CoRR, abs/0902.2206.

Weston, Jason, A. Elisseeff, B. Schölkopf and M. E. Tipping (2003). Use of
the Zero-Norm with Linear Models and Kernel Methods . Journal of Machine Learning
Research, 3:1439–1461.

Wu, Qiang, C. J. Burges, K. M. Svore and J. Gao (2008). Ranking, Boosting, and
Model Adaptation.

Yu, Yuan, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda and
J. Currey (2008). DryadLINQ: A System for General-Purpose Distributed Data-Parallel
Computing Using a High-Level Language. In Draves, Richard and R. van Renesse,
eds.: OSDI , pp. 1–14. USENIX Association.

Declaration

I do hereby solemnly declare that I have completed the preceding Thesis for the Degree of
Master of Arts in Computational Linguistics independently, and have not used any other
sources or aids apart from those listed.

Heidelberg, 26.09.2013 Schigehiko Schamoni

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Structure of the Thesis

	Methods
	Information Retrieval
	Learning to Rank
	Word Features
	Hash Kernels
	Feature Selection and Reduction

	Training and Test Framework
	Complexity
	Implementation
	Evaluation

	Monolingual Information Retrieval
	Retrieval on the 20NG Corpus
	Experiments
	Results

	Cross-Language Information Retrieval
	Bilingual Patent Retrieval
	Experiments on the Sparse Model
	Combining Sparse and Dense Models
	Final Results

	Discussion and Outlook
	Discussion
	Future Work

	Conclusion
	Bibliography

