Advances on Spoken Language Translation in the Quaero Program

K. Boudahmane, §B. Buschbeck, †E. Cho, ‡J. M. Crego,
*M. Freitag, †T. Lavergne, *H. Ney, †J. Niehues,
*S. Peitz, §J. Senellart, ‡A. Sokolov, †A. Waibel,
§T. Wandmacher, *J. Wuebker and ‡F. Yvon

IWSLT 2011, San Francisco
December 8, 2011

¶Direction générale de l’armement (DGA), France
†Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
‡LIMSI-CNRS, Orsay, France
*RWTH Aachen University, Aachen, Germany
§SYSTRAN Software, Inc.

http://www.quaero.org
2011 Spoken language translation (SLT) evaluation

- Annual project-internal evaluation conducted by DGA
- Goal:
 - evaluate market readiness and maturity of the developed technologies
- SLT eval builds upon previous year’s ASR eval
 - ASR Rover output as MT source
- Language pairs: German-French in both directions
- Data:
 - publicly available + internally collected
- Participants:
 - KIT, LIMSI, RWTH, SYSTRAN
Outline

► Evaluation framework
► Data description
► System descriptions
 ▶ KIT
 ▶ LIMSI
 ▶ RWTH
 ▶ SYSTRAN
► Results
► Summary
Evaluation framework

► Language pairs:
 ▶ German-French in both directions

► Conditions:
 ▶ (manual transcriptions)
 ▶ automatic transcriptions: ASR Rover, automatically segmented

► Evaluation data domain:
 ▶ mixture of broadcast news and broadcast conversation

► Scoring:
 ▶ two references produced by professional translators
 ▶ BLEU and TER
Data description

► Publicly available data
 ▶ bilingual and monolingual data from WMT 2010
 ACL 2010 Joint Fifth Workshop On Statistical Machine Translation

► Internally collected data (politics-news, UN documents)
 ▶ admin.ch
 ▶ project-syndicate.org
 ▶ bookshop.europa.eu
 ▶ presseurop.eu
 ▶ arte.tv
Statistics for internally collected data

Training data:

<table>
<thead>
<tr>
<th></th>
<th>German</th>
<th>French</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documents</td>
<td>16 K</td>
<td></td>
</tr>
<tr>
<td>Running words</td>
<td>5.3M</td>
<td>6.3M</td>
</tr>
<tr>
<td>Documents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Running words</td>
<td>250 K</td>
<td>70 M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>German</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documents</td>
<td>69 K</td>
<td></td>
</tr>
<tr>
<td>Running words</td>
<td>25 M</td>
<td></td>
</tr>
</tbody>
</table>

Evaluation data:

<table>
<thead>
<tr>
<th></th>
<th>German-French</th>
<th>French-German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documents</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Sentences</td>
<td>971</td>
<td>823</td>
</tr>
<tr>
<td>Running words</td>
<td>23K</td>
<td>21K</td>
</tr>
</tbody>
</table>
System description: KIT

- **Preprocessing**
 - **Training data:**
 - remove punctuation on source side
 - filter noisy data with SVM classifier
 - **Test data:**
 - smart casing to achieve higher coverage

- **In-house phrase-based decoder**
 - phrase extraction: Moses
 - 4-gram LMs with Kneser-Ney smoothing
 - parameters optimized for BLEU with MERT
System description: KIT

State-of-the-art extensions

- POS-based short-range reordering (Rottmann and Vogel, TMI 2007)
- POS-based long-range reordering (Niehues and Kolss, WMT 2009)
- phrase extraction from reordering lattice
- bilingual language model (Niehues et al., WMT 2011)
 - word-based
 - POS-based (German: RF tagger, French: LIA tagger)
System description: LIMSI

- **Preprocessing**
 - Test data:
 - remove partially recognized and repeated words

- **bilingual n-gram-based decoder **N-code**
 - monotone decoding
 - input: reordering lattice computed with FST using POS information
 - 4-gram LMs with Kneser-Ney smoothing
 - parameters optimized for BLEU with MERT
State-of-the-art extensions

- German POS-tagging with CRF-based tagger (Lavergne et al., ACL 2010)
- neural network language model (SOUL) (Le et al., ICASSP 2011)
 - 10-gram history size
 - applied in n-best list rescoring
System description: RWTH

▸ Preprocessing
 ▷ Training data:
 ◦ remove punctuation on source side
 ◦ add period at end of sentence

▸ In-house phrase-based decoder
 ▷ parameters optimized for BLEU with Downhill-simplex algorithm

▸ Hierarchical phrase-based decoder Jane (Vilar et al., WMT 2010)
 (http://www-i6.informatik.rwth-aachen.de/jane)
 ▷ parameters optimized for BLEU with MERT

▸ 4-gram LMs with Kneser-Ney smoothing
System description: RWTH

- State-of-the-art extensions
 - Triplet lexicon model (Hasan et al., EMNLP 2008)
 - Discriminative word lexicon model (Mauser et al., EMNLP 2009)
 - System combination (Leusch et al., WMT 2011)
System description: SYSTRAN

- Commercial MT system developed over decades
- Rule-based core engine with large-scale dictionaries
- Progressive integration of state-of-the-art MT techniques, e.g.
 - Statistical post-edition
 - Word sense disambiguation (WSD) models
 - Decision trees for POS disambiguation
- Combination of linguistic and statistical methods
System description: SYSTRAN

Rule-based translation is performed in 4 steps:

- Preprocessing
 - Segmentation
 - Normalization
 - Dictionary lookup

- Analysis
 - Morphological analysis
 - POS analysis
 - Named entity recognition
 - Syntactic dependency parsing

- Transfer
 - Application of transfer dictionaries and contextual disambiguation rules

- Synthesis
 - Syntactic rearrangement
 - Morphological generation
2011 Evaluation results

<table>
<thead>
<tr>
<th>System</th>
<th>BLEU [%]</th>
<th>TER [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIT</td>
<td>18.4</td>
<td>70.4</td>
</tr>
<tr>
<td>LIMSI</td>
<td>13.4</td>
<td>71.0</td>
</tr>
<tr>
<td>RWTH</td>
<td>16.1</td>
<td>69.7</td>
</tr>
<tr>
<td>SYSTRAN</td>
<td>10.0</td>
<td>76.7</td>
</tr>
</tbody>
</table>

German → French:

<table>
<thead>
<tr>
<th>System</th>
<th>BLEU [%]</th>
<th>TER [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIT 2009</td>
<td>16.4</td>
<td>67.5</td>
</tr>
<tr>
<td>KIT 2010</td>
<td>17.7</td>
<td>66.1</td>
</tr>
<tr>
<td>KIT</td>
<td>18.9</td>
<td>68.0</td>
</tr>
<tr>
<td>LIMSI</td>
<td>17.0</td>
<td>68.7</td>
</tr>
<tr>
<td>RWTH 2009</td>
<td>12.0</td>
<td>70.1</td>
</tr>
<tr>
<td>RWTH 2010</td>
<td>17.3</td>
<td>66.7</td>
</tr>
<tr>
<td>RWTH</td>
<td>17.6</td>
<td>65.5</td>
</tr>
<tr>
<td>SYSTRAN</td>
<td>16.0</td>
<td>71.5</td>
</tr>
</tbody>
</table>

French → German:

<table>
<thead>
<tr>
<th>System</th>
<th>BLEU [%]</th>
<th>TER [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIT</td>
<td>18.4</td>
<td>70.4</td>
</tr>
<tr>
<td>LIMSI</td>
<td>13.4</td>
<td>71.0</td>
</tr>
<tr>
<td>RWTH</td>
<td>16.1</td>
<td>69.7</td>
</tr>
<tr>
<td>SYSTRAN</td>
<td>10.0</td>
<td>76.7</td>
</tr>
</tbody>
</table>
Rover from 2010 ASR eval as input for 2011 SLT eval

German-French in both directions

Public and internally collected data

KIT, LIMSI, RWTH

- statistical systems: phrase-based, hierarchical, n-gram-based
- state-of-the-art extensions developed in Quaero

SYSTRAN

- commercial rule-based engine

French \rightarrow German: $+2.5\%$ BLEU since 2009
Thank you for your attention

Karim Boudahmane
Joern Wuebker

karim.boudahmane@dga.defense.gouv.fr
wuebker@cs.rwth-aachen.de

http://www.quaero.org