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Abstract. Interest in stochastic zeroth-order (SZO) methods has re-
cently been revived in black-box optimization scenarios such as adver-
sarial black-box attacks to deep neural networks. SZO methods only
require the ability to evaluate the objective function at random input
points, however, their weakness is the dependency of their convergence
speed on the dimensionality of the function to be evaluated. We present
a sparse SZO optimization method that reduces this factor to the ex-
pected dimensionality of the random perturbation during learning. We
give a proof that justifies this reduction for sparse SZO optimization for
non-convex functions. Furthermore, we present experimental results for
neural networks on MNIST and CIFAR that show empirical sparsity of
true gradients, and faster convergence in training loss and test accuracy
and a smaller distance of the gradient approximation to the true gradient
in sparse SZO compared to dense SZO.

Keywords: Nonconvex Optimization · Gradient-free Optimization · Zeroth-
order Optimization.

1 Introduction

Zeroth-order optimization methods have gained renewed interest for solving ma-
chine learning problems where only the zeroth-order oracle, i.e., the value of
the objective function but no explicit gradient, is available. Recent examples
include black-box attacks on deep neural networks where adversarial images
that lead to misclassification are found by approximating the gradient through
a comparison of function values at random perturbations of input images [3].
The advantage of simple random search for scalable and reproducible gradient-
free optimization has also been recognized in reinforcement learning [21,24] and
hyperparameter tuning for deep neural networks [6], and it is a mainstay in op-
timization of black-box systems and in simulation optimization [10,22]. While
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zeroth-order optimization applies in principle even to non-differentiable func-
tions, in practice Lipschitz-smoothness of the black-box function being evalu-
ated can be assumed. This allows to prove convergence for various zeroth-order
gradient approximations [1,5,7,11,22,26,31]. However, even in the optimal case,
zeroth-order optimization of n-dimensional functions suffers a factor of

√
n in

convergence rate compared to first-order gradient-based optimization. The goal
of our paper is to show theoretically and practically that sparse perturbations
in stochastic zeroth-order (SZO) optimization can improve convergence speed
considerably by replacing the dependency on the dimensionality of the objec-
tive function by a dependency on the expected dimensionality of the random
perturbation vector. This approach can be motivated by an observation of em-
pirical sparsity of gradients in our experiments on neural networks, or by natural
sparsity of gradients in applications to linear models with sparse input features
[27]. We give a general convergence proof for non-convex stochastic zeroth-order
optimization for Lipschitz-smooth functions that is independent of the dimen-
sionality reduction schedule applied, and shows possible linear improvements
in iteration complexity. Our proof is based on [22] and fills in the necessary
gaps to verify the dependency of convergence speed on the dimensionality of
the perturbation instead of on the full functional dimensionality. We present
experiments that perform dimensionality reduction on the random perturbation
vector by iteratively selecting parameters with high magnitude for further SZO
tuning, and freezing other parameters at their current values. Another dimen-
sionality reduction technique selects random masks by the heldout performance
of selected sub-networks, and once a sub-network architecture is identified, it is
further fine-tuned by SZO optimization. In our experiments, we purposely choose
an application that allows optimization with standard first-order gradient-based
techniques, in order to show improved gradient approximation by our sparse SZO
technique compared to standard SZO with full perturbations. Our experimental
results confirm a smaller distance to the true sparse gradient for the gradient
obtained by sparse SZO, and improved convergence in training loss and test
accuracy. Furthermore, we compare our technique to a zeroth-order version of
iterative magnitude pruning [8,13]. This technique zeros-out unimportant parts
of the weight vector while our proposed technique zeros-out only perturbations
and freezes unimportant parts of the weight vector at their current values. We
find similar convergence speed, but a strong overtraining effect on the test set if
weights are pruned to zero values. An estimation of the local Lipschitz constant
for the trained models shows that it is growing in the number of iterations for
the pruning approach, indicating that zeroing-out low magnitude weights may
lead the optimization procedure in a less smooth region of the search space. We
conjecture that a search path with a small local Lipschitz constant might have a
similar desirable effect as flat minima [15] in terms of generalization on unseen
test data. Our code is publicly available3.

3 https://github.com/StatNLP/sparse szo
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2 Related Work

SZO techniques in optimization date back to the finite-difference method for
gradient estimation of [16] where the value of each component of a weight vector
is perturbed separately while holding the other components at nominal value.
This technique has since been replaced by more efficient methods based on si-
multaneous perturbation of all weight vector components [18,28,29]. The central
idea of these approaches can be described as approximating non-differentiable
functions by smoothing techniques, and applying first-order optimization to the
smoothed function [7]. Several works have investigated different update rules
and shown the advantages of two-point or multi-point feedback for improved
convergence speed [1,5,11,20,22,26,31]. Recent works have investigated sparsity
methods for improved convergence in high dimensions [2,30]. These works have
to make strong assumptions of function sparsity or gradient sparsity. A precursor
to our work that applies sparse SZO to linear models has been presented by [27].

Connections of SZO methods to evolutionary algorithms and reinforcement
learning have first been described in [29]. Recent work has applied SZO tech-
niques successfully to reinforcement learning and hyperparameter search for deep
neural networks [6,21,23,24,25]. Similar to these works, in our experiments we
apply SZO techniques to Lipschitz-smooth deep neural networks.

Recent practical applications of SZO techniques have been presented in the
context of adversarial black-box attacks on deep neural networks. Here a classi-
fication function is evaluated at random perturbations of input images with the
goal of efficiently finding images that lead to misclassification [3,4]. Because of
the high dimensionality of the adversarial attack space in image classification,
heuristic methods to dimensionality reduction of perturbations in SZO opti-
mization have already put to practice in [3]. Our approach presents a theoretical
foundation for these heuristics.

3 Sparse Perturbations in SZO Optimization for
Nonconvex Objectives

We study a stochastic optimization problem of the form

min
w

f(w), where f(w) := Ex[F (w,x)], (1)

and where Ex denotes the expectation over inputs x ∈ X , and w ∈ Rn param-
eterizes the objective function F . We address the case of non-convex functions
F for which we assume Lipschitz-smoothness4, i.e., F (w,x) ∈ C1,1 is Lipschitz-
smooth iff ∀w,w′,x :

∥∥∇F (w,x) − ∇F (w′,x)
∥∥≤ L(F )

∥∥w −w′
∥∥, where

∥∥·∥∥ is
the L2-norm and L(F ) denotes the Lipschitz constant of F . This condition is
equivalent to

|F (w′)− F (w)− 〈∇F (w),w′ −w〉| ≤ L(F )

2

∥∥w −w′
∥∥2
. (2)

4 Cp,k denotes the class of p times differentiable functions whose k-th derivative is
Lipschitz continuous.
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It directly follows that f ∈ C1,1 if F ∈ C1,1.
[22] show how to achieve a smooth version of an arbitrary function f(w) by

Gaussian blurring that assures continuous derivatives everywhere in its domain.
In their work, random perturbation of parameters is based on sampling a n-
dimensional Gaussian random vector u from a zero-mean isotropic multivariate
Gaussian with unit n × n covariance matrix Σ = I. The probability density
function pdf(u) is defined by

u ∼ N (0, Σ), (3)

pdf(u) :=
1√

(2π)n · detΣ
e−

1
2u
>Σ−1u. (4)

A Gaussian approximation of a function f is then obtained by the expecta-
tion over perturbations Eu[f(w + µu)], where µ > 0 is a smoothing parameter.
Furthermore, a Lipschitz-continuous gradient can be derived even for a non-
differentiable original function f by applying standard differentiation rules to

the Gaussian approximation, yielding Eu[ f(w+µu)−f(w)
µ u].

The central contribution of our work is to show how a sparsification of the
random perturbation vector u directly enters into improved bounds on iteration
complexity. This is motivated by an observation of empirical sparsity of gradi-
ents in our experiments, as illustrated in the supplementary material (Figures 7
and 8). Concrete techniques for sparsification will be discussed as parts of our al-
gorithm (Section 5), however, our theoretical analysis applies to any method for
sparse perturbation. Let m(t) ∈ {0, 1}n be a mask specified at iteration t, and let
� denote the componentwise multiplication operator. A sparsified version v̄(t)

of a vector v(t) ∈ Rn is gotten by

v̄(t) := m(t) � v(t). (5)

The number of nonzero parameters of v̄(t) is defined for a given mask m(t) as
n̄(t) := ‖m(t)‖. Given the definition of a sparsification mask stated above, we can
define a sparsified Gaussian random vector drawn from N (0, I) by ū := m� u.
Using this notion of sparse perturbation, we redefine the smooth approximation
of f , with smoothing parameter µ > 0, as

fµ(w) :=Eū [f(w + µū)] . (6)

Note that fµ is Lipschitz-smooth with L(fµ) < L(f).

4 Convergence Analysis for Sparse SZO Optimization

[22] show that for Lipschitz-smooth functions F , the distance of the gradient
approximation to the true gradient can be bounded by the Lipschitz constant
and by the norm of the random perturbation. The term Eu[

∥∥u∥∥p] can itself be
bounded by a function of the exponent p and the dimensionality n of the function
space. This is how the dependency on n enters iteration complexity bounds and
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where an adaptation to sparse perturbations enter the picture. The simple case
of the squared norm of the random perturbation given below illustrates the idea.
For p = 2, we have

Eū

[∥∥ū∥∥2
]

= Eū

[
ū2

1 + ū2
2 + · · ·+ ū2

n

]
= Eū

[
ū2

1

]
+ Eū

[
ū2

2

]
+ · · ·+ Eū

[
ū2
n

]
= Vū [ū1] + Vū [ū2] + · · ·+ Vū [ūn]

= n̄. (7)

Intuitively this means that if a coordinate i in the parameter space is not per-
turbed, no variance Vū[ūi] is incurred. The smaller the variance, the smaller
the factor n̄ that directly influences iteration complexity bounds. The central
Lemma 1 gives a bound on the expected norm of the random perturbations for
the general case of p ≥ 2: Intuitively, if several coordinates are masked and thus
not perturbed, the determinant of the covariance matrix reduces to a product
of variances of the unmasked parameters. This allows us to bound the perturba-
tion factor for each input by n̄ � n where the sparsity pattern is given by the
masking strategy determined in the algorithm (see Section 5).

Lemma 1. Let ū = m� u with u ∼ N (0, I), then

Eū

[∥∥ū∥∥p] ≤ (n̄+ p)
p/2 for p ≥ 2. (8)

Given the reduction of the perturbation factor to n̄� n, we can use the reduced
factor in further Lemmata and in the main Theorem that shows improved iter-
ation complexity of sparse SZO optimization. In the following we will state the
Lemmata and Theorems that extend [22] to the case of sparse perturbations.
For completeness, full proofs of all Lemmata and Theorems can be found in the
supplementary material.

Lemma 2 applies standard differentiation rules to the function fµ(w), yielding
a Lipschitz-continuous gradient.

Lemma 2. Let F ∈ C1,1 and ū = m� u with u ∼ N (0, I). Then we have

∇fµ(w) = Eū[
f(w + µū)

µ
ū] (9)

= Eū[
f(w + µū)− f(w)

µ
ū] (10)

= Eū[
f(w + µū)− f(w − µū)

2µ
ū]. (11)

In the rest of this paper we define our update rule as

gµ(w) :=
f(w + µū)− f(w)

µ
ū (12)

from (10). Lemma 2 implies that gµ(w) is an unbiased estimator of ∇fµ(w).
The next Lemma shows how to bound the distance of the gradient approxima-

tion to the true gradient in terms of µ, L(f), and the number of perturbations n̄.
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dataset MNIST CIFAR-10

trainset size 50,000 40,000
devset size 10,000 10,000
testset size 10,000 10,000
architecture feed-forward NN CNN
model size 266,610 4,301,642
batch size 64 64

learning rate h 0.2 0.1
smoothing µ 0.05 0.05

variance 1.0 1.0
total epochs 100 100

sparsification interval 5 epochs 5 epochs

Table 1. Data statistics and system settings.

Lemma 3. Let f ∈ C1,1 Lipschitz-smooth, then

‖∇f(w)‖2 ≤ 2‖∇fµ(w)‖2 +
µ2L2(f)

2
(n̄+ 4)3. (13)

The central Theorem shows that the iteration complexity of an SZO algo-
rithm based on update rule (12) is bounded by the Lipschitz constant L and the
expected dimensionality n̂ of sparse perturbations with respect to iterations:

Theorem 1. Assume a sequence {w(t)}t≥0 be generated by Algorithm 1. Let
X = {x(t)}t≥0 and Ū = {ū(t)}t≥0. Furthermore, let f?µ denote a stationary point

such that f?µ ≤ fµ(w(t)) ∀ t > 0 and n̂ ≥ Et[n̄(t)] := 1
T+1

∑T+1
t=0 n̄(t) the upper

bound of the expected number of nonzero entries of Ū . Then, choosing learning

rate ĥ = 1
4(n̂+4)L and µ = Ω

( ε

n̂3/2L

)
where L(f) ≤ L for all f(w(t)), we have

EŪ,X
[∥∥∇f(w(T ))

∥∥2
]
≤ ε2 (14)

for any T = O
(
n̂L
ε2

)
.

Note that n̂ ≥ Et
[
n̄(t)
]

is much smaller than n = Et
[
n(t)
]

= 1
T+1

∑T+1
t=0 n,

if n̄(t) is chosen such that n̄(t) � n at each iteration t > 0 of Algorithm 1. This
Theorem implies that both strong sparsity patterns and the smoothness of the
objective function can boost the convergence speed up to linear factor.

5 Algorithms for Sparse SZO Optimization

5.1 Masking strategies

Algorithm 1 starts with standard SZO optimization with full perturbations in
the first iteration. This is done by initializing the mask to a n-dimensional vector
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Algorithm 1 Sparse SZO Optimization

1: INPUT: dataset X = {x0, · · · ,xT }, sequence of learning rates h, sparsification
interval s, number of samples k, smoothing parameter µ > 0

2: Initialize mask: m(0) = 1n (n̄(0) = n)
3: Initialize weights: w(0)

4: for t = 0, · · · , T do
5: if mod(t, s) = 0 then

6: Update mask m(t′) = get mask(w(t))
7: if pruning then
8: w(t) = m(t′) �w(t)

9: end if
10: end if
11: Observe x(t) ∈ X
12: for j = 1, · · · , k do
13: Sample unit vector u(t) ∼ N (0, I)

14: Apply mask ū(t) = m(t′) � u(t) (n̄(t) � n)

15: Compute g
(j)
µ (w(t))

16: end for
17: Average gµ(w(t)) = avg

j
(g

(j)
µ (w(t)))

18: Update w(t+1) = w(t) − h(t)gµ(w(t))
19: end for
20: OUTPUT: sequence of {w(t)}t≥0

of coordinates with value 1 (line 2). Guided by a schedule that applies sparsi-
fication at every s-th iteration, the function get mask(·) is applied (line 6). We
implemented a first strategy called magnitude masking, and another one called
random masking. In magnitude masking, we sort the indices according to their
L1-norm magnitude, set a cut-off point, and mask the weights below the thresh-
old. In random masking, we sample 50 random mask patterns and select the one
that performs best according to accuracy on a heldout set. Following [9], the
sparsification interval corresponds to reducing 20% of the remaining unmasked
parameters at every 5 epochs.

5.2 Sparse perturbations with pruning or freezing

Algorithm 1 is defined in a general form that allows pruning and freezing of
masked parameters. In the pruning variant, the same sparsification mask that
is applied to the Gaussian perturbations (line 14) is also applied to the weight
vector itself (line 8). That is, we keep the weight values from the previous iter-
ation at the index whose mask value is one, and reset the weight values to zero
at the index whose mask value is zero. This can be seen as a straightforward
sparse-SZO extension of the iterative magnitude pruning method with rewinding
to the value of the previous iteration as proposed by [9]. In the freezing variant,
we apply the sparsification mask only to the Gaussian perturbations (line 14),
and inherit all the weight values from the previous iteration. That is, we keep
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Fig. 1. Distance of gradient approximation to true gradient on training set, interpola-
tion factor 0.99.

Fig. 2. Cumulative values for cross-entropy loss of sparse and dense SZO algorithms
on the training set.

the weight value unchanged at the index whose mask value is zero, and allow
the value to be updated at the index whose mask value is one.

6 Experiments

We purposely chose experimental tasks where the true gradient can be calculated
exactly in order to experimentally verify the improved gradient approximation
by sparse perturbations in SZO. While the convergence rate in SZO is always
is suboptimal compared to first-order optimization due to the used gradient ap-
proximation (see [5] or [26]), our proofs show that sparse perturbations improve
the distance of the approximate gradient to the true gradient (Lemma 3) and
thus the convergence rate (Theorem 1). The experimental results given in the
following confirm our theoretical analysis.

6.1 Task and datasets

We apply our sparse SZO algorithm to standard image classification benchmarks
on the MNIST [19] and CIFAR-10 [17] datasets. Since the SZO optimizers are
less common in an off-the-shelf API package bundled in a framework, we imple-
mented our custom SZO optimizers utilizing pytorch, and the data was down-
loaded via torchvision package v0.4.2. We followed the pre-defined train-test
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Fig. 3. Multi-class classification accuracy of sparse and dense SZO algorithms on test
sets.

Fig. 4. Estimated local Lipschitz smoothness Llocal of sparse and dense SZO algorithms
along search path, interpolation factor 0.99.

split, and partitioned 20% of the train set for validation. Model performance
is measured by successive evaluation of the gradient norm on the training set,
multi-class classification accuracy on the test set, cumulative cross-entropy loss
on the training set, and the local function smoothness, estimated by the local
Lipschitz constant computed as

Llocal :=

∥∥∇f(w(t−1))−∇f(w(t))
∥∥∥∥w(t−1) −w(t)

∥∥ . (15)

6.2 Architectures and experimental settings

For the MNIST experiments, we constructed a fully-connected feed-forward neu-
ral network models with 3 layers including batch normalization [14] after each
layer. For the CIFAR-10 experiments, we built a convolutional neural network
with 2 convolutional layers with kernel size 3 and stride 1. After taking max
pooling of these two convolutional layers, we use 2 extra fully-connected linear
layers on top of it. We employed the xavier-normal weights initialization method
[12] for all setups. Each model is trained by minimizing a standard cross-entropy
loss for 100 epochs with batch size 64. We used a constant learning rate of 0.2
for MNIST and 0.1 for CIFAR, a constant smoothing parameter of 0.05, and
two-sided perturbations in the SZO optimization for both datasets. We sam-
pled 10 perturbations per update from a zero-centered Gaussian distribution
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Fig. 5. Denominator and numerator of estimated local Lipschitz smoothness Llocal

along search path, interpolation factor 0.99.

with variance 1.0, computed the gradients for each, then the average was taken
before update. Applying the 20% reduction schedule 20 times throughout the
training, the active model parameters were reduced from 266,610 to 3,844 in
MNIST experiments, from 4,301,642 to 61,996 in CIFAR experiments. We com-

puted sparsity as 1− n̄(t)

n(t) every time we update the mask pattern. The sparsity
value along iteration is given in the upper x-axis of each plot. The lower x-axis
shows the number of examples visited during training in thousands. If indicated,
plotted curves are smoothed by linear interpolation with the previous values.
All plots show mean and standard deviation of results for 3 training runs under
different random seeds. A summary of data statistics and system settings can
be found in Table 1.

6.3 Experimental results

Our experimental task was purposely chosen as an application that allows opti-
mization with standard first-order (SFO) gradient-based techniques for compar-
ison with SZO methods. Figure 1 shows that the distance of the approximate
gradient to the true gradient converges to zero at the fastest rate for freezing
methods, proving empirical support for (34) in Lemma 3. All four sparse SZO
variants approach the true gradients considerably faster in most training steps
on both training datasets than dense SZO (i.e., the full dimension of parameters
is perturbed in each training step). We see that dense SZO is diverging from the
true gradient on the CIFAR dataset where more than 4 million parameters are
trained.

Figure 2 gives cumulative values of the cross-entropy loss function on the
respective training sets. We see that convergence in cross-entropy loss is similar
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Fig. 6. Estimated local Lipschitz smoothness Lneighbor on test set in neighborhood of
w(t), interpolation factor 0.8.

for sparse and dense SZO variants on MNIST and advantageous for sparse SZO
on CIFAR, with both weight pruning methods showing a slight divergence in
cross-entropy loss.

Figure 3 shows the accuracy of multi-class classification on MNIST and
CIFAR-10 for the sparse and dense SZO variants. We see the fastest conver-
gence in test accuracy for freezing methods, compared to pruning and dense
SZO. Interestingly, we see that the test accuracy decreases after a while for all
pruning variants, while it continues to increase for the freezing variants and the
dense SZO algorithm.

One possibility to analyze this effect is to inspect the estimate of the local
Lipschitz smoothness Llocal defined in (15) along the current search path on the
training set. Figure 4 shows that Llocal decreases considerably along the search
trajectory for sparse SZO optimization, with a faster decrease for freezing than
for pruning methods. However, it increases considerably for the dense variant,
leading the optimization procedure into less smooth areas of the search space.
In order to verify that this is not a trivial effect due to pruned weight vectors,
we consider numerator and denominator of Llocal separately in Figure 5. We see
that the denominator and numerator are decreasing at different speeds for the
sparse variants, with relatively larger differences between gradients causing an
increase in the Lipschitz quotient. The numerator

∥∥∇f(w(t−1)) − ∇f(w(t))
∥∥ is

successively reduced in the sparse methods, with a faster reduction for freezing
than for pruning. The reduction indicates that sparse SZO methods find a path
converging to the optimal point, while the dense variant seems not to be able to
find such a path, but instead stays at the same distance or even increases the
distance from the previous step.

Finally, we evaluate an estimate of the local Lipschitz smoothness in a neigh-
borhood v ∼ Uniform(−0.5, 0.5) around the current parameter values w(t) on
the test set. Lneighbor is estimated by taking the maximum of 10 samples per
batch as

Lneighbor := max
v

∥∥∇f(w(t))−∇f(w(t) + v)
∥∥∥∥v∥∥ . (16)
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Figure 6 shows that Lneighbor is staying roughly constant on the test set in
the neighborhood of the parameter estimates obtained during training for freez-
ing and dense SZO. However, it is increasing considerably for both variants of
pruning, indicating that pruning methods converge to less smooth regions in
parameter space.

7 Conclusion

SZO methods are flexible and simple tools for provably convergent optimiza-
tion of black-box functions only from function evaluations at random points.
A theoretical analysis of these methods can be given under mild assumptions
of Lipschitz-smoothness of the function to be optimized. However, even in the
best case, such gradient-free methods suffer a factor of

√
n in iteration complex-

ity, depending on the dimensionality n of the evaluated function, compared to
methods that employ gradient information. This makes SZO techniques always
second-best if gradient information is available, especially in high dimensional
optimization. However, SZO techniques may be the only option in black-box op-
timization scenarios where it is desirable as well to improve convergence speed.
Our paper showed that the dimensionality factor can be reduced to the expected
dimensionality of random perturbations during training, independent of the di-
mensionality reduction schedule employed. This allows considerable speedups in
convergence of SZO optimization in high dimensions. We presented experiments
with masking schedules based on L1-magnitude and random masking, both con-
firming our theoretical result of an improved approximation of the true gradient
by a sparse SZO gradient. This result is accompanied by an experimental finding
of improved convergence in training loss and test accuracy. A further experiment
compared sparse SZO where masked parameters are frozen at their current val-
ues to a variant of sparse SZO where masked parameters are pruned to zero
values. This technique can be seen as a sparse SZO variant of the well-known
technique of iterative magnitude pruning [8,13]. Our results show that pruning
techniques perform worse in the world of SZO optimization than fine-tuning
unmasked parameters while freezing masked parameters. By further inspection
of the local Lipschitz smoothness along the search path of different algorithms
we find that pruning in the SZO world can lead the optimization procedure in
a locally less smooth search area, while freezing seems to lead to a smoother
search path even compared to dense SZO optimization.
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Appendix

A Notation

In order to adapt the theoretical analysis of [22] to the case of sparse pertur-
bations, the probability density function pdf ū(ū) and expectations Eū[f(ū)] of
random variables with respect to it have to be carefully defined. Given a spar-
sification mask m ∈ {0, 1}n, let Imasked := {i|mi = 0} be a set of indices whose
mask value is zero. Likewise, let Iunmasked := {i|mi = 1} be a set of indices
whose mask value is one. The probability density function of random pertur-
bations u ∼ N (0, I) can be expressed as a product of univariate probability
density functions pdf(ui), where ui ∼ N (0, 1). Then the probability density
function pdf ū(ū) can be defined as a conditional probability density function
pdfu|ui=0,i∈Imasked

(u), conditioned on zero-valued entries ui = 0 corresponding
to masked indices i ∈ Imasked. Since the number of nonzero parameters is deter-
mined by the sparsification mask as |Iunmasked| = n̄, we can reduce the product
over the full dimensionality i ∈ {1, · · ·n} to the product over unmasked entries
i ∈ Iunmasked. The conditional probability density function pdfu|ui=0,i∈Imasked

(u)
is then defined as

pdfu|ui=0,i∈Imasked
(u) =

∏
i∈Iunmasked

pdf(ui) (17)

=

(
1√
2π

)n̄ ∏
i∈Iunmasked

e−
1
2u

2
i . (18)

The expectation with respect to ū is defined as conditional expectation using
aforementioned conditional probability density function. Let f : Rn → R be
an arbitrary function, let

∫
u� ·du denote the integral

∫
u|ui=0,i∈Imasked

·du, and

let pdfu� denote the conditional probability density function pdfu|ui=0,i∈Imasked
,

and let κ :=
√

(2π)n̄. Then we have

Eū[f(ū)] := Eu|ui=0,i∈Imasked
[f(u)] (19)

=

∫
u�

f(u) · pdfu�(u)du (20)

=
1

κ

∫
u�

f(u) · e− 1
2‖u‖

2

du. (21)

In the following, we use the notation
∫
u� ·du for

∫
u|ui=0,i∈Imasked

·du, and

pdfu� for pdfu|ui=0,i∈Imasked
.

B Proof for Lemma 1

Proof. Define by ũ ∈ Rn̄ a reduced vector that removes all zero entries from
ū ∈ Rn. Taking an expectation over ū ∈ Rn results in the same value as taking
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an expectation over ũ ∈ Rn. This can be seen as follows:

Eū

[∥∥ū∥∥p] =
1

κ

∫
u|ui=0,i∈Imasked

∥∥u∥∥pe− 1
2u
>Σudu

=
1

κ

∫
u|ui=0,i∈Imasked

 n∑
j=1

|uj |p
 e−

1
2u
>Σudu

=
1

κ

∑
i∈Iunmasked

(∫
ui

|ui|pe−
1
2u

2
i dui

)

=
1

κ

∫
ũ

(
n̄∑
i=1

|ui|p
)
e−

1
2 ũ
>Σ̃ũdũ

=
1

κ

∫
ũ

∥∥ũ∥∥pe− 1
2 ũ
>Σ̃ũdũ

= Eũ

[∥∥ũ∥∥p]
where Σ̃ is a n̄× n̄ unit covariance matrix with Σ̃ = I.

Let p ≥ 2 and τ ∈ (0, 1). Recalling that ū ∈ Rn, ũ ∈ Rn̄, and Σ̃ ∈ Rn̄×n̄, we
have

Eū

[∥∥ū∥∥p] = Eũ

[∥∥ũ∥∥p]
=

1√
(2π)n̄

∫
ũ

∥∥ũ∥∥pe− τ+(1−τ)
2 ũ>ũdũ

=
1√

(2π)n̄

∫
ũ

∥∥ũ∥∥pe− τ2 ũ>ũe−
1−τ

2 ũ>ũdũ

≤ 1√
(2π)n̄

∫
ũ

( p
τe

) p
2

e−
1−τ

2 ũ>ũdũ (22)

=
( p
τe

) p
2 1√

(2π)n̄

∫
ũ

e
− 1

2 ũ
>
(

Σ̃
1−τ

)−1
ũ
dũ

=
( p
τe

) p
2 1√

(2π)n̄

√
(2π)n̄ · det

(
Σ̄

1− τ

)
(23)

=
( p
τe

) p
2

(1− τ)−
n̄
2 (24)

≤ (n̄+ p)
p
2 . (25)

The first inequality (22) follows from tpe−
τ
2 t

2 ≤
(
p
τe

) p
2 for t > 0. The second

inequality (25) follows by minimizing
(
p
τe

) p
2 (1− τ)−

n
2 in τ ∈ (0, 1). Full proofs

of these inequalities are given in subsection F.



Sparse Perturbations for Improved Convergence in SZO Optimization 17

C Proof for Lemma 2

Proof.

∇wfµ(w) = ∇wEū [f(w + µū)]

= ∇w

∫
u�

pdfu�(u) f(w + µu) du

=

∫
u�
∇w pdfu�(u) f(w + µu) du (26)

=
1

κ

∫
u�
∇w e−

1
2‖u‖

2

f(w + µu) du

=
1

κ

∫
y�
∇w e−

1
2‖

y−w
µ ‖

2

f(y)
1

µn
dy (27)

=
1

κ

∫
y�

y −w

µ2
e
− 1

2µ2 ‖y−w‖
2

f(y)
1

µn
dy

=
1

κ

∫
u�

u

µ
e−

1
2‖u‖

2

f(w + µu) du (28)

= Eū

[
f(w + µū)

µ
ū

]
Since f ∈ C1,1, we can interchange ∇ and the integral in (26). Furthermore,

we substituted y = w + µu in (27) and put it back in (28).

Now, we show (10) ⇔ (9).

Eū

[
f(w + µū)− f(w)

µ
ū

]
(29)

=
1

κ

∫
u�

f(w + µu)− f(w)

µ
u e−

1
2‖u‖

2

du

=
1

κ

∫
u�

f(w + µu)

µ
u e−

1
2‖u‖

2

du− f(w)

µκ

∫
u�

u e−
1
2‖u‖

2

du︸ ︷︷ ︸
=0

= Eū

[
f(w + µū)

µ
ū

]
(30)

Lastly, we show (11) ⇔ (9). The expectation doesn’t change even if we shift
w by µū, hence

Eū

[
f(w)− f(w − µū)

µ
ū

]
= Eū

[
f(w + µū)− f(w)

µ
ū

]
(31)

(30)
= Eū

[
f(w + µū)

µ
ū

]
. (32)
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Eū

[
f(w + µū)− f(w − µū)

2µ
ū

]

=
1

2

Eū

f(w + µū)

µ
ū−f(w)

µ
ū +

f(w)

µ︸ ︷︷ ︸
=0

ū− f(w − µū)

µ
ū




=
1

2

(
Eū

[
f(w + µū)− f(w)

µ
ū

]
+ Eū

[
f(w)− f(w − µū)

µ
ū

])
(32)
=

1

2

(
Eū

[
f(w + µū)

µ
ū

]
+ Eū

[
f(w + µū)

µ
ū

])
= Eū

[
f(w + µū)

µ
ū

]

D Proof for Lemma 3

Proof. ∥∥∇fµ(w)−∇f(w)
∥∥ (33)

=

∥∥∥∥ 1

κ

∫
u�

(
f(w + µu)− f(w)

µ
− 〈∇f(w),u〉

)
u e−

1
2‖u‖

2

du

∥∥∥∥ (34)

≤ 1

κµ

∫
u�
|f(w + µu)− f(w)− µ〈∇f(w),u〉|

∥∥u∥∥ e− 1
2‖u‖

2

du (35)

(2)

≤ µL(f)

2κ

∫
u�

∥∥u∥∥3
e−

1
2‖u‖

2

du

=
µL(f)

2
Eū

[∥∥ū∥∥3
]

(8)

≤ µL(f)

2
(n̄+ 3)

3/2 (36)

In the first equality (34), we used ∇f(w)
(57)
= Eū [〈∇f(w), ū〉ū]

= 1
κ

∫
u�〈∇f(w),u〉u e− 1

2‖u‖
2

du (see Lemma 7). The first inequality (35) follows

because
∥∥∫ f(x)dx

∥∥ ≤ ∫ ‖f(x)‖ dx (the triangle inequality for integrals).

Setting a← ∇f(w) and b← ∇fµ(w) in Lemma 4, we get

∥∥∇f(w)
∥∥2 (53)

≤ 2
∥∥∇f(w)−∇fµ(w)

∥∥2
+2
∥∥∇fµ(w)

∥∥2

(36)

≤ µ2L2(f)

2
(n̄+ 3)3 + 2

∥∥∇fµ(w)
∥∥2

≤ µ2L2(f)

2
(n̄+ 4)3 + 2

∥∥∇fµ(w)
∥∥2
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E Proof for Theorem 1

Proof.

fµ(w)− f(w) = Eū [f(w + µū)]− f(w)

= Eū [f(w + µū)− f(w)− µ〈∇f(w), ū〉] (37)

=
1

κ

∫
u�

[f(w + µu)− f(w)− µ〈∇f(w),u〉] e− 1
2‖u‖

2

du

(2)

≤ 1

κ

∫
u�

µ2L(f)

2

∥∥u∥∥2
e−

1
2‖u‖

2

du

=
µ2L(f)

2
Eū

[∥∥ū∥∥2
]

(7)

≤ µ2L(f)

2
n̄ (38)

The second equality (37) follows because Eū [ū] = 0. Moreover, (38) doesn’t
change even if we shift w by µū, therefore we have

[(fµ(w)− f(w))− (fµ(w + µu)− f(w + µu))]
2

(39)

(54)

≤ 2 [fµ(w)− f(w)]
2

+ 2 [fµ(w + µu)− f(w + µu)]
2

(38)

≤ µ4L2(f)

2
n̄2 +

µ4L2(f)

2
n̄2

= µ4L2(f)n̄2 (40)

Setting a← fµ(w+µu)−fµ(w) and b← µ〈∇fµ(w),u〉 in Lemma 4, we get

[fµ(w + µu)− fµ(w)]
2

(41)

(53)

≤ 2 [fµ(w + µu)− fµ(w)− µ〈∇fµ(w),u〉]2 + 2 [µ〈∇fµ(w),u〉]2

(2)

≤ µ4L2(fµ)

2

∥∥u∥∥4
+2µ2〈∇fµ(w),u〉2

≤ µ4L2(f)

2

∥∥u∥∥4
+2µ2

∥∥∇fµ(w)
∥∥2∥∥u∥∥2

(42)

The last inequality follows because L(fµ) < L(f) and the Cauchy-Schwarz in-

equality 〈a,b〉2 ≤
∥∥a∥∥2∥∥b∥∥2

.
Again, setting a ← f(w + µw) − f(w) and b ← fµ(w + µw) − fµ(w) in

Lemma 4, we obtain

[f(w + µu)− f(w)]
2

(43)

(53)

≤ 2 [(fµ(w)− f(w))− (fµ(w + µu)− f(w + µu))]
2

+ 22 [fµ(w + µu)− fµ(w)]
2

(40),(42)

≤ 2µ4L2(f)n̄2 + µ4L2(f)
∥∥u∥∥4

+4µ2
∥∥∇fµ(w)

∥∥2∥∥u∥∥2
(44)
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Now, we evaluate the expectation of
∥∥gµ(w)

∥∥2
wrt. x and ū.

Eū,x

[∥∥gµ(w)
∥∥2
]

(12)
= Eū

[∥∥∥∥f(w + µū)− f(w)

µ
ū

∥∥∥∥2
]

= Eū

[
1

µ2
[f(w + µū)− f(w)]

2 ·
∥∥ū∥∥2

]
(45)

(44)

≤ Eū

[
2µ2L2(f)n̄2

∥∥ū∥∥2
+µ2L2(f)

∥∥ū∥∥6
+4
∥∥∇fµ(w)

∥∥2∥∥ū∥∥4
]

(8)

≤ 2µ2L2(f)n̄3 + µ2L2(f)(n̄+ 6)3 + 4(n̄+ 4)2
∥∥∇fµ(w)

∥∥2

≤ 3µ2L2(f)(n̄+ 4)3 + 4(n̄+ 4)2
∥∥∇fµ(w)

∥∥2
(46)

The last inequality follows because 2n̄3 + (n̄+ 6)3 ≤ 3(n̄+ 4)3.
From the Lipschitz-smoothness assumption (2) of fµ, we have

fµ(w(t+1))
(2)

≤ fµ(w(t)) + 〈∇fµ(w(t)),w(t+1) −w(t)〉+
L(fµ)

2

∥∥w(t) −w(t+1)
∥∥2

= fµ(w(t))− h(t)〈∇fµ(w(t)), gµ(w(t))〉+
(h(t))2L(fµ)

2

∥∥gµ(w(t))
∥∥2

(47)

In (47), we used the update rule w(t+1) = w(t) − h(t)gµ(w(t)). Taking the ex-
pectation wrt. x(t) and ū(t), we have

Eū,x

[
fµ(w(t+1))

]
≤ Eū,x

[
fµ(w(t))

]
− h(t)Eū,x

[∥∥∇fµ(w(t))
∥∥2
]

+
(h(t))2L(fµ)

2
Eū,x

[∥∥gµ(w(t))
∥∥2
]

(46)

≤ Eū,x

[
fµ(w(t))

]
− h(t)Eū,x

[∥∥∇fµ(w(t))
∥∥2
]

+
(h(t))2L(f)

2

(
4(n̄(t) + 4)Eū,x

[∥∥∇fµ(w(t))
∥∥2
]

+ 3µ2L2(f)(n̄(t) + 4)3
)

Choosing h(t) = 1
4(n̄(t)+4)L(f)

, we have

Eū,x

[
fµ(w(t+1))

]
≤ Eū,x

[
fµ(w(t))

]
− 1

8(n̄(t) + 4)L(f)
Eū,x

[∥∥∇fµ(w(t))
∥∥2
]

(48)

+
3µ2

32
L(f)(n̄(t) + 4) (49)

Recursively applying the inequalities above moving the index from T + 1 to
0, rearranging the terms and noting that f?µ ≤ fµ(w(t)) and ĥ = 1

4(n̂+4)L where

L(f) ≤ L for all f(w(t)) results in

EŪ,X
[∥∥∇fµ(w(T ))

∥∥2
]
≤ 8(n̂+ 4)L

[
fµ(w(0))− f?µ

T + 1
+

3µ2

32
L(n̂+ 4)

]
(50)
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Thus, we obtain

EŪ,X
[∥∥∇f(w(T ))

∥∥2
] (13)

≤ µ2L2

2
(n̂+ 4)3 + 2EŪ,X

[∥∥∇fµ(w(T ))
∥∥2
]

(50)

≤ 16(n̂+ 4)L
fµ(w(0))− f?µ

T + 1
+
µ2L2

2
(n̂+ 4)2

(
n̂+

11

2

)
(51)

Now we lower-bound the expected number of iteration. In order to get ε-accurate

solution EŪ,X
[∥∥∇f(w(T ))

∥∥2
]
≤ ε2, we need to choose µ = Ω

(
ε

n̂3/2L

)
· · · (52) so

that the second term in the right hand side of (51) vanishes wrt. ε2.

16(n̂+ 4)L
fµ(w(0))− f?µ

T + 1
+O(µ2L2n̂3)

(52)
= 16(n̂+ 4)L

fµ(w(0))− f?µ
T + 1

+O(ε2)

!
= O(ε2)

T = O
(
n̂L

ε2

)

F Miscellaneous

Lemma 4. For any a,b ∈ Rn, we have∥∥a∥∥2 ≤ 2
∥∥a− b

∥∥2
+2
∥∥b∥∥2

(53)

Proof. For any x,y ∈ Rn, it holds∥∥x + y
∥∥2

+
∥∥x− y

∥∥2
=
∥∥x∥∥2

+2〈x,y〉+
∥∥y∥∥2

+
∥∥x∥∥2−2〈x,y〉+

∥∥y∥∥2

= 2
∥∥x∥∥2

+2
∥∥y∥∥2

.

Dropping either
∥∥x + y

∥∥2
or
∥∥x− y

∥∥2
on the left hand side, we get

∥∥x± y
∥∥2 ≤ 2

∥∥x∥∥2
+2
∥∥y∥∥2

(54)

Substitute x← a− b and y← b in
∥∥x + y

∥∥2≤ 2
∥∥x∥∥2

+2
∥∥y∥∥2

. Then we get

∥∥a∥∥2 ≤ 2
∥∥a− b

∥∥2
+2
∥∥b∥∥2

.

Lemma 5. Let be t > 0, p ≥ 2, and τ ∈ (0, 1). Then we have

tpe−
τ
2 t

2

≤
( p
τe

) p
2

. (55)
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Proof. Denote ψ(t) := tpe−
τ
2 t

2

for some fixed τ ∈ (0, 1). Find the point t s.t.
ψ
′
(t) = 0.

ψ′(t) = ptp−1e−
τ
2 t

2

+ tp
(
−τte− τ2 t

2
)

!
= 0

t =
√
p/τ since t > 0, τ ∈ (0, 1)

ψ(
√
p/τ) = (p/τ)

p
2 e−

p/2

=
( p
τe

) p
2

Now we conduct the second derivative test.

ψ′′(t) =
(
τ2t2e−

τ
2 t

2

− τe− τ2 t
2
)
tp + (p− 1)pe−

τ
2 t

2

tp−2 − 2τpe−
τ
2 t

2

tp

= e−
τ
2 t

2

· tp−2
(
τ2t4 − 2τpt2 − τt2 + p2 − p

)
ψ′′(

√
p/τ) = e

− Cτ2
p

Cτ ·
√
p

τ

p−2(
@@τ

2
(p
Aτ

)2

− 2Aτp
p

Aτ
− Aτ

p

Aτ
+ p2 − p

)

= e−
p
2︸︷︷︸

>0

(p
τ

) p−2
2

︸ ︷︷ ︸
>0

SSp
2 −ZZ2p2 − p+ SSp

2 − p︸ ︷︷ ︸


<0

< 0 since p ≥ 2

Hence, we conclude that we have found a local maximum at t =
√
p/τ, therefore

tpe−
τ
2 t

2 ≤
(
p
τe

) p
2 .

Lemma 6. Let be t > 0, p ≥ 2, τ ∈ (0, 1), and n > 0. Then we have( p
τe

) p
2

(1− τ)−
n
2 ≤ (p+ n)

p
2 (56)

Proof. Denote φ(τ) :=
(
p
τe

) p
2 (1− τ)−

n
2 for some fixed τ ∈ (0, 1). Find the point

τ s.t. φ′(τ) = 0.

φ′(τ) =
e−

p
2 (1− τ)−

n
2−1( pτ )

p
2 (nτ + p(τ − 1))

2τ

!
= 0

τ =
p

n+ p
since n+ p 6= 0, np 6= 0

Let us check the sign of the second derivative of φ( p
n+p ).

φ′′(τ) =
1

4(τ − 1)2τ2
e−

p
2

(p
τ

) p
2

(1− τ)−
n
2

(
τ2((p+ n)2 + 2(p+ n))

−2pτ(p+ n)− 4pτ + 2p)

φ′′(
p

n+ p
) =

(n+ p)4

4n2p2︸ ︷︷ ︸
>0

e−
p
2︸︷︷︸

>0

(n+ p)
p
2︸ ︷︷ ︸

>0

(
n+ p

n

)n
2

︸ ︷︷ ︸
>0

− p2

(
1 +

2

p+ n

)
+ 2p︸ ︷︷ ︸


<0

< 0



Sparse Perturbations for Improved Convergence in SZO Optimization 23

since p ≥ 2, n > 0. Therefore, φ(τ) takes a local maximum at τ = p
n+p . Then we

obtain

φ(
p

n+ p
) = e−

p
2 (p+ n)

p
2

(
n+ p− p
n+ p

)−n2
≤ (p+ n)

p
2 .

The last inequality follows because

e−
p
2

(
n

n+ p

)−n2
≤ 1.

Lemma 7.

∇f(w) = Eu [〈∇f(w),u〉u] (57)

Proof. Let us denote the gradients ∇f(w) wrt. w as a column vector of deriva-
tives of each component in w.

∇f(w) =

[
∂f

∂w1
,
∂f

∂w2
, · · · ∂f

∂wn

]>

By definition of the scalar product, we have

〈∇f(w),u〉 =

n∑
j=1

∂f

∂wj
uj (58)
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Then we get

Eu [〈∇f(w),u〉u]
(58)
= Eu

 n∑
j=1

∂f

∂wj
uj

u


=

n∑
j=1

Eu

[(
∂f

∂wj
uj

)
u

]
(59)

=

n∑
j=1

∂f

∂wj
Eu [uj · u]

=

n∑
j=1

∂f

∂wj



E [uj · u1]
E [uj · u2]

...
E [uj · uj ]

...
E [uj · un]



=

n∑
j=1

∂f

∂wj



E [uj ] · E [u1]
E [uj ] · E [u2]

...
E
[
u2
j

]
...

E [uj ] · E [un]


(60)

We used the linearity of expectation in (59). The last equality (60) follows be-
cause each component u is independent. Since uj was drawn from N (0, 1), we
know E[uj ] = 0, and E[(uj − 0)2] = 1. Then we obtain

Eu [〈∇f(w),u〉u]
(60)
=

n∑
j=1

∂f

∂wj



0
0
...
1
...
0


=



∂f
∂w1
∂f
∂w2

...
∂f
∂wj

...
∂f
∂wn


= ∇f(w) (61)

G Empirical Sparsity

Figures 7 and 8 illustrate our observation of empirical gradient sparsity across
the entire learning process on both MNIST and CIFAR classification tasks. The
histograms on the right side show that the majority of gradient coordinates
have value zero throughout the learning process, while the values of the learned
weight vector are centered around non-zero values, except obviously for pruning
approaches.
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Fig. 7. Empirical gradient sparsity and values of learned weight vector for CIFAR-10.
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Fig. 8. Empirical gradient sparsity and values of learned weight vector for MNIST.
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