
International Journal “Information Theories and Applications” – Vol. 14

SEARCHING FOR NEAREST STRINGS WITH NEURAL-LIKE STRING EMBEDDING

Artem Sokolov

Abstract:  We analyze an approach to a similarity  preserving coding of symbol  sequences based on neural  
distributed representations and show that it can be viewed as a metric embedding process.
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Introduction

Edit  distance  (Levenshtein  distance) [Levenshtein, 1966] is  used  in  а  large  number  of  research  areas  from 
genetics and web-search to anomaly detection in network traffic and voice recognition. Taking into account the 
contemporary  data  sequences’  lengths  (millions  and  billions  of  symbols)  that  have  to  be  dealt  with  in  the 
mentioned areas, the classic  O(n2)  edit distance calculation [Vintsyuk, 1968; Wagner, 1974] is not applicable in 
practice.

These circumstances gave birth to a branch of information theory concerned with the acceleration of edit distance 
calculation  or  its  approximation  (see  survey  [Navarro, 2001]).  An  exponential  increase  of  the  characteristic 
lengths of sequences, which are subject to comparison (the genome assembly, the need to compare data flows in 
information  systems,  etc.)  urged  interest  to  applications  of  the  metric  embedding  theory  (see  survey 
[Indyk, 2004]).  This theory is concerned with space mappings that simplify distance calculation [Indyk, 2001]. 
Levenshtein edit distance embedding to a vector space is known to be an actual open problem [Matoušek, 2002].

Independently, within the framework of the neural network paradigm of AI several approaches were proposed to 
the  task  of  distributed  representation  and comparison  of  strings  and other  structured  objects  [Kussul, 1991; 
Rachkovskij, 2001]. Some approaches aimed at finding similarity of strings were presented in [Sokolov, 2005]. 
Here  we  develop  one  of  them,  namely,  the  approach  based  on  the  position-dependent  thinning  of  vector 
representations, giving a theoretical grounding to the obtained scheme with the aid of probabilistic embedding of 
the edit metrics into the Manhattan space.

Task Description

We seek for a way to effectively calculate Levenshtein edit distance with the help of vector representations or, 
more specifically, by embedding edit metrics to a vector space. Our method belongs to the group of the so-called 
q-gram edit distance approximation methods (q-gram is a substring of length q), started by [Ukkonen, 1992]. We 
observed that the approach based on the distributed representations [Sokolov, 2005] resembles edit distance 
embedding or sketching methods [Cormode, 2000; Bar-Yossef, 2004; Batu, 2004] and therefore we attempted to 
combine both presenting the neural coding approach as an edit distance embedding into Manhattan space l1. In 
order to show that the proposed method realizes one of the possible embedding definitions [Indyk, 2001], we will 
give the proofs of:

This definition (with appropriate values of the parameters envolved) covers embeddings that make discrimination 
between “near” and “far” strings (see subsection “LSH”).

1) «upper bound», i.e. statements like ed(x,y) ≤ k1 => P[d(v(x),v(y) ≤d1] ≥ p1  

2) «lower bound», .i.e. statements like ed(x,y) >k2  => P[d(v(x),v(y) >d2] ≥ p2.

(1a)

(1b)
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Mapping Description

For the two input strings x,y of length n, we independently and equiprobably select a sampling window of width w 
in both strings: x[i,i+w-1] and y[i,i+w-1]. Using fixed parameters of q-gram length q1 and q2, a q-gram vector vw,q is 
composed for each window for each q=q1,…,q2 (vector of quantities of each q-gram appeared within a string). The 
obtained vectors corresponding  to strings  x and  y are concatenated into vectors  vq(x),  vq(y).  The Manhattan 
distance dΣ between them would be the sum of Manhattan distances (i.e., dq (s,t) = ||vq(s)-vq(t)||1) between q-gram 
vectors of the windows:

In the following, using the defined distance, we show that necessary embedding properties (1a) and (1b) hold. 
Some details and proofs omitted in this short paper will be presented elsewhere.

Lower Bound

De Bruijn graphs. For a string x and some parameter q de Bruijn graph [Bruijn, 1946] B[x;q] is a graph, whose 
vertices are all (q-1)-grams ((q-1)-spectrum) of the string x. An edge a1a2…aq connects vertices labeled a1a2…aq-1 

and a2a3…aq.  Such graphs are widely used in genetics [Pevzner, 1989] and in cryptographic stream ciphers’ 
analysis. Let a de Bruijn graph built using the union of (q-1)-spectra of two strings x,y be B[x,y;q],  and the path 
corresponding to a string x be πx.

Let us consider possible local configurations of paths πx and πy on B[x,y;q]. Let us call the right and left branching 
points the vertices where the ways, correspondingly, diverge or converge. Let a "half-loop" be a subpath of either 
of the two paths stretching from a right branching point till the following left branching point in the path direction. 
The situation when there are no loops, i.e. in B[x,y;q] there is only one left or right branch point, or a left one and 
a right point following it, is called a "fork". In such a configuration, the left folk compulsorily contains as least one 
of the starting arcs of at least one of the paths, and a right folk contains terminating arcs of at least one of the  
ways. Let a "shift" be a special case of the fork, when there is a non-empty subpath πс,w≥|πс|≥0, that πx=π’xπс 

and πy=πсπ’y, where π’x, π’y are some, possibly empty, subpaths.
A concept  of  "rotation"  will  be  used to designate  a way of  obtaining  identical  spectra from different  strings 
[Ukkonen, 1992, Pevzner, 1995]. A rotation is a situation when (q-1)-grams on the edges of a string are identical. 
It this case a corresponding path on the de Bruijn graph is a cycle, and starting from any of its vertices one can 
get different strings with the same spectrum.
Lemma 1 Let x,y ∈ Σ w and there exist substrings x’∈x,y’∈y, x’≠y’,such that x’ is a rotation of y’, then

In the following we denote ∆q=q2-q1, and Q=(∆q+1)(∆q+2).

Our aim is to determine such a distance measure between two w-wide windows and such a threshold that strings 
with  a  distances  less than  this  threshold  would  represent  a  shift  and can be  aligned in  a fixed  number  of 
operations, by simply editing them at the beginning and the end of the window, namely, by eliminating forks at the 
edges of the windows. The usual q-gram distance (with a fixed q) cannot provide the desired result since for any 
q there can be found two strings x,y, where on the graph B[x,y;q] there will be half-loops.

Therefore we propose distance (2) and the following lemma states that with its aid it is possible to determine, 
whether  the  windows can be  aligned  with  a small  number  of  edit  operations,  provided they  do  not  include 
rotations of substrings.

Lemma 2 Let  x,y  ∈ Σ w,  and x,y  do  not  include substrings  that  are  rotations  of  each other,  q2 >  q1 >  3,  
Q ≤ 4(w -  q2+1),

2

1

( [ , 1], [ , 1]) ( [ , 1],[ , 1]).
q

q
q q

d x i i w y i i w d x i i w i i wΣ

=

+ − + − = + − + −е (2)

ed(x,y) ≤ w + dq(x,y)/2 – q + 1. (3)
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then ed(x,y) < 2(∆q+1).
The  next  lemma  unifies  lemmas 1 and 2  by  imposing  conditions  that  allow  applying  lemmas 1 and 2, 
correspondingly, in the cases of presence of rotations and their absence.

 Lemma 3 Let q2 > q1 > ((w-3)1/2+9)/4, w ≥7, Q ≤ 4(w - q2+1), Q<w, 

then ed(x,y) < Q.
We checked lemma 3 and 4 experimentally for those values of parameter w that still allowed for brute force string 
comparison. For a binary alphabet, all pairs of  2w strings were compared for  w = 8,…,17 (experiment ran for 
4 days).  For a ternary alphabet  all  pairs of  3w strings were compared for  w = 8,…,10  (2 days).  None of the 
experiments has found a pair of strings violating the lemma.

Let there be two types of pairs of windows  x[i,i+w-1],y[i,i+w-1]:  “good” and “bad” – correspondingly those for 
which condition (3) holds or not.  The next lemma says that it  is possible to simultaneously  align successive 
“good” windows. 

Lemma 4 Let conditions of lemma 3 hold, w=7,…,n, if for all i=1,…,n-w+1 holds dΣ(x[i,i+w-1],y[i,i+w-1])<Q, then  
ed(x,y)<2Q.
The next lemma defines the minimal possible distance between two “good” pairs of windows, with “bad” pair  
between them. Denoting  t=w-q2-∆q we show that the maximum distance between two “good” pairs of windows 
without a possibility to contain a “bad” one between them is t+2. 

Lemma 5  Let x,y ∈ Σ m
, t > 2 and the conditions of lemma 3 hold, if for some I,j=1,…,m-w+1, j>I, j-I < t+2

then for all i'=i,..,j dΣ (x[i’,i’+w-1],y[i’,i’+w-1]) < Q.

Let  N be the number of “bad” windows.  Let us find the upper limit (lemma 5) on the edit cost for all possible 
arrangements of  N windows, using the following string edit algorithm. Assume we have aligned strings up to 
position  j-1. If all consecutive pairs of windows, beginning from position  j and to  j+r, are “good”, then we align 
them with not more than 2Q operations, using the result of lemma 4, and continue from position j+r+w-1. If the 
next pair of windows in position j is bad, we use one edit operation to replace symbol x[j] with symbol y[j], thus 
aligning one symbol and continuing to the next pair of windows in position j+1.

Lemma 5 Let conditions of lemma 3 hold. Let T= (n-1)/w. The cost of aligning strings y and x with the help of  
the above algorithm is upper bounded with

Finally, for the independent and equiprobable window sampling we get from (5) the following lemma that specifies 
property (1b):

Lemma 6 For x,y ∈ Σ n and holding conditions of lemma 3, if ed(x,y)>k2,, then 

Nearest Neighbor Search

dΣ(x,y) < Q, (3)

w-q1 ≤ ∆q2+5∆q /2
and

dΣ(x,y) < Q,

(4)

dΣ (x[i,i+w-1],y[i,i+w-1]) < Q,
dΣ (x[j,j+w-1],y[j,j+w-1]) < Q,

()

max(Q+N, (2Q-1)min(T,N)+min(N,n-1-(w-1)min(T,N))+2Q) ≤ 2Q( N/t+1) (5)

P[d Σ(x,y) ≥ Q] > (t k2 /2Q-2) / (n-w+1).
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In this part we consider a possible procedure for the nearest string search (NNS) with the help of edit distance 
approximation described above. Let P={p1,…,pP|pi ∈ P} be a collection of strings and p0 be the input probe string, 
to which it is necessary to find the nearest one (by the edit distance) from P. Searching for the exact nearest 
neighbor is often a laborious task. Namely, for large dimensionalities of the input space (in our case it is d=|Σ|n) 
the existing NNS algorithms are reduced to the linear  search on  P.  On the other  hand,  the “approximately” 
nearest neighbor is often sufficient in applications and it is often much easier to find it. 

First we transform vectors vq into hash-values distributed around ||vq|| with the help of a p-stable distribution, and 
a modified scheme from [Datar, 2004] (see subsection "Modification"). Then we apply the well-known scheme of 
locality-sensitive hashing (LSH) [Indyk, 1998]. 

LSH. Let us describe the original [Indyk, 1998] LSH scheme applied to strings with the classic edit metrics. Define 
a ball with radius r containing points distanced from its center not farther then r : S(t,r)={q | ed(q,s) ≤ r}. 
Definition  of  locality-sensitive  functions. A  family  of  hash-functions  H={h: Σ → X} is  called  (r1,r2,p1,p2)-
sensitive, if for any x,y ∈ Σ n and any independently and equiprobably chosen h ∈ H holds the following:

Compose random hash-vectors gj=(h1,…,hK), j=1,…,L from functions h. Additionally, we create cells where we put 
a string pi ∈ P based on the value of the hash-vector g(pi): a string pi is put into a cell with an identifier equal to 
the hash-vector value. The aim is to get high collision probability between nearby strings, and low probability 
between  distant  ones.  Then,  applying  the  same hash to  the  probe we check  whether  it  equals  one of  the 
previously stored hashes of vectors from P: for probe p0 we calculate all hash-vectors gi(p0), i=1,…,L and examine 
corresponding  cells.  If  some cell  contains  a string  p*i ∈ S(p,r2),  the algorithm returns YES and  p*i  and NO 
otherwise (thus representing a solution to the so called (r1,r2)-PLEB task [Indyk, 1998]). The algorithm terminates 
after checking 2l cells. For such a procedure, the following theorem holds: 

Theorem  2 [Indyk, 1998]  Let  H  be  a  (r1,r2,p1,p2)-sensitive  family  of  functions,  K=-ln|P|/ln(p2),  L=|P|ρ,  where  
ρ=ln(p1/p2). Then the above algorithm solves (r1,r2)-PLEB task and takes O(|Σ|q|P|+|P|1+ρ) space, O(|P|ρ) distance  
calculations, and O(|P|ρK) calculations of hash functions. 
LSH  with  a  1-stable  distribution.  In  [Datar,  2004],  it  is  proposed  to  use  a  particular  property  of  stable 
distributions, that linear combinations of theirs random values  φ i are distributed as one such random variable 
multiplied by the norm of linear combination’s coefficients. Due to linearity of scalar product,  (v1,φ)  -  (v2,φ) ||
v1-v2||lpφ. Hash-functions are defined as:

where b is an equiprobably distributed random variable on [0,r],  φ is a vector with elements taken from Cauchy 
distribution. If one divides a real axis into equal intervals, then, intuitively, vectors with the similar norm will likely  
fall into the same interval. It is possible to show [Datar, 2004] that for two fixed vectors the hash-function (7) is

where f(.) is the probability density function of the absolute value of φ, and с=||v1-v2|| is the distance between the 
hashed vectors. As p(c) is a monotonically decreasing function, the family of such functions is locality-sensitive 
(see definition 1). So, hash-functions (7) can be used in the LSH scheme.

Modification. We will use the hash-functions (4) in a different way from that described above, to pursue the 
analogy to the distributed approaches [Sokolov, 2005]. Instead of multiplying a fixed vector  vq by a number of 
random vectors φ to form hash-vectors gj, we take K random vectors vi

q(s) obtained by random and independent 
sampling with a window of width w from string s (see "Mapping description"). For each of them, we generate a 

t∈ S(s,r1) ⇒ P[h(t)=h(s)] ≥ p1      and     t∉ S(s,r2) ⇒ P[h(t)=h(s)] ≤ p2, 
r1<r2 и p1<p2

(6)

h(v)=((vq,φ)+b)/r, (7)
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separate random vector φi whose elements are taken from the Cauchy distribution. Let us designate the scalar 
product of these two vectors  h’i=(v i

q(s),φι) and fix the hash-functions of the form  h’(v)=(h’i+b)/r. Taking into 
account lemmas 1 and 7, the following lemma holds indicating that the family of such functions is also locality-
sensitive. 

Lemma 8 Let function p(.) be defined as in (8). For the collision probability of hash functions h’ it holds

With this method of hash-function formation, we get output vectors without matrix multiplying of intermediate q-
gram representations by random vectors φ, thus obtaining a scheme consistent with the neural network approach 
[Sokolov, 2005].

In the original setting parameter r in (5) can be chosen, e.g., to minimize p1/p2 (see [Datar, 2004]) and to speed up 
the NNS procedure (theorem 2). However, here we will use  r to  fulfill  requirements (6) on  r1, r2 и  p1, p2,  that, 
together with (9), leads to the conclusion that we should have 

This should be at most Θ(n) for the property (1b) not to become trivial. We can achieve this by letting r be some 
function of the string length n, e.g. r=nµ. We also set w=nγ. Taking into account asymptotic behavior of  t=Θ(w), 
∆q=Θ(w1/2), Q=Θ(w), analysis shows, that the optimal values for the parameters are µ = γ  = 2/3. And from (10), 
the lower bound on the k2  growth rate is

Parameter  ρ (see theorem 2) determines search efficiency and resource requirements   for the described LSH 
scheme. If , for ε > 1, k2  is chosen as follows:

it  can  be  shown,  using  the  same  method  as  for  locality-sensitive  family  of  functions  for  the  Hamming 
distance [Indyk, 1998], that ρ = O(1/(1+ ε)).
Ternarization. It is rather attractive to have either binary or ternary vectors at the output, because they are more 
beneficial  than integer-valued ones because of a more efficient implementation. Moreover,  (sparse) binary or 
ternary vectors are widely used in distributed processing models [Rachkovskij, 2001]. Hash-function (7) will take 
ternary values {-1,0,1} if 1 < h(v) < 2 and so –r < (φ,v) < r. Integrating (π(1+x2))-1 with limits from –r / ||v|| to r / ||v|| 
we get for the percentage of ternary elements in the output: 2arctan(r / ||v||)/π. Density of zero elements is an 
important parameter in distributed representations, and for ternary vectors it is given by arctan(r / ||v||-||v|| ln(1+
(r / ||v||)2)/2r) /π and is increasing with the growth of r=n2/3.

Conclusion

We analyzed the concept of the distributed representations of sequences [Sokolov, 2005] from the point of view 
of  metric  embeddings,  presented a new  q-gram approximation  method of  the edit  distance,  and proved the 
possibility of constructing locality-sensitive functions. Thus we showed that the distributed representations used 
for  the comparison of  sequential  data  in the neural  network paradigm could be justified with the aid of  the 
methods from the embedding theory. This approach can also be considered as the substantiation of the Broder 
approach [Broder, 1995] who takes for the document similarity measure the degree of the coincidence of the sets 
of their q-grams and also other bag-of-grams methods. We also gave conditions for obtaining binary and ternary 

             P[h'(x)=h'(y) | ed(x,y) ≤ k1] ≤ p(2k1(∆q+1))(1-k1w/(n-w+1)),
P[h'(x)=h'(y) | ed(x,y) ≥ k2] ≤ 1- (tk2/2Q-2)(1-p(Q)).

(9)
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k2 = Ω(k1n2/3lnn) (11)
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vectors at the output that can be useful for a unified approach to representation and processing of various data 
types and modalities [Rachkovskij, 2001].

A prospective direction of further work may be to check if  lemma 3 can could be strengthened to guarantee 
ed(x,y) < 2(∆q+1) with modified conditions on q1 and ∆q. If the available preliminary experimental indications of 
this are proved, it would lead to a considerable improvement of the lower bound (11) in the modified LSH scheme 
and in a deterministic variant of the mapping.
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