Talk Plan (≈25 min.)

1. Sequence embeddings (18 slides)
 - Sequence processing, case-based reasoning and space embeddings
 - Deterministic embedding of edit distance into vector space
 - Randomized embedding and nearest neighbour search
 - Applications

2. Markov chains with variable memory length (3 slides)
 - Suffix automaton
 - Modification
 - Applications

3. Other projects (1 slide)
Sequence Processing and Case-Based Reasoning

Tasks
- duplicate detection
- spam filtering
- gene finding
- intrusion detection

Case-Based Reasoning

Searching for similar examples is the basic operation

Let \(x, y \in \Sigma^n \) be symbol strings of length \(n \) over a finite alphabet \(\Sigma \).

Edit Distance \(ed(x, y) \)
Minimum number of symbol **changes, deletions and inserts** to transform \(x \) into \(y \).

Calculating \(ed(x, y) \)
- Dynamic programming – \(O(n^2) \)
- Best result – \(O\left(\frac{n^2}{\log n}\right) \)
- Still too bad for large \(n \)
Space embeddings

How to compute a «difficult» metric

Idea – embed into a «simpler» space:

\[(X, \rho_1) \xrightarrow{v} (Y, \rho_2) \]

- usually vector space (preferably of small dimension)
- with simple metrics \(\rho_2 \) (e.g., \(\ell_1, \ell_2, \ell_\infty, \text{Hamming} \))

Embedding quality (possible definition)

\((k_1, k_2, d_1, d_2)\)-embedding

There exist \(k_1 \leq k_2 \) and \(d_1 \leq d_2 \), such that

- if \(\rho_1(x, y) \leq k_1 \), then \(\rho_2(v(x), v(y)) \leq d_1 \),
- if \(\rho_1(x, y) > k_2 \), then \(\rho_2(v(x), v(y)) > d_2 \).

The less is \(k_2 - k_1 \), the better is the approximation
De Bruijn graphs

- $x[i, i + q - 1]$
- $(v_q(x))_j = \sum_{i=1}^{n-q+1} [x[i, i + q - 1] = \sigma_j], \sigma_j \in \Sigma^q$
- $d_q(x, y) = \sum_j |(v_q(x))_j - (v_q(y))_j|$

De Bruijn graph

- $B(\Sigma; q) = G(V, E)$
 - $V = \Sigma^{q-1}$
 - $E = \Sigma^q$

Example $B(\{0, 1\}, 2)$
De Bruijn graphs

- $x[i, i + q - 1]$
- $(v_q(x))_j = \sum_{i=1}^{n-q+1} [[x[i, i + q - 1] = \sigma_j]], \sigma_j \in \Sigma^q$
- $d_q(x, y) = \sum_j |(v_q(x))_j - (v_q(y))_j|$

De Bruijn graph

- $B(\Sigma; q) = G(V, E)$
 - $V = \Sigma^{q-1}$
 - $E = \Sigma^q$

Example $B(\{0, 1\}, 3)$
De Bruijn graphs

- $x[i, i + q - 1]$
- $(v_q(x))_j = \sum_{i=1}^{n-q+1}[[x[i, i + q - 1] = \sigma_j]], \sigma_j \in \Sigma^q$
- $d_q(x, y) = \sum_j |(v_q(x))_j - (v_q(y))_j|$

De Bruijn graph

- $B(\Sigma; q) = G(V, E)$
 - $V = \Sigma^{q-1}$
 - $E = \Sigma^q$

Example $B(\{0, 1\}, 4)$
De Bruijn graphs

- $x[i, i + q - 1]$
- $(v_q(x))_j = \sum_{i=1}^{n-q+1}[[x[i, i + q - 1] = \sigma_j]], \sigma_j \in \Sigma^q$
- $d_q(x, y) = \sum_j |(v_q(x))_j - (v_q(y))_j|$

De Bruijn graph

- $B(\Sigma; q) = G(\Sigma, E)$
 - $V = \Sigma^{q-1}$
 - $E = \Sigma^q$

Example $B(\{0, 1\}, 4), x = 101000110$
De Bruijn graphs

- $x[i, i + q - 1]$
- $(v_q(x))^j = \sum_{i=1}^{n^q+1}[[x[i, i + q - 1] = \sigma_j]], \sigma_j \in \Sigma^q$
- $d_q(x, y) = \sum_j |(v_q(x))^j - (v_q(y))^j|$

De Bruijn graph

- $B(\Sigma; q) = G(V, E)$
- $V = \Sigma^{q-1}$
- $E = \Sigma^q$

Example

$B(\{0, 1\}, 4), x = 101000110, y = 111100101$
Types of path configurations on a de Bruijn graph

Loop

- $abcdefghi$
- $abcdkfght$

Fork

- $akcdefghf$
- $abcdedefghi$

Cycle

- $abcderstcdefg$
- $oprstcderstvw$

Diagram not fully transcribed due to limitations in text representation.
Idea: evolution of the configurations with q

- Take two paths on $B(\Sigma, q)$ corresponding to strings x and y
- Increment q by 1 and get $B(\Sigma, q + 1)$
- The number of distinct edges changes differently depending on the initial configuration.

q-gram distance changes:
- Loop – $d_{q+1}(x, y) = d_q(x, y) + 2$
- Fork – $d_{q+1}(x, y) = d_q(x, y)$
- Cycle is more complicated

Intuition for the embedding

- too many different edges (loop) → likely large edit distance
- few different edges (fork) → likely small edit distance (just edit the forking parts)
Deterministic embedding of ed into ℓ_1

Embedding construction

- q_1, q_2
- w
- $\Sigma^n \rightarrow (\mathbb{N} \cup 0)^{|\Sigma^n|}(n-w+1)(q_2-q_1+1)$
- $x \mapsto (v_{q_1}(x[1, w]), v_{q_1+1}(x[1, w]), \ldots, v_{q_2}(x[1, w]), v_{q_1}(x[2, w+1]), \ldots, v_{q_2}(x[n-w+1, n]))$
- All q-gram vectors concatenated for all q's and all windows of width w
- $D(x, y) = \frac{\sum_{i=1}^{n-w+1} \sum_{q_1}^{q_2} d_q(x[i,i+w-1], y[i,i+w-1])}{(n-w+1)(\Delta q+1)}$
- Just normalized q-gram distance

min and max lengths of q-grams

width of sliding window

embedding

new metrics
new distance \(D(x, y) = \frac{\sum_{i=1}^{n-w+1} \sum_{q_1}^{q_2} d_q(x[i,i+w-1], y[i,i+w-1])}{(n-w+1)(\Delta q+1)} \)

Lower bound

<table>
<thead>
<tr>
<th>strings</th>
<th>one interval of width (w)</th>
<th>strings of length (n > w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>repetitive</td>
<td>if (q) is "large enough" (\Rightarrow) only 1 cycle on (B(x, q))</td>
<td>if for each consecutive interval holds</td>
</tr>
<tr>
<td></td>
<td>(\Downarrow) if (q) is "large enough" (& \exists) cycle on (B(x, y, q)) (\Rightarrow) no "non-cycle" common edges</td>
<td>(D(x_i, y_i) < (\Delta q + 1)(\Delta q + 2)) (\Rightarrow) (ed(x, y) \leq 2(\Delta q + 1)) (\Downarrow) bound (ed(x, y)) in terms of number (N) of "bad" intervals</td>
</tr>
<tr>
<td></td>
<td>(under some conditions) (D(x, y) < (\Delta q + 1)(\Delta q + 2)) (\Rightarrow) (ed(x, y) \leq 2(\Delta q + 1))</td>
<td>(ed(x, y) \geq k_2 \Rightarrow) (N > (w - \Delta q + 1)(\frac{k_2}{2(\Delta q+1)} - 2))</td>
</tr>
<tr>
<td>non-repetitive</td>
<td>(under some conditions) (D(x, y) < (\Delta q + 1)(\Delta q + 2)) (\Rightarrow) (ed(x, y) \leq 2(\Delta q + 1))</td>
<td>(\Rightarrow) (ed(x, y) \leq 2(\Delta q + 1))</td>
</tr>
</tbody>
</table>

Upper bound

Each edit operation changes at most \(w \) intervals, so

\[
ed(x, y) \leq k_1 \Rightarrow D(x, y) \leq \frac{2k_1[w^2 + n + 1]}{n - w + 1}
\]
Deterministic embedding of \(ed \) into \(\ell_1 \)

Recall: \((k_1, k_2, d_1, d_2)\)-embedding

There exist \(k_1 \leq k_2 \) and \(d_1 \leq d_2 \), such that

\[
\begin{align*}
\text{if } \rho_1(x, y) &\leq k_1, \text{ then } \rho_2(v(x), v(y)) \leq d_1, \\
\text{if } \rho_1(x, y) &> k_2, \text{ then } \rho_2(v(x), v(y)) > d_2.
\end{align*}
\]

The less is \((k_2 - k_1)\), the better is the approximation.

The result can be formulated as:

Theorem

For \(w \geq 6, k_1 \geq 1, q_1 = 2w/3, n > w(k_1 + 1) + 1, \Delta q = \frac{1}{2}(-7 + \sqrt{57} + 16(w - q_1)) \), \(Q = (\Delta q + 1)(\Delta q + 2) \), \(t = w - \Delta q + 1 \)

- If \(ed(x, y) \leq k_1 \), then \(D(x, y) \leq \frac{2k_1[w^2 + (n + 1)]}{n - w + 1} \)
- If \(ed(x, y) > k_2 \), then \(D(x, y) \geq \frac{Qt(k_2}{(n - w + 1)(\Delta q + 1)}. \)
Deterministic embedding of ed into ℓ_1

Recall:

There exist $k_1 \leq k_2$ and $d_1 \leq d_2$, such that

1. If $\rho_1(x, y) \leq k_1$, then $\rho_2(v(x), v(y)) \leq d_1$,
2. If $\rho_1(x, y) > k_2$, then $\rho_2(v(x), v(y)) > d_2$.

The less is $(k_2 - k_1)$, the better is the approximation.

The result can be formulated as:

Theorem

For $w \geq 6$, $k_1 \geq 1$, $q_1 = 2w/3$, $n > w(k_1 + 1) + 1$, $\Delta q = \frac{1}{2}(-7 + \sqrt{57 + 16(w - q_1)})$, $Q = (\Delta q + 1)(\Delta q + 2)$, $t = w - \Delta q + 1$

- If $ed(x, y) \leq k_1$, then $D(x, y) \leq \frac{2k_1[w^2 + (n + 1)]}{n - w + 1}$
- If $ed(x, y) > k_2$, then $D(x, y) \geq \frac{Qt\left(\frac{k_2}{2(\Delta q + 1)} - 2\right)}{(n - w + 1)(\Delta q + 1)}$.

$Q = (\Delta q + 1)(\Delta q + 2)$,
Deterministic embedding of ed into ℓ_1

Recall:

There exist $k_1 \leq k_2$ and $d_1 \leq d_2$, such that

- if $\rho_1(x, y) \leq k_1$, then $\rho_2(v(x), v(y)) \leq d_1$,
- if $\rho_1(x, y) > k_2$, then $\rho_2(v(x), v(y)) > d_2$.

The less is $(k_2 - k_1)$, the better is the approximation.

The result can be formulated as:

Theorem

For $w \geq 6$, $k_1 \geq 1$, $q_1 = 2w/3$, $n > w(k_1 + 1) + 1$, $\Delta q = \frac{1}{2}(-7 + \sqrt{57 + 16(w - q_1)})$, $Q = (\Delta q + 1)(\Delta q + 2)$, $t = w - \Delta q + 1$

- If $ed(x, y) \leq k_1$, then $D(x, y) \leq \frac{2k_1[w^2 + (n + 1)]}{n - w + 1}$

- If $ed(x, y) > k_2$, then $D(x, y) \geq \frac{Qt(k_2)}{(n - w + 1)(\Delta q + 1)} - 2$.
Comparison and experimental illustration

n – sequence length

<table>
<thead>
<tr>
<th>ref</th>
<th>spaces</th>
<th>k_1</th>
<th>k_2</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Andoni et al, 03]</td>
<td>$ed \rightarrow \ell_1$</td>
<td>distortion $> \frac{3}{2}$</td>
<td>$\Omega(n)$</td>
<td>$O(n^{\max(\frac{a}{2}, 2a-1)})$</td>
</tr>
<tr>
<td>[Batu et al, 03]</td>
<td>$ed \rightarrow ed$</td>
<td>$O(n^a)$</td>
<td>k</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>[Bar-Yossef et al, 04]</td>
<td>$ed \rightarrow$ Hamm.</td>
<td>k</td>
<td>$k2^O(\sqrt{\log n \log \log n})$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>[Ostrovsky et al, 05]</td>
<td>$ed \rightarrow \ell_1$</td>
<td>k</td>
<td>$k\sqrt{n}$</td>
<td>$O(n^{5/4})$</td>
</tr>
<tr>
<td>this talk</td>
<td>$ed \rightarrow \ell_1$</td>
<td>k</td>
<td>$k\sqrt{n}$</td>
<td>$O(n^{5/4})$</td>
</tr>
</tbody>
</table>

Numerical experiment

- $n = 5000$
- $n = 10000$
- $n = 50000$
Randomized embedding and NN-search

Approximate nearest neighbours

- approximate neighbours are often enough in applications
- data is often known with some accuracy
- "curse of dimensionality" for exact nearest neighbours

$$(k_1, k_2)\text{-nearest neighbour task} \quad (k_1, k_2)\text{-NN}$$

Given:
- $P \subset \Sigma^n$ – string set
- $k_1 < k_2$ – parameters
- $z \in \Sigma^n$ – query

Task:
If $\exists x \in P$, such that $ed(x, z) \leq k_1$, then return any $y \in P$, such that $ed(y, z) \leq k_2$
Locality-sensitive hash function for ed

Definition [Indyk, Motwani, 98]

A family $H = \{ h : (X, \rho) \to Y \}$ is locality-sensitive for metrics ρ, if for $\forall x, y \in X$ and any i.i.d. $h \in H$ holds:

\[
\begin{align*}
\text{if } \rho(x, y) \leq k_1, \text{ then } \text{Prob}[h(x) = h(y)] > p_1, \\
\text{if } \rho(x, y) > k_2, \text{ then } \text{Prob}[h(x) = h(y)] < p_2,
\end{align*}
\]

\[k_1 < k_2, p_1 > p_2\]

Construction of the locality-sensitive hash function for ed:

- i – independent uniform random value from $[1, \ldots, n - w + 1]$
- v_{q_1, q_2} – concatenation of q-gram vectors from window $x[i, i + w - 1]$ for $q = q_1, \ldots, q_2$
- ϕ – random Cauchy vector, $p(x) = \frac{1}{\pi(1+x^2)}$
- $b \in \mathbb{R}$ – uniform random value from $[0, r]$.

Locality-sensitive family of hash functions

\[
h(x) = \left\lfloor \frac{(v_{q_1, q_2}(x[i, i + w - 1]), \phi) + b}{r} \right\rfloor
\]
Searching for \((k_1, k_2)\)-nearest neighbours

Using
- results from deterministic embedding
- Cauchy distribution properties,

it is possible to show that \(h(x)\) is a locality-sensitive function for \(ed\)

NN search algorithm

1. For \(\forall x \in P\) create \(L\) vectors \(h^j(x) = (h_{1j}(x), h_{2j}(x), \ldots, h_{K_j}(x))\)
2. Memorize string \(x\) in all cells with «addresses» \(h^j(x)\)
3. For a given query \(z\) select up to \(2L\) strings from cells \(h^j(z), j = 1, \ldots, L\)
4. If for some corresponding string \(x_i\) in the selected cells holds, \(ed(x_i, z) < k_2\)
 \(\Rightarrow\) this is a neighbour

Theorem

If \(K = \log_{1/p_2} |P|, L = |P|^{\ln p_1/\ln p_2}\), then with probability \(> 1/2\) this algorithm finds a \((k_1, O(\alpha k_1 n^{1/3} \ln n))\)-nearest neighbour using time \(O(|P|^{1/(1+\alpha)})\), \(\alpha > 1\).
Numeric experiments on a random dataset

Precision vs. L and $|S|$ (number of retrieved NN-candidates)

| L | $|S| = \frac{1}{2} L$ | σ_p | $|S| = L$ | σ_p | $|S| = 2L$ | σ_p | $|S| = 3L$ | σ_p | $|S| = 4L$ | σ_p |
|-----|--------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1 | | 0.950 | | 0.048 | 0.945 | 0.029 | 0.927 | 0.025 | 0.893 | 0.031 |
| 2 | 0.930 | 0.065 | | 0.056 | 0.853 | 0.054 | 0.825 | 0.032 | 0.810 | 0.028 |
| 3 | 0.885 | | | 0.050 | 0.816 | 0.035 | 0.784 | 0.030 | 0.770 | 0.025 |
| 4 | 0.855 | 0.071 | | 0.041 | 0.810 | 0.031 | 0.777 | 0.023 | 0.757 | 0.021 |
| 5 | | 0.824 | | 0.039 | 0.786 | 0.021 | 0.759 | 0.014 | 0.735 | 0.014 |
| 6 | 0.853 | 0.052 | | 0.040 | 0.782 | 0.025 | 0.760 | 0.019 | 0.730 | 0.014 |
| 8 | 0.846 | 0.038 | | 0.024 | 0.755 | 0.016 | 0.729 | 0.013 | 0.724 | 0.010 |
| 10 | 0.860 | 0.030 | | 0.024 | 0.749 | 0.015 | 0.722 | 0.009 | 0.689 | 0.008 |
| 20 | 0.811 | 0.024 | | 0.014 | 0.708 | 0.006 | 0.682 | 0.005 | 0.658 | 0.004 |

Quality of ordering in S

$|S| = 50$

$|S| = 100$

$|S| = 500$
Web-page duplicate detection

Yandex.ru dataset

- ~ 800000 web-pages ≈ 0.3% of the Russian segment of the Internet
- 10 mln. pairs of duplicates – «ground truth»
- recall \(r = \frac{\text{num. of found duplicates}}{\text{num. of existent duplicates}} \)
- precision \(p = \frac{\text{num. of found duplicates}}{\text{num. of found documents}} \)

Results

<table>
<thead>
<tr>
<th>reference</th>
<th>document similarity</th>
<th>precision (p)</th>
<th>recall (r)</th>
<th>(F = \frac{2rp}{r+p})</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Kuznetsov, 05]</td>
<td></td>
<td></td>
<td></td>
<td>0.14-0.49</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>0.92</td>
<td>0.37</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>0.92</td>
<td>0.42</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.87</td>
<td>0.50</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>0.48</td>
<td>0.91</td>
<td>0.63</td>
</tr>
<tr>
<td>[Kosinov, 07]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>0.78</td>
<td>0.57</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>0.82</td>
<td>0.69</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.81</td>
<td>0.83</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>0.87</td>
<td>0.91</td>
<td>0.89</td>
</tr>
<tr>
<td>this talk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>0.78</td>
<td>0.57</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>0.82</td>
<td>0.69</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.81</td>
<td>0.83</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>0.87</td>
<td>0.91</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Spam volume assessment

Spam

- 80-85% of all e-mail
- abundance of similar/identical spam
- word distortions to fool stat. filters: ’mortgage’ ’buy viagra’ ’m0rtg@ge’ ’6uy v1agraa’

TREC Spam Track 2006 dataset

- ~ 38000 letters (189Mb)
- spam/ham ratio – 66%/33%
- sm% – false negative
- hm% – false positive

Classification

Result
About 80% of correctly classified spam with 5% misclassified ham
Coding regions in DNA

Genetic data
- 10^{10} Mb/year
- GenBank doubles annually
- up to $3.2 \cdot 10^9$ symbols in a sequence

Coding regions search method
- z, query, training exon
- t, test sequence
- c_j, $j = 1, \ldots, |t|$ counters $t[j]
- P = \{t[i, i + |z| - 1]\}$ database
- S
- if $ed(t[i', i' + |z| - 1], z) = \min_{x \in S} ed(x, z)$, then $c_i = c_i + 1, i = i', \ldots, i' + |z| - 1$
- T - threshold on the value of c_i

Quality measure

$$AC = \frac{1}{2} \left(\frac{TP}{TP + FN} + \frac{TP}{TP + FP} + \frac{TN}{TN + FP} + \frac{TN}{TN + FN} \right) - 1$$

Result

<table>
<thead>
<tr>
<th>reference</th>
<th>AC</th>
<th>time on one PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Costello, 03]</td>
<td>0.49</td>
<td>~ 6 years (est. class. alg.)</td>
</tr>
<tr>
<td>this talk</td>
<td>0.47</td>
<td>70 hours</td>
</tr>
</tbody>
</table>
User session classification

Intrusion detection

- $\Sigma = \{\text{'ls', 'mail', 'rm', \ldots}\}$, $|\Sigma| \sim 10^3$
- $\sim 10^3$ processes/hour
- anomaly – unusual behaviour

Method

- U
- u^*
- t
- c_u, $u \in U$

FreeBSD audit-session dataset

- collect time – ~ 3 year
- > 500 users
- ~ 20 mln. commands

Result

\[
\begin{array}{|c|c|c|c|}
\hline
n & K & L & 1 & 5 & 10 \\
\hline
10 & 5 & 0.470 & 0.984 & 0.997 \\
10 & 7 & 0.431 & 0.945 & 0.987 \\
20 & 5 & 0.440 & 0.942 & 0.983 \\
20 & 7 & 0.403 & 0.741 & 0.942 \\
40 & 5 & 0.354 & 0.848 & 0.967 \\
40 & 7 & 0.230 & 0.390 & 0.836 \\
\hline
\end{array}
\]

- P_u
- $z = t[i,i + n - 1]$
- S_u
- if $S_u \neq \emptyset$, then $c_u = c_u + 1$

Datasets for $\forall u \in U$ (all sliding windows of their sessions) query, window contests of the current session set of nearest windows found in P_u if $c_{u^*} = \max_u c_u$, then there is no anomaly
Markov chains with variable memory length

Ron, Singer, Tishby, 95

Σ – alphabet, Q – states, s ∈ Σ* – state label.

Probabilistic Suffix Automaton (PSA) –

< Q, Σ, τ, γ, π >, where

- τ: Q × Σ → Q – transition function,
- γ: Q × Σ → [0, 1] – symbol emission probability,
- π: Q → [0, 1] – initial state distribution.

For q¹, q² ∈ Q, ∀σ ∈ Σ, if τ(q¹, σ) = q² i q¹ has label s¹, then q² has label s², which is a suffix of s¹σ.

Probabilistic Suffix Tree (PST):

- edges correspond to symbols of Σ,
- each node has (s, γs), where s is a «descend label»,
- γs: Σ → [0, 1] – symbol probability.
Modified learning algorithm

Empiric probabilities

χ_j(s) = [[r_{j-|s|+1} \ldots r_j = s]]

\tilde{P}(s) = \frac{1}{n - L + 1} \sum_{j=L}^{n-1} \chi_j(s),

\tilde{P}(\sigma|s) = \frac{\sum_{j=L}^{n-1} \chi_{j+1}(s\sigma)}{\sum_{j=L}^{n-1} \chi_j(s)}.

1. Take tree \(\hat{T}_{t-1} \), current sequence \(r_t \) and update:

\[\tilde{P}_t(s) = \alpha \tilde{P}_{t-1}(s) + (1 - \alpha) P'_t(s), \]

where \(P'_t(s) \) – empiric probability of \(s \) in \(r_t \).

2. Delete all states such that: \(\tilde{P}_t(s) < (1 - \epsilon_1)\epsilon_0 \)

3. \(\tilde{S} = \{ s | s \in \Sigma^*, \text{suffix}(s) \in \mathcal{L}(\hat{T}_{t-1}), \tilde{P}_t(\sigma) \geq (1 - \epsilon_1)\epsilon_0 \} \), where, \(\mathcal{L}(\hat{T}_{t-1}) \) is the set of leaves of \(\hat{T}_{t-1} \).

4. While \(\tilde{S} \neq \emptyset \) choose any \(s \in \tilde{S} \) and

 1. delete \(s \) from \(\tilde{S} \)
 2. if \(\exists \sigma \in \Sigma \) such that \(\tilde{P}_t(\sigma|s) \geq (1 + \epsilon_2)\gamma_{\text{min}}, \)
 and \(\frac{\tilde{P}_t(\sigma|s)}{P_t(\sigma|\text{suffix}(s))} > 1 + 3\epsilon_2 \), add node \(s \) to the tree.
 3. if \(|s| < L \), then for \(\forall \sigma' \in \Sigma \), if \(\tilde{P}(\sigma'|s) \geq (1 - \epsilon_1)\epsilon_0 \), add \(\sigma' \)s to \(\tilde{S} \).

For \(\forall \epsilon > 0, 0 < \delta < 1, \exists \alpha(\epsilon, \delta) : 0 < \alpha < 1 \) and sufficiently large \(t \geq t_0 \), such that with the update rule

\[S_t = \alpha^t X_0 + (1 - \alpha) \sum_{\tau=1}^{t} \alpha^{t-\tau} X_\tau, \]

the following holds:

\[P\{|S_t - MX_t| \leq \epsilon\} \geq 1 - \delta. \]
Learning user behaviour patterns

User substitution

Replay-attacks

Cross test
Other projects

Software NeuroComputer

CAD mode

Run mode

Context vectors
Text classification, semantic search, TOEFL,…

Dynamic Routing Server
Quality-of-Service routing in a network
Thank you!