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VECTOR REPRESENTATIONS FOR EFFICIENT

COMPARISON AND SEARCH FOR SIMILAR

STRINGS

A. M. Sokolov UDC 004.032.26+004.422.632.2+004.424.4

A method is proposed for approximation of the classic edit distance between strings. The method is

based on a mapping of strings into vectors belonging to a space with an easily calculable metric. The

method preserves the closeness of strings and makes it possible to accelerate the computation of edit

distances. The developed q-gram method of approximation of edit distances and its two randomized

versions improves the approximation quality in comparison with well-known results.

Keywords: approximating edit distance, metric embedding, approximate nearest-neighbor search,

neural-network-based information technologies.

INTRODUCTION

The classical edit distance ed ( , )x y between symbolic strings x and y (the Levenstein distance [1] or the minimal

number of operations of insertion, replacement, and elimination of symbols required for transformation of x into y ) is used

in many fields beginning with genetics and web search and ending with speech recognition. Since present-day amounts of

string data are enormous and their exponential growth continues [2], the classical O n( )

2

-algorithm [3, 4] for computation of

this distance between strings of length n is often practically inapplicable. This circumstance stipulated the emergence of new

fields of research connected with the acceleration of computation or approximation of edit distance [5] and the use of

methods of the theory of metric embeddings [6] for transformation of objects in spaces in which the computation of

complicated initial metrics is simplified.

A topical problem of edit distance approximation is the search for the embedding of the Levenstein metric into a

vector space [7]. The existing methods of approximating the Levenstein distance and searching for similar strings in large

arrays should be improved with a view to increasing their computational efficiency, decreasing requirements to resources,

and increasing the approximation accuracy.

In the present article, a method of embedding strings into a vector space is developed that is based on the use of

distributed neural-network representations [8, 9]. We propose a deterministic method (Sec. 3) for embedding edit distance

into a Manhattan space and also randomized versions of this nearest-neighbor search method (Sec. 4).

1. DEFINITIONS AND AUXILIARY STATEMENTS

We denote by � an alphabet of symbols and by �
n

a set of strings of length n � � that are specified over �. We denote

a symbol located at the ith position of a string x by x i[ ] . We denote a substring x i x i x j[ ] [ ] [ ]� 1 � of a string x by x i j[ , ] ,

write x i j x[ , ]� , and call ranges of positions of the form [ , ]i j intervals. We call substrings of the form x i i q q[ , ],� � �1 �,

q-grams and the set of all q-grams of a string its q-spectrum. The length of a string x is denoted by | |x . For x
n

�� and q � �,
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we call a q-gram vector of the string a vector �n q x
,

| |

( ) ( )� �� { }0

�
in which to each q-gram � ��

q
corresponds an element

of a vector ( ( ))

,

�
�n q x � �� { }0 and this element is equal to the number of occurrences of � in x: ( ( ))

,

�
�n q x

� � � �

�

� �

�
i

n q

x i i q

1

1

1[ [ , ] ]� . We write �q x( ) or simply � ( )x instead of �n q x
,

( ) when this will not lead to ambiguity. For a

pair of strings x y
n

, �� , the q-gram distance d x yq ( , ) is understood to be the Manhattan distance (the l
1

-distance) between

the corresponding q-gram vectors | | ( ) ( )| | | ( ( )) ( ( )) |� � � �

�

� �q q l q qx y x y

q

� � �

�

�
1

�

. A sequence of edit operations that

transform a string x into y is called a reconstruction of y from x.

By a de Bruijn graph [10, 11] B q( ; )� for the alphabet � and a parameter q 	 3 we understand a directed graph

G V E( , ) to the set of nodes V of which correspond all ( )q �1 -grams and to the set of edges E V V
 � correspond all q-grams

in this alphabet. We call q- and ( )q �1 -grams corresponding to edges and nodes labels. In this case, for symbols li �� , the

edge with a label l l lq1 2

� connects the nodes with labels l l lq1 2 1

� � and l l lq2 3

� . In a de Bruijn graph, to each string x,

| |x q	 , corresponds a definite path � x consisting of the edges that successively connect the nodes whose labels are

( )q �1 -grams that successively enter in the string. We call a subpath
�� x of the path � x a connected sequence of edges that

corresponds to a substring x x� � in this path and denote
� �� �x x . We denote a path � x consisting of two subpaths

�� x and

��� x by
� ��� �x x .

For x x q, | | 	 , we denote by B x q[ ; ] the subgraph of a de Bruijn graph whose nodes are all the ( )q �1 -grams of the

string x (the elements of the ( )q �1 -spectrum of x) and edges correspond to its q-grams. We denote by B x y q[ , ; ] the graph

constructed over the union of ( )q �1 -spectra of two strings x y
w

, �� of identical length w.

A string x x w, | | 	 is called ( , )q w -nonrepetitive if, in any interval consisting of w symbols, all the w q� � 1q-grams are

different. A string x
w

�� that is ( , )q w -nonrepetitive is called simply q-nonrepetitive.

Let us consider two cases when repetitions of q-grams take place.

Case 1. Both strings x y
w

, �� are q-nonrepetitive.

Case 2. At least one of strings x y
w

, �� is not q-nonrepetitive.

Let us consider case 1. If x and y contain a common q-gram with labels l lq1

� , then the paths � x and � y

corresponding to them in B x y q[ , ; ] pass through the same edge connecting the nodes labelled by l lq1 1

� � and l lq2

� . By

left (of the form �
 ) and right (of the form �� ) branchpoints we understand nodes at which the paths � x and �y ,

respectively, diverge after a common edge or converge before a common edge. In this case, adjacent fragments of the form

��
 , �
 , and �� , i.e., those containing at least one common edge of both paths � x and � y and bounded from one or both

sides by a branchpoint, can be selected in B x y q x y[ , ; ], � .

For case 1, we introduce the concepts of a loop (a half-loop), a fork (a half-fork), and a shift. For each of two paths,

the collection consisting of the left branchpoint and that nearest to it in the order of the traverse of edges by the right

branchpoint and also edges of this path that are between them (of the form 
 �_

) is called its half-loop. To each half-loop

corresponds a half-loop (its length can be zero) consisting of edges of the second path and connecting the same branchpoints

(then these half-loops taken together are of the form 
��
_

) or, in the case of a configuration of the form ��
 (if the left and

right points of two such adjacent configurations are connected by a half-loop of the form ��
 ��
_

) corresponds the

half-loop connecting the remained last left branchpoint and the first right branchpoint that is next to it. We call such a pair of

half-loops corresponding to one another a loop. According to this definition, at least one of half-loops of a loop has a

nonzero length.

We call a graph B x y q[ , ; ] a fork if there exists a subpath � �c cw, | |� � 0, that is common to � �x yand and is such

that we have � � � �x x c x� � ��
and � � � �y y c y� � ��

and in which, for any edges e x x� � � ��� � and e y y� � � � ��� � , the

condition e e� � is satisfied. Since we have | | | |x y� , we obtain | | | | | | | |
� � �� � � � ��� � � �x x y y . The subpaths

� �� � ��� � � �x x y y, , , and of the left or right forks composed of edges of one string are called half-forks. By a shift we understand

a graph that is a special case of a fork graph in which there exists a subpath � �c cw, | |	 � 0, that is common to � x and � y

and is such that we have � � �x x c� �
, � � �y c y� �

, and, � � � � � �e ex y� �, , we have e e� �. In this case, we also call

subpaths
�� x and

�� y half-forks. If B x y q[ , ; ] is a shift, then we say that x is a shift of y and, vice versa, y is a shift of x.

The statements formulated below are true.
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Statement 1. If B x y q[ , ; ] is a fork (a shift), then B x y q[ , ; ]� 1 also is a fork (a shift) with the same number of edges

in half-forks.

Statement 2. If B x y q[ , ; ] , x y
n

, �� , is a fork with the length of the common fragment equal to | |� c and, at the same

time, the right fork consists of two half-forks of length | |
� �� x s

1

and | |
� �� y s

2

and the left one consists of two half-forks of

length | |
�� �� x s

3

and | |
�� �� y s

4

, then the transformation of x into y requires no more than min ( , ) min ( , )s s s s
1 2 3 4

�

replacement operations and | | | |s s s s
2 1 4 3

� � � operations of insertion or elimination. Since we have

s n s s n sc c3 1 4 2

� � � � � �| | , | |� � , in the aggregate, we obtain ed( , ) max ( , ) max ( , )x y s s s s� �
1 2 3 4

. Note that the

upper estimate is also true for x yand whose graph is not a fork but � x and � y have some common fragment � c and
�� x and

�� y (or
��� x and

��� y) can be partially coincident.

Case 2. When strings are not ( , )q w -nonrepetitive in the graph B x q[ ; ] (B y q[ ; ]), one or both substrings have at least

one subpath
� �� �x x ( )

� �� �y y corresponding to a substring x x� � ( y y� � ) that has self-intersection and, hence, that is a

cycle. This cycle has at least one node occurring more than once and, consequently, at least one repetitive ( )q �1 -gram. It

may be noted that the same cycle can correspond to different substrings x y� �( ). To this end, it suffices to begin the traverse

of such a cycle with another node.

The lemma presented below asserts that, for a sufficiently large q, the graph B x q[ ; ] , where x is a ( , )q w -nonrepetitive

string, contains no more than one cycle.

LEMMA 1. For x
w

�� and q w� 2 3/ , if there is a substring x x� � such that � x � forms a cycle C in B x q[ ; ], then

identical edges outside of the cycle C are absent.

Proof. Let f x� �| | , and let substrings x x i i q� � � � �[ , ]2 and x � � � � x j j q[ , ]� � 2 , i j
 , be a pair of ( )q �1 -grams

that are maximally distant among the coincident ones in � x �. Since we have q w� 2 3/ , at least 2 2 3[ / ]w w� symbols of these

( )q �1 -grams intersect, and the symbols of a substring x i j[ , ]�1 will be periodically repeated successively in x �. If we denote

the symbols of the substring x i j[ , ]�1 by b b bB1 2

� , then we have x k� �[ ] b k B(( ) )� �1 1mod

, k f�1, ,� .

We assume that two ( )q �1 -grams x i i q[ , ]� � � � �2 x j j q[ , ]� � � � 2 , j i j� � � � , i.e., ( )q �1 -grams whose right ends

extend beyond the right boundary of x � � �, coincide. Since we have q w� 2 3/ , these q-grams completely cover the fragment

that is common to x x� � � � �, and contains at least one occurrence of the entire sequence of symbols b bB1

� . Since a similar

reasoning concerning the periodic character (with its repetitive sequence) is valid for the substring x i j q[ , ]
� �� �2 ,

� x i j q[ , ]� �2

and � x i j q[ , ]� �� �2

pass through the same edges as the cycle C. The case of coincidence of ( )q �1 -grams before

x � � is similarly considered.

LEMMA 2. For x y
w

, �� and q w� 2 3/ , if the first (last) nodes of subpaths � �x x� � (� �y y� � ) forming a

common cycle C do not coincide, then the common edges of � x and � y are absent before (after) these nodes.

Proof. Let us consider the case when the subpaths � �x y� �and consisting of edges of the cycle C terminate at different

nodes of the cycle. Let x i i q[ , ]� �1 and y j j q[ , ]� �1 be the q-grams corresponding to the last edges of the mentioned

subpaths in the cycle C. Assume that, for i i� � , j j� � , two q-grams coincide,

~

[ , ] [ , ]

~

x x i i q y j j q y� � � � � � � � � � �1 1 . Since

we have q w� 2 3/ , they contain at least one sequence of symbols b bB1

� mentioned in the proof of Lemma 1.

Let the positions of the right ends of x i i[ , ]� �1 1 and y j j q[ , ]� �1 within

~

x and

~

y be i j� � � �and , respectively. Since

subpaths terminate at different nodes and we have

~ ~

x y� , we obtain i j� � � � �.

Assume that we have i j� � 
 � �. It follows from the truth of the inequality

~ ~

x y� that we have

~

[ , ]

~

[ , ]x i j y i j� � � � � � � � � � �1 1 , which is equivalent to the truth of the equality x i q i q j i[ , ( )]� � � � � �� � � �1 y j q[ �

� � � � � �( )j i , j q� �1] . Since y � and x � are composed of periodically repetitive sequences of symbols b bB1

� , first, the

last symbol of x � is not the q-gram x i i q[ , ]� �1 but x i j i[ ( )� � � � � � , i q j i� � � � � � � �1 ( )] and, second, x � and y � terminate

at the same node, contrary to the condition of the lemma.

The following statement describes the behavior pattern of paths in graphs with cycles when q varies.

Statement 3. If, for x
w

�� , there is a cycle with repetitive edges in B x q[ ; ], q w� 2 3/ , then the length of the path

fragment between these nodes that passes more than once along the same edges is reduced in all cases when q is incremented

by unity. In this case, the total number of unique edges in the cycle is not changed. If repetitive edges are absent in the cycle

(i.e., each edge of the cycle is present in � x exactly once), then the cycle vanishes after the next increment of q by unity.

Proof. By Lemma 1, the graph B x q[ ; ] contains a unique cycle. This statement can be verified by tracing the change

in the number of edges within the cycle and outside of it as a result of the successive increment in q in the graph B x q[ ; ] with

one cycle.
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2. LOWER AND UPPER CONSTRAINTS ON EDIT DISTANCE

It is necessary to find a definition of the distance between strings x and y and a threshold of its value that are such that,

for distances that are shorter than this threshold (under some conditions that are imposed on definite values and do not

depend on strings), in case 1, the graph B x y q[ , ; ] would contain a shift or a fork and would not contain half-loops. This

would make it possible to reconstruct strings, using Statement 2 and a small number of operations (the less this number, the

exacter approximation of edit distance). There are distances that do not satisfy these requirements. In particular, if the usual

q-gram distance (the l
1

-distance between q-gram vectors) and any admissible fixed q are used, then there are strings x yand

such that the graph B x y q[ , ; ] contains a loop. In this case, the sought-for threshold cannot be found.

In case 1 when strings are ( , )q w -nonrepetitive, with increasing q for half-loops and forks, there are differences in

dependences between the numbers of different q-grams. Therefore, to determine the difference between a half-loop and a

fork, we propose to use the following distance based on the usual q-gram distance:

d x y d x y
w q q

q q

q

q
, ,

( , ) ( , )

1 2

1

2

�
�

�

�
(1)

defined for strings of identical length w and fixed values of q q
1 2

and for the lengths of q-grams. Let us show that,

with the help of this distance, the presence of a fork or a shift can be found, i.e., the possibility of reconstruction of a

pair of strings with the help of a small number of edit operations. Case 2 in which repetitions of q-grams take place

should be individually considered (Lemma 4).

We denote � q q q� �
2 1

and Q q q� � �( )( )� �1 2 . We call a pair of strings x and y bad if the inequality

d x y Q
w q q, ,

( , )

1 2

�

 is not fulfilled and good otherwise. Let us show that, for a good pair of strings x yand , the graph

B x y q[ , ; ]

2

is a fork (or a shift).

In Lemma 3, the case is considered when, for definite values of q q q q
1 2 2 1

, ( )� , and w, strings x and y are

( , )q w
1

-nonrepetitive, and necessary conditions of existence of a loop in the graph B x y q[ , ; ]

2

are found (in this case, the pair

x y, is bad). Their nonfulfillment is the sufficient condition of the presence of a shift or a fork if common cycles are absent.

LEMMA 3. Let x y
w

, �� be ( , )q w
1

-nonrepetitive, and let the following inequalities be fulfilled: w q q	 � 	
2 1

3,

�q
w q

�
� ��

�
�

�

�
�

1

1

2

, and

Q w q� � �4 1

2

( ) , (2)

d x y Q
w q q, ,

( , )

1 2

�

 . (3)

Then we have ed ( , ) ( )x y q
 �2 1� .

Proof. For any half-loop that has at least one common edge before and after the left and right branchpoints,

respectively, in the graph B x y q[ , ; ], the increment of q by unity leads to the increment of the number of edges by unity in

each half-loop that forms a loop from each string. Since, by the definition of half-loops in the graph B x y q[ , ; ] , edges of one

half-loop of one string do not coincide with edges of the half-loop corresponding to it in the other string, coincidences of

loop edges in B x y q[ , ; ]� 1 are all the more absent since the labels of edges in the graph B x y q[ , ; ]� 1 contain labels of edges

of the graph B x y q[ , ; ] as substrings, x i i q x i i q x i i q x i q[ , ] [ , ] [ , ] [ ]� � � � � � � �1 1 . Therefore, for strings x yand

containing at least one loop surrounded by common edges, the inequality d x y d x yq q� 	 �
1

2( , ) ( , ) is fulfilled. But if

B x y q[ , ; ] is a fork, then, by virtue of Statement 1, the fork is preserved after incrementing q by unity and d x yq ( , ) is not

changed. In this case, the total number of edges decreases by unity.

Since any half-loop is not preserved when the value of �q is larger than half the edges available in the graph

B x y q[ , ; ]

1

, we impose the additional condition � ��q w q� � �( ) /

1

1 2 to preserve half-loops.

Taking into account that the minimal q-gram distance between different strings equals two and on the condition that

the right and left branchpoints of a loop do not become, respectively, the first or last node of paths in B x y q[ , ; ] when q q

2

(which is provided by condition (2)), we obtain

d x y d x y q q q q
w q q

q q

q

q
, ,

( , ) ( ( , ) ( )) (

1 2

1

2

1

2 2 1

1 2 1

�
	 � � 	 � �

�

� )� � � � � � � � �( ) ( ) ( )( )q q q q q q Q
2 1 2 1

1 1 2� � . (4)
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To assert that, when the inequality d x y Q
w q q, ,

( , )

1 2

�

 is true, a configuration of the form � (coincident nodes in the

paths � y and � x are absent) cannot arise, instead of configurations of a shift or a fork, the condition | |� c 	1included in the

definition of a fork and a shift must be true, i.e., at least one common edge must be present for q q� �
2

1: d x y wq
2

1

2� �( , ) (

� � � � � � �( ) ) ( )q w q
2 2

1 1 2 2 1 . But if we have d x y w qq
2

1 2

2 1� � � �( , ) ( ) (i.e., a common edge is absent in the graph

B x y q[ , ; ]

2

1� ), then we obtain d x y
w q q, ,

( , )

1 2

�
�

q q

q

q w qd x y d x y w q

�

�

� � � � �

1

2

2

1

2

4 1( , ) ( , ) ( )

,

. Hence, if we have

d x y
w q q, ,

( , )

1 2

�
� 4 1

2

( )w q� � , then we obtain d x yq
2

1� �( , ) 2 1

2

( )w q� � , and there is at least one common node when

q q�
2

.

Thus, it follows from the presence of loops in the graph B x y q[ , ; ] for q q q�
1 2

, ,� that we have d x y Q
w q q, ,

( , )

1 2

�
	 .

But since condition (3) implies the truth of the inequality d x y Q
w q q, ,

( , )

1 2

�

 , loops cannot be present in B x y q[ , ; ]

2

, i.e.,

B x y q[ , ; ]

2

is a fork (a shift) or configurations of paths in B x y q[ , ; ]

2

are of the form �. The latter situation is excluded by

virtue of condition (2). Then the graph B x y q[ , ; ]

2

is a fork (a shift).

According to Statement 2, to reconstruct a fork when q is fixed, it is necessary to perform no more than

max ( , ) max ( , )s s s s
1 2 3 4

� � s s s
1 2 3

� � � s d x yq4

� ( , ) edit operations. Since the value of q q q�
1 2

, ,� at which a fork is

formed is not known in advance, one can only assert that we have ed ( , ) ( , )x y d x yq�
2

. Next, for any q
2

, a loop cannot be

present since we have d x y Q
w q q, ,

( , )

1 2

�

 . We denote by q q q q

* *

,

1 2

� 
 , the last value of q for which a loop is still

available. Then we have d x y q q
w q q, ,

*

*

( , ) ( )

1

1

1

�
	 � � ( )

*

q q� �
1

2 and Q d x y d x y
w q q w q q

� �
, ,

, ,

( , ) ( , )

*

1 2

1

� �
� �( )

*

q q
2

� d x y
q

*

( , ) 	 � � � � � �( )( ) ( ) ( , )

* * *

q q q q q q d x yq1 1 2

1 2

2

, i.e., we obtain

ed ( , ) ( , )

( ( )( ))

* *

*

x y d x y
Q q q q q

q q
q� 


� � � � �

�

�
2

1 1

2

1 2

q q q q
2 1

2 3 2 1� � � � �
*

( )� .

We now consider case 2 in which repetitions of q-grams are present. Our interest is in the dependence of the number

of common edges in B x y q[ , ; ] in two paths � x and � y on q. We note that only the situations of presence of cycles in which

edges of one path coincide with edges of another path (in this case, a coincident edge occurs more than once in at least one

cycle) and in which a decrease in the number of edges in Statement 3 does not compensate the increase in the distance

d x yq ( , ) are different in this case from case 1. Therefore, we will restrict ourselves to the consideration of the cases when a

cycle contained in a path � x and a cycle contained in a path � y are identical when q q�
1

, but the lengths of subpaths

� �x x� � and � �y y� � that belong to the cycle and its entrance and exit nodes can be different.

LEMMA 4. Let, when q w
1

2 3� / , for strings x y
w

� �� , there be substrings x x� � and y y� � , x y� � �, such that

the paths � x � and � y � that correspond to them in the graph B x y q[ , ; ] consist of edges belonging to their common cycle C.

Let we also have d x y Q
w q q, ,

( , )

1 2

�
� . Then we obtain ed ( , ) ( )x y q
 �2 1� .

Proof. Assume, by contradiction, that the inequality ed ( , ) ( )x y q	 �2 1� is true. Let us show that, in this case, we

have d x y Q
w q q, ,

( , )

1 2

�
� . We find a minimally possible value of d x y

w q q, ,

( , )

1 2

�
under the conditions of the lemma. Since the

character of changing d x yq ( , ) in the presence of cycles can be very complicated and various and the obtaining of this

dependence in the closed form is cumbersome, we determine the set of parameters for which the sought-for minimum of

d x y
w q q, ,

( , )

1 2

�
can be attained using the following qualitative considerations based on the comparison of dependences of the

values of d x yq ( , ) on the character of the traverse of the cycle along both paths � x and � y .

Let S be the smaller number of edges of the cycle C between the nodes corresponding to the initial nodes (to the first

( )q
1

1� -grams) of paths � �x x� � and � �y y� � . Let Lx and L y be the lengths of the subpaths � x � and � y � , respectively,

that belong to the cycle C.

When one cycle is present, the behavior of d x yq ( , )� � is completely determined by the mentioned parameters

s L L Lx y, , , and until we have L Lx � and L Ly � and, hence, d x y
w q q, ,

( , )

1 2

�
� � can be considered as a function of

s L L Lx y, , , and . With increasing the length a q-gram, the distance d x yq ( , )
� �

changes along the lines of constant values of the
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quantity | |L Lx y� with decrementing Lx and L y by unity. If we have L Lx 
 and L Ly 
 , then cycles in both graphs B x q[ ; ]

and B y q[ ; ] vanish and, with increasing q, the further behavior of d x yq ( , )� � is described by Lemma 3.

By Lemma 2 , edges of different paths can coincide outside of a cycle if the first or last nodes of the paths � x � and

� y � coincide. The contribution of the edges of the paths outside of the cycle to d x yq ( , ) is no less than | |L Lx y� when

L Lx 	 and L Ly 	 (which is obtained when s � 0 or when the last nodes of � x � and � y � coincide).Therefore, we have

d x y d x y L Lq q x y( , ) ( , ) | |	 � � � � .

We can show that, for s � 0, the sum of successive values of d x yq ( , )� � along such a line is no less than for s � 0 for

the same value of | |L Lx y� in the same summation range q q
1 2

� . Then if we have ( , , )s L Lx y� � � �

argmin s L L w q q x yx y
d s L L

, ,

, ,

( , , )

1 2

�
, then we obtain d s L L

w q q x y
, ,

( , , )

1 2

�
� � � 	 d L L

w q q x y
, ,

( , , )

1 2

0

�
� � . Therefore, we will

consider only the situation when s � 0 and the first nodes of the subpaths � x � and � y � coincide. A trivial case when we also

have | |L Lx y� � 0 is not considered since it is reduced to the absence of a cycle.

Since, in view of Lemma 2, Statement 2 can be applied to the configurations being considered, the condition

| |L L qx y� 	 �� 1 must be satisfied in order that | | max ( , ) max ( , )L L s s s sx y� � �
1 2 3 4

be true. Otherwise, we obtain

ed ( , )x y � max ( , ) max ( , ) ( )s s s s q
1 2 3 4

2 1� 
 �� , contrary to the assumption formulated at the beginning of this proof.

From this we obtain d x y
w q q, ,

( , )

1 2

�
	

q q

q

x yL L q q q Q

�

� � � � � � � �

1

2

2 2 1 1 2

2

| | ( ) ( )( )� � � .

We combine Lemma 4 with Lemma 3 and formulate Lemma 5.

LEMMA 5. If we assume that x y
w

, �� , w 	 6, and w q q w	 � �
2 1

2 3/ and that �q � � �( ) /w q� �
1

1 2 ,

Q w q� � �4 1

2

( ) , and Q d x y
w q q

�
, ,

( , )

1 2

�
, then we obtain ed ( , )x y 
 2 1( )�q � .

Proof. It follows from the inequalities � ��q w q� � �( ) /

1

1 2 and q w
1

2 3� / that we have �q w� / 6 and, hence, the

values of �q can be greater than or equal to unity when w 	 6 . We use Lemma 3 in the case of ( , )q w
1

-nonrepetitive strings

(case 1) x yand and Lemma 4 in case 2.

We introduce the concept of a good and a bad interval by analogy with the concept of a good or a bad pair of strings.

We call a good interval an interval of the form [ , ]i j and such that, for a pair of strings x i j[ , ] and y i j[ , ] bounded by it in x

and y, we have d x i j y i j Q
w q q, ,

( [ , ]), [ , ] )

1 2

�

 (expression (3) under the conditions of Lemma 5).

Next, let us consider intervals of the form [ , ]it it w� � � �1 , where i is a natural number from a definite range, i.e.,

intervals with a step t �. The lemma formulated below implies that the batched reconstruction of strings containing successive

good intervals is possible for t t� 
 , where t w q� � �� 1.

LEMMA 6. Let x y
m

, �� , let � � �t divide ( )m w� , and let t t� 
 . If the conditions of Lemma 5 are fulfilled and, for

all i
m w

t
�

�

�
0, ,� , we have d x it it w y it it w Q

w q q, ,

( [ , ], [ , ])

1 2

1 1

�
� � � � � � � � 
 , then we obtain ed ( , ) ( )x y q
 �2 1� .

Proof. It follows from Lemma 3 that, in the case when coincident q
1

-grams are absent for each pair of strings

x x it it w� � � � � �[ , ]1 and y y it it w� � � � � �[ , ]1 satisfying the condition of Lemma of 5, the paths � x � and � y � in

B x y q[ , ; ]

2

form a fork or a shift with a common path fragment consisting of at least w q q� � �
2

1 2� edges and we have

ed ( , ) ( )x y q� � 
 �2 1� . If there are repetitive q
1

-grams in � x � and/or in � y � on the interval [ , ]it it w� � � � �1 1 , then

Lemma 4 implies that the substrings x it it w[ , ]� � � �1 and y it it w[ , ]� � � �1 can also be interpreted as a shift or a fork (the

corresponding paths have a common central fragment of edges, its length equals at least w q q� � �
2

1 2� , and different edges

can be located only at the ends of the interval) and that we also have ed ( , ) ( )x y q� � 
 �2 1� .

Let us consider two adjacent intervals [ , ]it it w� � � �1 and [( ) ,i t� �1 ( ) ]i t w� � �1 . Since we have

t t w q� � � � �1 � , their intersection consists of no less than �q symbols, which is equal to the maximally possible size of a

half-fork of subpaths bounded by good intervals of width w.

The right fork (shift) in the graph B x it it w[ [ , ]� � � �1 , y it[ � � 1, it w� � ] ; q
2

] and the left fork (shift) in the graph

B x i t[ [( )� �1 , ( ) ]i t w� � �1 , y i t i t w q[( ) , ( ) ]; ]� � � � �1 1

2

that belong to the intersection of the intervals consist of the

same edges. Therefore, the case is impossible when the mentioned graphs are forks with nonempty half-forks of,

respectively, the right and left forks or shifts by different distances or in different directions. Hence, the entire interval

[ , ( ) ]it i t w� � � � �1 1 is a shift or a fork and the size of the shift or half-fork is also bounded from above by �q, as well as for

the initial intervals. Hence, we have ed ( [ , ( ) ], [ , ( ) ]) ( )x it i t w y it i t w q� � � � � � � � � � 
 �1 1 1 1 2 1� . This reasoning can

be extended to other intervals. Then we obtain ed ( [ , ], [ , ]) ( )x m y m q1 1 2 1
 �� .
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COROLLARY 1. A sequence (when t � �1) of adjacent bad intervals surrounded by no less than one good interval

from each side consists of at least t intervals.

3. A DETERMINISTIC METHOD OF EMBEDDING

EDIT DISTANCES INTO l1

In the deterministic method that is being considered here and is designed for embedding edit distance, an input string

x
n

�� is transformed into a vector �( )x by the concatenation of all the q-gram vectors � �i w q w q x i i w
, , ,

( [ , ])� � �1 for

q q q�
1 2

, ,� and i n w� � �1 1, ,� . The distance between vectors is assumed to be Manhattan (l
1

). In this section, based on

the statements obtained in Sec. 1, we find time, resource, and accuracy characteristics of such a deterministic embedding.

We define the following distance for strings x y
n

, �� , using d
w q q, ,

1 2

�
introduced by formula (1):

D x y

d x i i w y i i w

n

i

n w

w q q

( , )

( [ , ], [ , ])

(

, ,

�

� � � �

�

� �

�
1

1

1 2

1 1

�

� � �w q1 1)( )�

(5)

and, with the help of the statements proved in the previous section, show how well the proposed embedding method

approximates edit distance.

We will find the lower bound for the number of bad intervals when ed ( , )x y k�
2

, where k
2

is some parameter of the

method. Let the number of bad intervals N be fixed. We first find the upper bound for the cost of editing over all possible

arrangements of N intervals, using the algorithm for editing (reconstructing) strings that is presented below.

We pass successively from one interval to other by shifting by one symbol. Assume that we have reconstructed a

string up to a position j �1. If all the successive intervals beginning with the jth position and ending with the ( )j r� th one

are good, then they are reconstructed with the help of no more than 2 1( )�q � operations, using the result of Lemma 6 for

t � �1. All the intervals at the positions affected by this reconstruction (i.e., between the jth and ( j r� )th ones) are called

covered. If the next jth interval is bad, then we use one edit operation, replace x j[ ] by y j[ ] and thereby reconstruct one

symbol, and then pass to the next ( )j � 1 th interval.

LEMMA 7. Let S
n

w
�

��

�
�

�

�
�

1

. The reconstruction of a string y from x with the help of the described algorithm requires

no more than 2 1 2 1( ) max ( , ( )� �q N q� � � min ( , ) min [ , ( ) min ( , )]) ( )( )S N N n w S N q N� � � � 
 � �1 1 2 1 1� edi t

operations.

Proof. Let us determine the location of bad intervals that maximizes the distance (cost) of editing with the help of the

described algorithm. By the definition of edit distance, it will be the upper bound for ed ( , )x y .

The maximal cost of editing is attained for the maximal number of occurred situations described in Lemma 6.

Therefore, the configuration of bad intervals for which the maximal edit cost is attained assumes the following form of

repetitive series: � � � � � , where the signs + , � , and = denote, respectively, a good interval, a bad interval, and a covered

good interval (it is sufficient that only one minus follow a plus to add 2 1( )�q � operations to the total cost). Moreover, in the

sought-for configuration, the last interval will be good since, as a result, 2 1( )�q � edit operations are added to the total cost.

Thus, the total cost of editing all configurations of the form is � � � � � amounts to 2 1( ) min ( , )�q S N� (the cost of

reconstruction of such configurations that is incremented by their maximal number). At the same time, n w S N� �min ( , ) 1

bad intervals (unity is subtracted since the last interval always good) or N S N� min ( , ) intervals according to which

expression, the former or latter, has a smaller value remain unconsidered.

COROLLARY 2. If we have ed ( , ) and /x y k q w� �
2 1

2 3 and also the conditions of Lemma 5 are satisfied, then we

obtain N
k

q
�

�
�

2

2 1

1

( )�
.

Taking into account Corollary 1, one can prove the lemma that is stated below and is similar to Lemma 7.

LEMMA 8. Let the number of bad intervals for strings x yand of length n be fixed, and let it be equal to N . Then we

have ed ( , ) ( )x y q
N

t
� �

�

�
�

�

�
�
�

�

�

�
�

�

 

!
!

2 1 1� .
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COROLLARY 3. If we have ed ( , )x y k�
2

, then we obtain N t
k

q
�

�
�

�

�

�
�

�

 

!
!

2

2 1

2

( )�
.

For x y
w

, �� , we call a q-gram x i i q[ , ]� �1 k-good if a q-gram y i i q[ , ]� �1 can be found such that we obtain

| |j i k� � , i.e., a q-gram in the string y shifted by no more than k symbols. If y does not contain such a q-gram, then we call

x i i q[ , ]� �1 k-bad. The interval [ , ]i i q� �1 is understood to be k-good if B x i i q y i i q q[ [ , ], [ , ]; ]� � � �1 1 is a shift and the

number of k-good q-grams in both strings is greater than or equal to w q k� � �1 , whence we obtain

d x i i q y i i kq ( [ , ], [ , ])� � � � �1 1 1 2 . Otherwise, the interval [ , ]i i q� �1 is understood to be k-bad.

Let N R[ ] be the number of intervals [ , ]i i w� �1 in which some condition R imposed on these intervals is satisfied.

LEMMA 9. For x y
n

, �� and q q w
n

k
1 2

1

1

1


 � �
�

�
when ed ( , )x y k�

1

, we have

N d x i i w y i i w k q n w
w q q

[ ( [ , ], [ , ]) ( )] (

, ,

1 2

1 1 2 1

1

�
�� � � � � � � � k

1

1 1� �) .

Proof. Let us calculate the minimal number of k
1

-good intervals when ed ( , )x y k�
1

(see the proof of the Ukkonen

lemma [12]). In the aggregate, there are n w� � 1 intervals. Since each edit operation can change no more than w intervals,

the total number of k
1

-bad intervals does not exceed k w
1

. The remained n w k w� � �1

1

intervals are k
1

-good since they can

be shifted by no more than k
1

symbols. For a k
1

-good interval [ , ]i i w� �1 , we have

d x i i w y i i w
w q q, ,

( [ , ], [ , ])

1 2

1 1

�
� � � � � � � � � 
 �

�

�
q q

q

qd x i i w y i i w k q

1

2

1 1 2 1

1

( [ , ], [ , ]) ( )� .

Next, using Corollary 3 and Lemma 9, we can determine the upper and lower bounds for D x y( , ) when ed ( , )x y k�
1

and ed ( , )x y k�
2

. To this end, we put w n
k

n
� � �

�
�

�,

( )

1

1

1

ln

ln

.

We denote the set of positions that are the beginnings of bad intervals by I i n wB � � � �{ 1 1, , |�

d x i i w y i i w Q
w q q, ,

( [ , ], [ , ])

1 2

1 1

�
� � � � 	 } and the set of positions that are the beginnings of good intervals by IG �

{ , , | ( [ , ], [ , ])

, ,

i n w d x i i w y i i w Q
w q q

� � � � � � � 
1 1 1 1

1 2

�

�
}. Then, taking into account Corollary 2, we obtain

( )( ) ( , )n w q D x y� � �1 1�

� �

�

�

�

�

�

 

!

!
� � � �

� � �

� � �
i I i I q q

q

q

B G

d x i i w y i i w

1

2

1 1( [ , ], [ , ]) 	 � 	NQ 0 Q
k

q

2

2 1

1

( )� �
�

�

�

�
�

�

 

!
!

.

Taking into account the grouping of bad intervals (Corollary 3), we obtain

D x y

Qt
k

q

n w q
d( , )

( )

( )( )

	
�

�
�

�

�
�

�

 

!
!

� � �
�

2

2

2 1

2

1 1

�

�
.

(6)

We denote the set of positions that are the beginnings of k
1

-bad intervals by I i n w
B

k
1

1 1� � � �{ , , |�

" � � � � �j i k k i y j j q[ , , ], [ , ]

1 1

1� � � �x i i q[ , ]1}and the set of positions that are the beginnings of k
1

-good intervals by

I i
G

k
1

1� �{ ,…, |n w� � 1 #" � � �j i k k i[ , , ]

1 1

� , y j j q[ , ]� � �1 x i i q[ , ]� �1}. Then, taking into account Lemma 9, we

obtain

( )( ) ( , )n w q D x y� � �1 1� $ �

�

�

�

�
�

�

 

!

!
!

� �

� � �

� � �
i I i I q q

q

q

B

k

G

k

d x i i w y i

1 1

1

2

1( [ , ], [ , ])i w� �1

� � � � � � � � �( ) [ | | ( ) (( ) | | ) ]�q I w q q n w I k
B

k

B

k
1 2 2 1 2

1 1

2 1 1

� � �
�

� � � � 
 � � �2 1

2

1 2 1 1

1

1 2

1 1

2

k w w
q q

k n w k w n q[ ( ) ( )] [ ( )]( )� ,
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whence we have

D x y
k w n

n w
d( , )

[ ( )]

�
� �

� �
�

2 1

1

1

2

1

. (7)

The construction of vectors � ( )� with the help of a prefix tree requires about O n q w( ( ))

2

� operations and,

accordingly, the estimate of the total construction is O n( )

1� �
. When an alphabet is fixed, the dimension of a vector � ( )� is

determined by the number of levels of the prefix tree �q and the number of nodes O n( ) at each level, and the total dimension

amounts to O n( )

/1 2� �
. The time of computation of the distance between vectors is similarly bounded.

It follows from relationships (6) and (7) that, to ensure the truth of the condition d d
2 1

� , it is necessary to have

k k n n
2 1

1

� �
�

% ( ( ))

� �
. From this, the optimal value is � �1 2/ and, at the same time, we have k k n

2 1

1 2

�% ( )

/

, the time

of construction of vectors � ( )� equals O n( )

/3 2

, and their dimension is O n( )

/5 4

.

4. PROBABILISTIC METHODS OF FORMATION OF VECTOR REPRESENTATIONS

FOR SEARCHING FOR NEAREST STRINGS

We consider two randomized versions of the deterministic embedding method described in Sec. 3. These versions can

be practically applied to the solution of the nearest-neighbor search problem since the use of its deterministic version is

difficult in view of high dimensions of obtained vectors and large sizes of string bases.

Let us consider the nearest-neighbor search (NNS) problem. There are a collection of strings

P p p pP i

n
� �{ }

1

, , |� � and an input request string p
n

0

�� ; then NNS problem consists of searching for at least one

string p*

such that, � �p P, we have ed ( , )p p
0

	 ed ( , )

*p p
0

.

For input spaces of high dimensions, the existing exact nearest-neighbor search algorithms are reduced to linear

search in P [13], which is frequently unjustified in practice. Moreover, the dimension O n( )

/5 4

of the vectors obtained in a

deterministic scheme of embedding edit distance into a vector space can turn out to be too high to be efficiently processed.

On the other hand, approximate nearest-neighbor search is often sufficient for applications, which has stipulated many

publications connected with the development of such algorithms. The �-NNS problem consists of the search for some p P* �

such that, � � �p P, we have ed ( , )

*p p
0

� ( ) ( , )1

0

� �� ed p p .

To search for an approximate nearest neighbor, we propose a randomized version of the deterministic algorithm from

Sec. 4.1 and also the procedure (from Sec. 4.2) based on locality-sensitive hashing over 1-stable distributions that is relevant

to neuro-like distributed representations [9]. Both these versions can be used for solution of the �-NNS problem.

We give probabilistic variants of Lemma 9 and Corollary 3 for the case when the value of i is randomly selected from

a range 1 1, ,� n w� � .

COROLLARY 4. If we have ed ( , )x y k�
1

and q q w
n

k
1 2

1

1

1


 � �
�

�
, then we obtain

Prob [ ( [ , ], [ , ])

, ,

d x i i w y i i w
w q q

1 2

1 1

�
� � � � � � � �

� �
2 1 1

1

1

1

k q
k w

n w
( )]� .

COROLLARY 5. If we have ed ( , )x y k�
2

, then we obtain

Prob [ ( [ , ], [ , ]) ]

(

(

, ,

d x i i w y i i w Q

t
k

q

w q q
1 2

1 1

2

2

� �
� � � � 	 �

� 1

2

1

)

)�

� �n w
.

4.1. Solution of the �-NNS Problem with the Help of Randomization of the Deterministic Method. We use a

version of the scheme described in [14]. Let the ith position in a range 1 1, ,� n w� � and the interval [ , ]i i w� �1

corresponding to the range be fixed. If the position i is randomly and equiprobably (with replacement) chosen among all

n w� � 1 possible values, expression (5) is the expectation of the value of

d x i i w y i i w

q

w q q, ,

( [ , ], [ , ])

1 2

1 1

1

�

�

� � � �

�
. We

define a vector � i x( ) as the concatenation of q-gram vectors �q x( ) of this interval for the values of q q q�
1 2

, ,� .
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We randomly, independently, and equiprobably (with replacement) choose U values i f Uf , , ,�1 � , denote their set

by IU , and concatenate � i f
x( ) corresponding to them into one vector

~

( )� x . We denote the concatenation of all

x i i wf f[ , ]� �1 by x IU[ ] and put

~

( , )

| |

~

( )

~

( ) | |

( )

D x y
x y

q U

l
�

�

�

� �
1

1�
.

The following lemma is proved by analogy with Lemma 2 [14].

LEMMA 10. Let strings p p p P
n

a b0

� �� and , be such that we have ed ( , )p p ka0 1

� and ed ( , )p p kb0 2

� .

Then we obtain

Prob [

~

( , ) ] ,D p p d ea

U

0 1

2

2

� � 

�

�
�

Prob [

~

( , ) ]D p p d eb

U

0 2

2

2


 � 

�

�
�

.

We create a structure S consisting of n structures S k nk , , ,�1 � , for each possible value of the edit distance between

strings of length n. Each structure S k consists of M structures F FM1

, ,� . Each structure F m Mm , , ,�1 � , contains U

positions i im mU1

, ,� (fixing the beginnings of the corresponding intervals I i i wi mu mumu
� � �[ , ]1) that are selected

randomly and equiprobably (with replacement) from a range [ , , ]1 1� n w� � and a table &m containing | |�
n

cells (according

to the number of possible strings of length n). We denote the content of an interval I imu
in a structure Fm for a string x by

x I imu
[ ] . We denote the concatenation of all �w q q ix I u U

mu, ,

( [ ]), , ,

1 2

1� � by �m x( ). The cell that corresponds to z
wU

� | |�

in the table &m contains a string p P� if we have

~

( ; )D p z d�
1

and such a p exists; otherwise, the cell is empty. The

memory space occupied in the case of the simplest realization of the structure S equals about O nM U( (

� �log | | ) )P nP
wU

� and can be constructed in time O nMP wU
wU

( ( | | ))� � .

The size of tables &m can be reduced to | |�
wU

by indexing them by strings obtained by concatenating U intervals.

Then, to make a decision concerning the assignment of a string to a cell, q-spectra of substrings z u w uw[ ( ) , ]1 1� � are

necessary when q q q�
1 2

, ,� . Therefore, it is possible to save memory space for tables &m by uniting the cells with

coincident q-spectra of intervals z u w uw[ ( ) , ]1 1� � for all q q q�
1 2

, ,� . In this case, we denote

~

( ; ) ( [ ], [ ( ) , ])

, ,

D p z d p I z u w uwm

u

U

w q q imu
� � �

�

�
1

1 2

1 1

�
� � � �

�

�
u

U

i lp I z u w uw
mu

1

1 1

1

| |

~

( [ ])

~

( [ ( ) , ])| |� � .

In the mth table &m , the cell that corresponds to z
wU

� | |� contains a string p P� if the inequality

~

( ; )D p z dm �
1

is

true.

For a request p
n

0

�� , we consider that a structure Fm makes an error with respect to strings from P if there is a

string p P
1

� such that we have ed ( , )p p k
0 1 1

� (or a string p
2

such that we have ed ( , )p p k
0 2 2

	 ) and also

~

( , ) (

~

( , ) )D p p d D p p dm m0 1 1 0 2 2

� 
 . If there is some k such that more than �M n/ log structures Fm in S k make errors

with respect to strings from P, then we say that the structure S makes errors with respect to the string p
0

. We consider that

the structure S makes an error with respect to a collection of strings p if there exists p
n

0

�� such that S makes an error with

respect to the string p
0

.

If we assume that we have M n n n� � �( log log log ) /

2

� � �ln and F eP n�
�

05 2

2

. ( / )� �ln ln , then, by

Theorem 4 from [14], for any � � 0 and the request p
0

, the probability that S makes an error with respect to p
0

is no more

than �2

� n
. Thus, S makes an error with respect to the collection of strings P with probability �.

Search procedure. Assume that S does not make any error (this occurs with probability 1� �). We use binary search

for finding the nearest neighbor. We choose an arbitrary initial k and randomly and equiprobably select one of structures Fm

from S k . Let us compute the value of p I Fm0

( ) and check the corresponding cell. If the cell is not empty, then we pass to

S k � 1

and check it. Otherwise, we pass to S k � 1

. By Lemma 6 from [14], the probability that the selected Fi makes an error

with respect to p
0

is less than or equal to �.

Let us give an analogue of Lemma 7 from [14].

LEMMA 11. If all S k do not make any error with respect to the string p
0

, then the distance from p � returned by the

search algorithm differs from the distance from p
0

to the exact nearest neighbor by no more than a factor of 1� �.

By analogy with Theorem 8 from [14], we obtain that the considered search procedure finds the ( )1� � -nearest

neighbor for any � � 0 with high probability. If S does not make an error, then the algorithm finds a ( )1� � -approximate

neighbor for any request p
0

with probability 1� � in time O n P( (log | |�
�

�
2

log log log ) log )n n� � .
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4.2. Solution of the �-NNS Problem with the Help of the LSH scheme and a 1-Stable Distribution. We first

describe an original Locality-Sensitive Hashing (LSH) scheme [15] as applied to strings with the classical edit metric.

Let us define a sphere whose radius is k and that contains points whose distance from the center of the sphere t does

not exceed k S t k q q s k: ( , ) : ( , )� �{ ed }. The ( , )� k -PLEB (Point Location in Equal Balls) problem is formulated as the

search for an algorithm that, for any request p P
0

� , performs the following actions: (1) if there exists p P� such that

p S p k
0

� ( , ), then it returns the answer YES and any of points p P� � such that p S p k
0

1� � �( , ( ) )� ; (2) if p S p
0

' ( ,

( ) )1� � k for all p P� , then it returns the answer NO; (3) if the nearest point p P� is such that we have

r p p r� � �ed ( , ) ( )

0

1 � , then it returns the answer YES or NO. In [15], the reducibility of the �-NNS problem to the �-PLEB

problem is shown. A ( , )k k
1 2

-PLEB problem is a variant of the �-PLEB problem and is formulated as the search for an

algorithm that returns the answer YES and any of points p P� � such that we have p S p k
0 2

� �( , ) if there exists some

p P� such that we have p S p k
0 1

� ( , ) and, in the other cases, the algorithm returns the answer NO.

The idea of the LSH scheme is as follows: using a definite number of some hash functions, obtain a high probability

of collision (the coincidence of values of hash functions) between closely located objects and a low one for distant objects.

Then, applying the same hash transformation to a request, we check whether the hash is equal to one of hash values that has

been computed earlier for the vectors from P. In the case of such a coincidence, the found vector p P� is considered to be an

approximate nearest neighbor to the request. The magnitude of the distinction of this vector from the exact nearest neighbor

depends on the properties of the hash functions being used.

A family H h X
n

� �{ }: � (where X is some finite or countable set of values) is called ( , , , )k k p p
1 2 1 2

-sensitive or

simply locality-sensitive if, for any x y
n

, �� and any independently and equiprobably selected hash function h H� , the

following conditions are satisfied:

Prob [ ( ) ( )]h x h y p� �
1

when x S y k� ( , )

1

, Prob [ ( ) ( )]h x h y p� 

2

when x S y k' ( , )

2

. (8)

In order that the family H be “useful,” it is necessary that the condition k k
1 2


 (i.e., close points must be more close

to y than points that are considered to be distant) and also the condition p p
2 1


 (close points must cause the collision

of hash functions with higher probability than distant ones) be satisfied.

At the preliminary stage of preparation of a structure for approximate nearest-neighbor search, a family of functions

{ }g X
n K

: � � is specified, where g p h p h p h pK( ) ( ( ), ( ), , ( ))�
1 2

� . In the aggregate, L functions g g L1

, ,� are randomly

and equiprobably selected from the family G. A table is also created and strings p from the base P are assigned to its cell on

the basis of the value of the hash vector g p( ) as follows: the string p is assigned to the cell corresponding to the value of the

hash vector computed from it, namely, ( ( ), ( ), , ( ))h p h p h pK1 2

� . The table size is bounded by O P L(| | ). Moreover, it is

necessary to store the original base, i.e., O n P( | | ) . The construction of the table is completed when each p P� is assigned to

the corresponding cell.

Search procedure. For a request string p
0

, all hash-vectors g p i Li ( ), , ,

0

1� � , are computed and the corresponding

cells are checked in the table.

If the cell being checked contains a string p S p k*

( , )�
2

, then the answer YES and p*

are returned. If, after

checking 2L strings, none string from P is found in S p k( , )

2

, then the answer NO is returned.

In [15], the possibility of the truth of the following conditions with a constant probability (that is higher than 1 2/ ) is

proved under which the described approximate nearest-neighbor search procedure is correct: (1) if there exists

p S p k
*

( , )�
1

, then the equality g p g pj j( ) ( )

*

� must be true for some j L�1, ,� ; (2) the number of collisions of hash

functions with strings outside of S p k( , )

2

in L checked cells must be less than 2L ,

j

L

P S q k

�

� � (

1

2

| ( ( ; ))

g g p L
j j

�



1

0

2( ( )) | . This is attained by a definite choice of the values of K and L. If H is a ( , , , )k k p p
1 2 1 2

-sensitive

family of functions and we have K Pp� log | |

/1

2

and L P� | |

�
, where � �

�

�

�
�

�

 

!
!

ln

p

p

1

2

, then the algorithm of solution of the

( , )k k
1 2

-PLEB problem occupies about O n P( | | � | | )P
1� �

memory cells and uses O P(| | )

�
computations of distance and

O P Pp(| | log | | )

/

�

1

2

computations of hash functions. It may be noted that p p
2 1


 and � imply that the search time is

sublinearly dependent on | |P .
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The authors of [16] propose to use the following property of p-stable distributions [17] to construct a family of hash

functions that are locality-sensitive to the lp -norm: linear combinations composed of random quantities 	 i are distributed in

the same way as one random quantity multiplied by the norm of the coefficients of this linear combination. Since scalar

product is linear, the difference ( , ) ( , )� 	 � 	
1 2

� is distributed in the same way as | | | |� � 	
1 2

1

� l . Therefore, if the real axis

is divided into equal intervals, then it is intuitively obvious that the scalar products of vectors with close norms by a random

vector from the corresponding stable distribution will belong to the same intervals or intervals close to them and, based on

this, one can construct a locality-sensitive family.

When p �1 (a 1-stable distribution), to use this property, hash function are specified in the form

h
b

r
( )

( , )

�

� 	

�
��

�
�

�

�
� ,

(9)

where r� � is some number, b is a uniformly distributed random quantity from [ , ]0 r , and 	 is a vector of elements

from the 1-stable Cauchy distribution with density

1

1

2

� ( )� x

. It may be proved [16] that, for two fixed vectors

� �
1 2

and , depending on the value of the l
1

-norm of the difference c l� �| | | |� �
1 2

1

of these vectors, the probability of

collision of hash function (9) is specified by the expression

p c
c

f c
t

c
dt

r

c

c

r

r

c

r

( ) ( ) ( ) ( tan ln (� � �
�

�

�
�

 

! � �)
�

0

1

1

1

1

2 1

�

�

�

�
�

 

!

2

)) ,

(10)

where f ( )� is the density function of the modulus of a Cauchy-distributed random quantity. The function p c( ) is

monotonically decreasing and, hence, by definition (8), the functions from family (9) are locality-sensitive and they can

be used in the LSH scheme.

Next, we find asymptotic values (10) when r c�� and r c

 .

1. When r c

 , we have tan

�
� � �

1

3

3

3

( )

~

( )x x
x

O x and, hence, we obtain

p c
r

c

c

r

r

c

r

c
( ) ( ( )) (�

�

�

�
�

 

! � �
�

�

�
�

 

! 
 �
�1

2 1

1

2

1

2

� �

tan ln ln e
r

c

r

c
) �

1

�

. (11)

2. When r c�� and since we have tan ( )x �
�

2

as x � *, we obtain

p c
r

c

c

r

r

c
( ) � � �

�

�

�
�

 

!

�

�

�

�

�

 

!

!

�

�

�

�

�

 

!

!

 �

�1

2 1 1

1

2

�

tan ln

2

�

c

r

r

c
ln . (12)

We propose a new hash function based on definition (9). In [16], to form a vector g h h hj K� ( ( ), ( ), , ( ))

1 2

� � �� , a

fixed vector � is scalarwise multiplied by a series of random vectors 	 i i K, , ,�1 � . Instead of such a fixed vector, we take K

random vectors �
w q q

i
x

, ,

( )

1 2

that are randomly and independently obtained by the choice of a window of width w in the string

x (see Corollaries 5 and 4). For each of them, we generate its vector 	 i whose elements are taken from the Cauchy

distribution. We define modified hash functions
�h xi ( ) that are elements of the vector h x� �( ) ( ( ),

�h x
1

� �h x h xK2

( ), , ( ))� as

follows:

� �

��

�

�

�

�

�

�

�

�

�

h x

x b

r
i

w q q

i

i

( )

( ( ), )

, ,

� 	

1 2

,

(13)

where b rand are parameters of formula (9).

To determine the values of p p
1 2

and , it is necessary to find the distribution of quantities
�h xi ( ) and

�h yi ( ) . Let

Prob [ ( ) ( ) | ] ( )h x h y c p c� � � � , where c is an integral value of d x y
w q q, ,

( , )

1 2

�
. We denote d k q

1 1

2 1� �( )� , d Q
2

� ,

� � �
� �

p
k w

n w
1

1

1

1

, and
� �

�
�

�

�

�
�

�

 

!
!

� �
p

t
k

q

n w
2

2

2 1

2

1

( )�
. Then we have
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Prob ed ed[ ( ) ( ) | ( , ) ] ( | ( , )
� � � � 	 �

�

�h x h y x y k p c x y ki i

c d

1 1

1

) ( )p c

	 � � � �

�

�p d p c x y k p d p c d x y k

c d

( ) ( | ( , ) ) ( ) ( | ( , ) )

1 1 1 1 1

1

ed ed 	 �p d p( )

1 1

,

Prob ed[ ( ) ( ) | ( , ) ]
� � � �h x h y x y ki i 2

� � � �

	 


� �p d p c x y k p c x y k p c

c d c d

( ) ( | ( , ) ) ( | ( , ) ) (

2 2 2

2 2

ed ed )

� 	 � � �




�p d p c d x y k p c x y k p

c d

( ) ( | ( , ) ) ( | ( , ) ) ( )

2 2 2 2

2

0ed ed

� � � � � � � � �p d p p p p p d( ) ( ) ( ) ( ( ))

2 2 2 2 2

1 0 1 1 .

Thus, for the family of new hash functions (13), we obtain

Prob ed[ ( ) ( ) | ( , ) ] ( )
� � � � 	 � �h x h y x y k p d p pi i 1 1 1 1

, (14)

Prob ed[ ( ) ( ) | ( , ) ] ( ( ))
� � � � � � � � �h x h y x y k p p d pi i 2 2 2 2

1 1 . (15)

In order that this family be locality-sensitive, the condition 1 1

2 2 1 1

� � � 
 �p p d p d p( ( )) ( ) must be true. In turn, in order

that this condition be true, the following inequality should be fulfilled:

k q
n w

t p d
p d

wk p d

n w
2

2

1

1 1

2 1 2

1

1

1

1

� � �
� �

�
� �

� �
( )(

( ( ))

( ( )

( )

� ) .
(16)

To determine the asymptotic behavior of k
2

, we put w n�
�

, 0 1
 
� , and r n� �
�

�, 0. Based on condition (2) of

Lemma 3, we have � +q w� ( ) . Then we obtain

d k q k n d Q n t w q n
1 1 1

2

2

2 1 1� � � � � � � � �( ) ( ), ( ), ( )

/

� + + � +
� � �

.

As n � *, using expressions (10)–(12), we find estimates of 1

1

� p d( ) and 1

2

� p d( ), depending on the following

relationships of the parameters � �and .

1. If � �� , then we have r d r d� �
 ( ) and ( )

1 2

+ , whence we obtain

1

2

� �p d( ) const, 1

2

1

1

1

� �
�

�

�
�

�

 

!
!

p d
d

r

r

d
( )

�

ln .

2. If � �� , then we have r d� 
 ( )

1

and r d� 
 ( )

2

, whence we obtain

1

2

1

1

1

� �
�

�

�
�

�

 

!
!

p d
d

r

r

d
( )

�

ln , 1

2

2

2

2

� �
�

�

�
�

�

 

!
!

p d
d

r

r

d
( )

�

ln .

3. If � � �/ 2 
 
 , then we have r d� 
 ( )

1

and r o d� ( )

2

, whence we obtain

1 1

1

1

2

2

2

1

1

1

� � �
�

�

�
�

�

 

!
!

� �
�

�

�
�

�

 

!
!

p d
r

d
p d

d

r

r

d
( ) , ( )

� �

ln

�

�

�
�

�

 

!
!

.

4. If � �� / 2 , then we have r d� 
 ( )

1

and r o d� ( )

2

, whence we obtain

1 1

1

1

2

2

1

� � �
�

�

�
�

�

 

!
!

� �p d
r

d
p d( ) , ( )

�

const.

Substituting these expressions in inequality (16), we find estimates of k
2

for each case.

1. When we have � �� , we obtain k k n n n
2 1

1 2

� �
�

% ( ( )

/� �
ln . When �

�
� 2 3

2

/ ,

/

n dominates n n
1� �

ln and

k
2

has the asymptotic % ( )

/

n
� 2

, � � 2 3/ . When � � 2 3/ , n n
1� �

ln dominates n
� / 2

and k
2

has the asymptotic

% ( ), /n n
1

2 3

�
�

�
�ln . From this, the optimal value is � � 2 3/ and we have k k n n

2 1

1 3

�% ( )

/

ln .
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2. When � �� , we obtain k n k n n n
2

2

1

1

� � �
�

% ( [ / ])

/� � �
ln . Since we have � �� , we obtain

n

n
n

�

�

ln

�% ( ) and,

in this case, k
2

increases more quickly than in the case when � �� .

3. When � � �/ 2 
 
 , we obtain k k n n n
2 1

1 2

2� � �
�

% ( ( ( / ) )

/� �
� � ln . Since we have � �
 , we obtain

n n n n
1 1� �

�
� �

ln ln% ( ), and this estimate is worse than in the case when � �� .

4. When � �� / 2 , we obtain k n
2

�% ( ) , which is also worse than in the case when n � �.

Thus, the optimal value is � � 2 3/ for which we have k k n n
2 1

1 3* /

( )�% ln .

Assume that we increase k
2

by equating it to 2 1( )�q � (

( ( ))

( ( )

( )

)2

1

1

1

1

2

1

1 1

�
� �

�
� �

� �
z

n w

t p d
p d

wk p d

n w
for some z �1.

This will affect the value and asymptotic of p
2

since its value depends on k
2

. In this case, estimating the value of

� �
�

� � �
�

�

�

ln

ln

ln

ln

( ( ))

( ( ( )))

( )

( )

p p d

p p d

A

zA

1 1

2 2

1 1

1

1

, where A � 1

1 1

� �p p d( ) , by analogy with the estimation of � for the case of the

Hamming distance [15, 18], we obtain � �
�

�

�

�
�

�

 

!
!

O
z

1

1

on the condition that the inequality ln | | ( )P p p d� �
1 1

is fulfilled.

Thus, the method designed for approximate search for the nearest string and constructed on the basis of the described

modified LSH variant over a 1-stable distribution will return a string (from P) that belongs to the sphere

S q O zk n n( , ( ))

/

1

1 3

ln with probability higher than 1/2 and will use about O P
z

(| | )

/ ( )1 1�
operations to this end. Since the

scheme has a constant probability of error, repeating the described LSH procedure simultaneously and independently about

O ( )ln

1

�

times, it is possible to achieve the success probability that is no less than 1� � at least for one procedure start for any

given error level � 
1.

CONCLUSION

The representation of symbolic strings [8, 9] that is developed within the framework of neural-network-based

distributed data representation [19] has been analyzed as applied to the theory of metric embeddings. A new q-gram method

of approximation of edit distance is developed and the parameter values of the method are presented for which a refinement

of the estimates of approximation quality that are proposed in [9] is attained. An improvement in the asymptotic of growing

the lower bound k
2

is achieved in comparison with the results that are obtained using the method of embedding edit distance

in the space l
1

and are described in [20]. A randomized version of the approximation method proposed is developed and the

possibility of construction of a family of randomized locality-sensitive functions that can be used for efficient solution of the

problem of approximate search for nearest strings is demonstrated.

The further directions of investigations are the refinement of the estimates obtained, a modification of the proposed

algorithm or the development of a new algorithm for more general versions of edit distance (with permutations and variable

costs of operations), and also the investigation of the efficiency of the developed method in practical problems in which long

symbolic strings are compared.
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