
Low-Dimensional Feature Learning
with Kernel Construction

Artem Sokolov Tanguy Urvoy Hai-Son Le
LIMSI-CNRS, Orsay, France Orange Labs, Lannion, France LIMSI-CNRS, Orsay, France
artem@limsi.fr tanguy.urvoy@orange.com lehaison@limsi.fr

Abstract

We propose a practical method of semi-supervised feature learning with con-
structed kernels from combinations of non-linear weak rankers for classification
applications. While in kernel methods one usually avoids working in the implied
implicit feature space, we use the outputs of weak rankers as new features, and de-
fine the kernel as scalar product in the new feature space. The kernel is then used
to map high-dimensional data into a low-dimensional space keeping the mapping
informative enough to be used as training data for learning algorithms. We eval-
uate and compare the proposed method with other approaches on a public dataset
released during the recent Semi-Supervised Feature Learning Challenge [1].

1 Introduction

Contemporary technology generates abundant, multi-modal and essentially multi-dimensional data
flows and requires its rapid processing. One such typical domain is Web information retrieval, where
data sources can be characterized by millions of features (e.g., occurring words, phrases, grammat-
ical tagging), can be described by diverse modalities (particular user’s preferences, page history,
trustworthiness, expected click rate or page advertisement revenue), and are exceptionally plentiful.
Because of data size, their direct storage is infeasible or impermissibly expensive. Even more, stor-
ing a fixed subset of relevant (for a particular task) features may not be possible, as not every task
to be performed with data can be thought of in advance. Thus there is a need to transform the input
space into a lower-dimensional one, such that the new features remain sufficiently informative and
expressive to allow learning on them and guarantee satisfactory performance on testing. Learning
such representations is complicated by the cost and difficulty of acquisition of the supervision infor-
mation, so the transformation design should make use of unlabeled data that is cheaply available.

One can view a learned model of data as a reduction itself, as it is possible to use the output of the
trained model as a one-dimensional feature. In general, however, one would be most interested in
preserving, in the reduced representation, the information sufficient for learning a good-performing
model for several tasks (binary or multi-class classification, ranking, regression etc.) and several
measures of quality. For sequential learning systems it may also be useful to preserve a “not-too-
specialized summary” of the past in order to adapt the learned model to changes in the data stream
on the fly. Thus, a useful definition of the semi-supervised (reduced) feature learning task would
depend on the learning algorithm used on the transformed data, the task(s) in question and the
quantity optimized. Although highly desired, such over-generalized task is obviously difficult to
tackle. A reasonably simple, yet interesting, task formulation in a form of competition was proposed
during Semi-Supervised Feature Learning (SSFL) Challenge [1]:

Challenge settings: Let I be the set of instances of the challenge dataset. For each instance i ∈ I ,
a feature vector xi = (x1

i , . . . , x
D
i) ∈ X was provided. The X set was high-dimensional (X ⊂ RD

with D = 106) and sparse (maxi∈I |xi|0 = 414).

1

Most instances were unlabeled except two separate subsets Itrain and Itest used, respectively, for
training and testing. For each training instance i, only a noisy label yi ∈ {−1,+1} was provided.
This noise was injected to simulate reality and favor using unlabeled instances. The real labels for
train and test were kept secret by the organizers.

The goal was to use both labeled and unlabeled data to construct a dimension reduction mapping
f : X → Y , where Y ⊆ Rd with d = 100 � D. The new feature space had to be rich enough and
informative, to allow a classifier to be trained on f(X) with the best possible predictive performance.
According to the challenge’s rules, the classifier had to be a standard linear Support Vector Machine
(C-SVM) trained on f(X) according to training labels with a fixed error-penalty parameter [2]:

w∗f =


argmin
w,b,ξ

1
2
〈w; w〉+

∑
i∈Itrain

ξi

subject to yi · (〈w; f(xi)〉+ b) ≥ 1− ξi, ξi ≥ 0.

(1)

Let c(x) = 〈w∗f ; f(x)〉 be the classifier output function obtained by combination of the dimension
reduction mapping f and its optimized SVM model w∗f . The performance of this classifier was
measured by its Area Under ROC Curve (AUC). For i, j ∈ Itest the AUC of c is given by the
Wilcoxon-Mann-Whitney statistic:

AUCc =
1∑

i[[yi = −1]] ·
∑
j [[yj = +1]]

∑
i:yi=−1

∑
j:yj=+1

[[c(xi) ≥ c(xj)]], (2)

and is equal to the probability that the value of c on a randomly chosen negative example is lower
than that on a randomly chosen positive example [3]. Training of the SVM was performed by the
entrants on the public train set, and the leaderboard AUC was computed by the organizers on the
test set. One may notice a side-effect of this evaluation process: any multi-dimensional reduction
mapping can be replaced by its combination with its associated optimal SVM model, and since the
two models are evaluated on the same set of labels, they will result in exactly in the same AUC
score. In other words: constructing 100 features in order to train a prediction model is a more
general (harder) problem than building directly a prediction model. Some possible ways to avoid
this in future challenges are discussed in conclusion.

Contribution In this paper we propose a practical method of semi-supervised dimensionality re-
duction and report on its and other (supervised, semi-supervised, and unsupervised) methods’ per-
formance in the SSFL Challenge.

Our method is trifold. First, a kernel function K is learned on labeled instances Itrain that leverages
the label information to tune itself for similarity between instances. To learn K we propose two
alternatives – a RankBoost algorithm and a neural network. RankBoost algorithm [4] linearly com-
bines weak learners, each depending on one or two input features, to minimize a pairwise ranking
loss function. We consider the found weak non-linear learners to be mappings of the corresponding
original feature(s) to coordinates in a new high-dimension feature space. Making data to be linearly
separable in the new space is what tries to achieve RankBoost by minimizing the pairwise ranking
loss. The actual kernel K is then simply defined as an inner product in the new feature space.

An alternative approach to obtain kernel K is to model it with a multi-layer neural network, trained
to minimize an approximation of the kernel alignment measure of similarity [5] on a data sample
between K and the perfect kernel K(xi,xj) = yiyj .

Secondly, having our kernel constructed, we take advantage of the unlabeled data. Let Isample be a
random subset of I of size r. The data-points xk such that k ∈ Isample are used as pivot points for
kernel K’s evaluations to embed training and testing points into a intermediate feature space K:

x 7→ (K(xk1 ,x),K(xk2 ,x), . . . ,K(xkr
,x)) , ki ∈ Isample. (3)

Finally, vectors in K are randomly projected in an oblivious manner onto a low-dimensional space
Y using a binary variant of Johnson-Lindenstrauss lemma [6]. If the learned kernel K manages to
correctly classify training data with a non-zero margin γ the final two steps are guaranteed to secure
separability in K and further in Y as shown in [7].

The paper is organized as follows. First, in section 2 we review related work that we make use
of to construct our reduction. In section 3 we describe the details of our approach to kernel learn-

2

ing. Finally, in section 5, we compare the proposed approach with several other supervised, semi-
supervised and unsupervised learning methods that we tested during the SSFL Challenge [1].

2 Related Work

2.1 Space embeddings

Switching host space or space embedding [8] can greatly simplify distance calculations and/or speed
up nearest neighbor queries [9]. Efficient dimensionality reduction and sketching techniques, based
on random projections, have been already developed for Euclidean [10, 6] and general `p dis-
tances [11] as well as for cosine similarity [12]. For example, the classic Johnson-Lindenstrauss
lemma [10] tells that an Euclidian space `2 can be randomly projected with a Gaussian matrix R
onto `2 of dimension O(1

ε2 log 1
δ) such that with probability at least 1− δ the distance between any

pair of point in the new space is within a factor of 1± ε of their original distance:

(1− ε) ‖x1 − x2‖ ≤ ‖Rx1 −Rx2‖ ≤ (1 + ε) ‖x1 − x2‖ . (4)

Same guarantees also hold for a uniform {−1,+1}-valued random matrix R [6].

This kind of dimensionality reduction is a naı̈ve approach to the feature learning – although it reduces
the dimension, it is unconscious of the learning task behind. However, we will use it as an ingredient
for the feature construction method of [7] (section 2.2), and as one of the baselines in section 4.

2.2 Kernels for Feature Learning and Kernel Alignment

Unlike to the traditional dimensionality reduction algorithms, kernel methods [2] non-linearly map
data into higher dimensionality in order to, with more degrees of freedom, find a separating hy-
perplane with no or fewer errors than in the original space. On the other hand, similarly to the
dimensionality reduction methods, successful application of kernel methods hinges on the ability of
the non-linear implicit mapping to capture the inherent similarity of the data vectors. So, as selecting
an appropriate kernel is crucial to the performance of the final classifier, it is important to have a
kernel (pre)selection procedure without the need to test the whole family of kernels.

For a data sample Isample ∈ I and kernel product K1 ·K2 =
∑
i,j∈Isample

K1(xi,xj)K2(xi,xj),
kernel alignment was introduced in [5] as cosine between kernel matrices unfolded into a vector:

A(K1,K2) = K1 ·K2/
√

(K1 ·K1)(K2 ·K2). (5)

In [5] it was shown that a kernel K that maximizes its alignment with perfect kernel K(xi,xj) =
yiyj has good generalization properties.

If, for an appropriately selected kernel, the implicit space F has such good properties, it is tempting
to apply Johnson-Lindenstrauss lemma to map F into a space of a more practical dimension. It is
indeed possible to do in a two-stage process as shown in [7]. First, it can be shown that for a kernel
with non-zero margin, sufficiently large random sample Isample from a unlabeled data distribution
and the mapping (3) to space K, there exists an approximate linear separator vector w′, that linearly
separates the distribution under mapping (3) with a small error in K.

Secondly, decompose further K(xi,xj)ij∈Isample
into a Cholesky decomposition U TU , where U

is an upper-triangular matrix. In K, optionally make an orthogonal projection onto the span of the
vectors from the random sample withU (which we call “whitening”), followed by random projection
with binary Johnson-Lindenstrauss lemma [6], we obtain with probability at least 1 − δ a (1 ± ε)-
embedding (4) to a low-dimensional space of dimension O(1

γ2 log 1
εδ), where data remains linearly

separable with margin γ/4 [7]. Here, the final random oblivious projection improves the guarantees
on the margin size, compared to direct embedding to a low-dimensional space with the mapping (3).

3 Learning Kernels

In this section we describe two methods of constructing a kernel: one based on an explicit non-linear
mapping obtained by applying RankBoost ranking algorithm and another based on a direct approx-
imation of the optimal kernel with a neural network. After the kernel is constructed, we directly

3

apply the “black-box” semi-supervised method of [7] to build an informative and low-dimensional
feature representation, as described in section 2.2.

3.1 RankBoost Kernel

The first of the proposed methods of building a kernel is to use the explicit non-linear feature map-
ping produced by the pair-wise ranking algorithm RankBoost [4]. For a given number of training
steps T the RankBoost algorithm learns a scoring function H , which is a linear combination of
“simple” functions ht called weak learners:

H(x) =
T∑
t=1

αtht(x), (6)

where each αt is the weight assigned to the weak function ht at step t of the learning process.
RankBoost learns H by minimizing a convex approximation of weighted pair-wise loss LP (H):

LP (H) =
∑

i,j∈Itrain
yi<yj

P (i, j)[[H(xi) ≥ H(xj)]] ≤
∑

i,j∈Itrain
yi<yj

P (i, j)eH(xi)−H(xj). (7)

We used two families of weak learners – the simplest decision stumps that depend on one feature:

h(x; θ, k) = [[xk > θ]], (8)

where k is the selected feature index and θ is a learned threshold, and decision grids, that combine
values of two features to trigger a non-zero output value:

h(x; θ1, k1, θ2, k2) = [[xk1 > θ1]] · [[xk2 > θ2]].

The stump learners h were trained using the approximate ”3-rd method” described in [4], the grid
learners – by a straight-forward generalization of the same method.

The positively-valued preference matrix P in (7) encodes the orderings observed in the training
set: the higher the value of P (i, j) is, the more important it is to preserve the relative ordering of
he two instances i, j and in the learning process of the values of P are updated to allow concen-
trating on examples that have not been correctly classifier so far [4]. If P is chosen uniform, the
loss becomes the Kendall τ and minimizing it is equivalent to maximizing AUC for the so called
bipartite ranking problem – when labels are binary [13, 14]. As AUC was the evaluation mea-
sure for the SSFL Challenge and labels were binary we naturally chose P (i, j) = yj−yi

ZP
, where

ZP =
∑
i,j∈Itrain : yi<yj

(yj − yi) is a global normalization factor.

Consider the set of weak learners that were selected and that participate in the final scoring func-
tion (6). From this set we can build an explicit mapping Φ : X → F = [0, 1]T by setting:

Φ(x) = (α1h1(x), . . . , αThT (x)) . (9)

For the P (i, j) defined above, the loss (7) is the number of wrongly ordered pairs in a linear clas-
sification task for a fixed hyperplane vector w = (1, 1, . . . , 1) ∈ [0, 1]T . Indeed, for such vec-
tor w, we have H(x) = 〈w; Φ(x)〉 and by setting y = sgn(〈w; Φ(x)〉) the RankBoost algo-
rithm would chose weak learners in a way to force the image of training data under Φ-mappings
to be separable for hyperplane vector w and maximize AUC. Mapping (9) can be shaped into
an alternative form for decision stumps (8), where it can be viewed as non-linear distortion of
the coordinate axes of X with the same aim of making data separable. For this rewrite H as:
H(x) =

∑D
d=1

∑T
t=1 αtht(x)[[κ(ht) = d]], where κ(ht) gives the acting feature’s index k for the

learner ht, and define the coordinate mappings Φ′k of x to weighted sums of the outputs of the
corresponding learners: Φ′k : x →

∑
t : κ(ht)=k

αtht(x). After establishing this relation to linear
classification, it is natural to define a kernel K as inner product on vectors Φ(x) ∈ F :

K(x1,x2) = 〈Φ(x1); Φ(x2)〉.

A logic question to ask would be about the relation of the performance of RankBoost to the perfor-
mance of a SVM with the obtained kernel. To provide some intuition, we mention hinge rank loss

4

(a close ranking analog of the hinge loss function, implied by SVM optimization task (1)), which
was introduced in [15], and where its minimization was proven to maximize AUC asymptotically.
Experimentally, though, it was already known that classic C-SVM with hinge loss are excellent
AUC optimizers ([16, 17] and [15] with references therein). On the other hand, maximizing mean
AUC (averaged over tasks with a fixed classification error) was shown to minimize the classifica-
tion error [13] for the bipartite ranking problem, and even that for threshold weak rankers the mean
AUC equals the observed AUC [13]. Hence, at least with empirical support, one may expect that
the Φ feature representation found by optimizing RankBoost loss (7) (and AUC) would be also
advantageous for finding a large margin separator hyperplane w under hinge loss.

In the same time, for the special case when RankBoost finds a perfect model achieving zero loss (7)
and AUC = 1, it will do it in space F with margin

γ =
1
2

min
i,j∈Itrain:

yi=−1,yj=+1

〈w; Φ(xj)〉 − 〈w; Φ(xi)〉 =
1
2

min
i,j∈Itrain:

yi=−1,yj=+1

H(xj)−H(xi),

Then, an SVM is bound to find a separating plane with a margin at least as big, and a zero hinge loss.

Finally, one might argue that choosing a strongly related boosting technique AdaBoost [18], de-
signed specifically for classification, might be a better choice, instead of ranking-targeted Rank-
Boost. However, as shown in [14], AdaBoost and RankBoost losses are equal if the AdaBoost’s
example weighting function P is the same for examples from two classes.

3.2 Learning Aligned Kernels with Neural Networks

The second method we tried was to learn a simple neural network optimizing an approximation to
the kernel alignment (5). While the original work on kernel alignments involves resource-heavy
optimization of semi-definite programming task [5], we tried to use a multi-layer neural network
to learn an alignment similarity function between vectors. Similarly to [19], we were unable to
optimize (5) directly because of the normalization factor, and minimized quadratic loss instead:

Le =
∑
xi,xj

(K(xi,xj)− yiyj)2. (10)

Three network architectures were tested (Figure 1). Two input sparse vectors xi,xj , i, j ∈ Itrain
are propagated to the one or two hidden layers and finally to the single output node representing the
target similarity valueK(xi,xj). All layers use hyperbolic tangent as non-linear activation function.
We learn the models with the stochastic gradient descent with back-propagation. For each example
pair xi,xj , in the forward phase, we compute the output value Kf (xi,xj). In the backward phase,
the gradient value at the output 2(Kf (xi,xj) − yiyj) is propagate back to the input layer. Finally,
all network parameters β are updated like: βt+1 = βt + α∂Le

∂β , where α is a learning rate found
by 5-fold cross validation. As the approach gives in general a non-symmetric function K, we find
the actual similarity function by symmetrization: Ksym(xi,xj) = 1

2 (K(xi,xj) + K(xj ,xi)).
FunctionKsym is not guaranteed to be positive semi-definite (PSD), however, we did not investigate
the practical effects of the PSD property absence because of the tight schedule of the Challenge. A
way to enforce the property might be untangling internal layers for the inputs, and forcing the output
layer form to be K(xi,xj) =

∑S
s=1 φs(xi)φs(xj), where φs are S functions to learn.

0
1

0.2
0
.
.
0

0.5
0

0
1
0

0.2
.
.
1
0
1

K(xi,xj)

tanh
xi

xj

tanh

5

0
1

0.2
0
.
.
0

0.5
0

0
1
0

0.2
.
.
1
0
1

K(xi,xj)

tanh
xi

xj

tanh

20 20

tanh

0
1

0.2
0
.
.
0

0.5
0

0
1
0

0.2
.
.
1
0
1

K(xi,xj)

tanh
xi

xj

tanh

100
10

tanh

Figure 1: Structure of the kernel alignment optimizing neural network.

5

4 Baseline and Other Methods

100 k-means The baseline provided by organizers was obtained by k-means algorithm with 1000
mini-batches [20], 100 centroids trained on all instances I and 10000 iterations. Each test example
was mapped to 100 features, using the mapping (3), with RBF kernel with kernel parameter 0.01.

1000 k-means and neural dimension reduction The previous baseline was extended to 1000
centroids, and a neural network was used to learn a dimension reduction to 100 in the supervised
way. Concretely, the network had 1000 nodes in the input layer, 100 nodes in the hidden layer and 1
node as the output with a sigmoid as activation function to represent the probability of class +1. After
training the model, we used the 100 output values of the hidden layer as reduced representation.

1000 k-means and random projection To compare with the previous method we included as
baseline a direct application of the random projection (section 2.1) to the 1000 k-means centroids.

Direct application of RankBoost After the challenge, we evaluated the performance of Rank-
Boost scoring function as a single feature. With T = 5000 stumps, it obtained slightly better results
than the stumps-kernel method. On the other hand, the kernel method is slightly better for grids.

Single-feature sparse logistic regression According to the Challenge setting it was possible – and
legal – to build a single-dimension mapping. Surprisingly, a simple sparse (`1-regularized) logistic
regression trained with the liblinear1 obtained a respectable AUC. A slightly worse perfor-
mance was obtained with the `2-regularization, what can be explained by that the `1-regularization
tends to select sparser models and is thus more robust to the label noise.

Sparse logistic regression augmented by k-means To test a simple method of semi-supervised
classification we concatenated k-means features (learned in a unsupervised manner on the unlabeled
data) with the original features. We tested this method for k = 200 and k = 800 injected features.

Logistic regression by neural dimension reduction Original sparse data was input to a neural
network with one linear hidden layer with 100 neurons and a single soft-max output neuron. In this
way we obtain a logistic regression model, as in previous two methods, with the advantage of having
a reduced intermediate representation on the hidden layer to train on.

Logistic regression and graph kernel smoothing Another method for semi-supervised learn-
ing is to regularize the scores ŷi obtained by an inductive model (sparse logistic regression) using
neighborhood in a similarity graph built on the whole dataset. A similar approach was used in [21]
to enhance spam detection on a Web graph. The loss to minimize is:

Loss(z) =
∑
i∈I

(zi − ŷi)2︸ ︷︷ ︸
consistency

+λ
∑
i,j∈I

wi,j · (zi − zj)2︸ ︷︷ ︸
smoothness

,

wherewi,j is a similarity weight between instances and λ is a trade-off parameter. Weightswi,j were
estimated by sampling with Charikar’s cosine fingerprints [12]. Tuning of λ was time consuming;
because of the lack of time we could not evaluate thoroughly the validity of this approach. We
evaluated also a simple neural network counterpart to such graph kernel smoothing by labeling the
unlabeled data with the logistic regression neural network described above using threshold 0.5 and
retraining the network on the obtained data set.

5 Experiments

The SSFL dataset [1], introduced in section 1, was crawled for web-classification purposes. It
consists of 3 sets: a binary labeled train set Itrain (50K examples), a test set Itest of the same
size and a set of 1M unlabeled instances. Each instance is a 1M-dimensional sparse vector, with
on average 115 simultaneously active features; about 200K features were active at least once, 88%
of which are binary. Some noise was introduced in the training labels to stimulate the use of the
unlabeled data. Participants had to come up with a transformation of the input space to a vector

1www.csie.ntu.edu.tw/∼cjlin/liblinear/

6

Table 1: AUC of baseline methods on public, private subsets and on the whole dataset.

baseline method 30% public 70% private 100% total
100 k-means, organizers’ baseline 0.98050 0.98867 0.98308
1000 k-means, random projection 0.98195 0.98565 0.98455
1000 k-means, neural dimension reduction 0.98408 0.98798 0.98683
RankBoost, stumps, 5000 steps - - 0.99613
RankBoost, grids, 2000 steps - - 0.99495
sparse logistic regression (C = 0.22) 0.99021 0.98841 0.99576
logistic regression + 200 k-means (C = 0.2) 0.99470 0.99630 0.99631
logistic regression + 800 k-means (C = 0.2) - - 0.99620
logistic regression with neural network 0.99192 0.99440 0.99366
log. reg. + graph smoothing (C = 0.38, λ = 0.1) 0.99378 0.99460 0.99493
log. reg. with neural net on labeled unlabeled data 0.98289 0.98554 0.98475

Table 2: AUC of RankBoost and neural kernels on public, private subsets and on the whole dataset.

kernel T Isample whitening 30% public 70% private 100% total
stump 5000 1000 no 0.98050 0.98016 0.98026
stump 5000 1000 yes 0.99139 0.99314 0.99262
stump 2270 1000 no 0.99084 0.99295 0.99232
stump 5000 5000 no 0.99264 0.99346 0.99322
stump 5000 5000 yes 0.99098 0.99248 0.99203
stump 2270 5000 no - - 0.991664
stump 2270 10000 no 0.99231 0.99346 0.99311
grid 2000 1000 no 0.99419 0.99547 0.99509
grid 2000 1000 yes 0.99254 0.99430 0.99378
grid 1150 1000 no 0.99365 0.99543 0.99490
grid 2000 5000 no 0.99422 0.99597 0.99546
grid 2000 5000 yes 0.99379 0.99561 0.99507

neural (layer 5) 1000 no 0.98901 0.98962 0.98945
neural (layers 20-20) 1000 no - - 0.98865
neural (layers 100-10) 1000 no - - 0.98718

neural (layer 5) 5000 no 0.99060 0.98991 0.99012
neural (layers 20-20) 5000 no - - 0.99279
neural (layers 100-10) 5000 no - - 0.99223

space of dimensionality at most 100, such that a binary C-SVM classifier (with C=1.0)2 is capable of
finding a ”good” separating plane. The ”goodness” of the transformation was measured by AUC (2),
preliminary on the public subset (30%) of the test set and, finally, on the private test subset (70%).

The evaluation showed a clear superiority of the more powerfully grid learner over the less flexible
simple decision stumps. Increasing the size of the random sample Isample improves performance of
the classifier on the final reduced data, which can be attributed to better covering of the unlabeled
data and lowering the probability of error δ (section 2.2) and/or the distance estimation error ε in (4).

Selecting the number of iterations T with cross validation (5-fold in our case) was not useful, possi-
bly because of the introduced label noise in the training data. The lower than baseline performance
of the kernel trained with the neural network is, most likely, because of the simplicity of the cho-
sen network architecture and ignoring the normalization factors of the kernel alignment (5) in the
quadratic loss function (10). It remains unclear if “whitening” improves quality. While the step is
justified on theoretical ground [7] (see also [22], where a similar transform is used for kernelized
nearest-neighbor queries), more experiments (for different |Isample|) are necessary to decide on this,
as opposite effects were observed for stumps, while for grids it usually worsened performance.

We also separately evaluated each stage of the proposed trifold method. Let A be the RankBoost
features (9), B – projection onto unlabeled data (3), C – random projection (section 2.1) and D –
the final SVM learning stage. We write AÛD for SVM training directly on Rankboost features,

2Finally, the requirement to use SVM was not enforced.

7

Table 3: AUC values for the separate evaluation of the method’s stages.

kernel T Isample AÛD AÛBÛD AÛCÛD AÛBÛCÛD
stump 2270 1000 0.99539 0.99280 0.99517 0.99232
stump 2270 5000 0.99539 0.99296 0.99517 0.99166
grid 2000 1000 0.99076 0.99518 0.99416 0.99378
grid 2000 5000 0.99076 0.99517 0.99416 0.99546

Table 4: Mean AUC values and variances for two stages over different samples of Isample.

kernel T Isample AÛBÛD AÛBÛCÛD
stump 2270 100 0.99156±0.00152 0.99350±0.00169
stump 2270 1000 0.99257±0.00029 0.99245±0.00040
stump 2270 5000 0.99267±0.00014 0.99254±0.00040
grid 2000 100 0.99497±0.00047 0.99512±0.00028
grid 2000 1000 0.99522±0.00038 0.99504±0.00026
grid 2000 5000 0.99502±0.00042 0.99260±0.00071
neural (layers 20-20) 1000 0.99565±0.00003 0.98934±0.00066
neural (layers 100-10) 1000 0.99550±0.00004 0.98860±0.00214

AÛBÛD for method application without random projection and so on. Evaluations of several stage
chains are given in Table 3 with variances in Table 4 (over different samples of pivots). Although
the point of step C is to have larger margin [7] and satisfy the output dimension constraint of the
Challenge, in practice it reduces AUC (degrading the “signal” quality of the B step) and increases
variance, compared to the AÛBÛD chain for large Isample. Using simply |Isample| =100 without
step C, however, can incur large variance, because of too small, hence instable, samples (see stumps
in Table 4). Another explanation of the degrading could be that the artificial label noise makes train
and test data originate from different distributions, contrary to the assumptions of [7].

6 Conclusion

We presented a practical method for semi-supervised low-dimensional feature learning, by first con-
structing a kernel using RankBoost non-linear feature transformations and using it to build low-
dimensional, yet informative, feature representations. The method uses both labeled and unlabeled
data and achieves a higher value of AUC compared to the method optimizing kernel alignment and
the various supervised and semi-supervised baseline methods on the same data. The only baseline
method that performed better was a one-dimensional sparse logistic regression, that is not suited for
learning rich feature representations, what was the main goal aim of the proposed method.

While the proposed method uses theoretically motivated random unlabeled samples as pivot points
in the intermediate embedding, it would be interesting to empirically verify the potential of using
non-random (e.g., learned) pivots. The k-means baseline method, that is also based on (3) and uses
learned pivots (centroids), performed competitively and indicates that this might have sense.

As mentioned in the introduction, a more realistic competition setting should evaluate reduced rep-
resentations on several tasks, like multi-class classification (with different data slicing according to
modalities or facets), class-dependant penalties, ranking and regression tasks etc. Training data was
largely sufficient for a powerful supervised method to outperform semi-supervised methods, and al-
though label noise was attempted to make the labeled data less informative, providing less instances
could be another way to emphasize semi-supervised learning as opposed to the fully supervised
one. A way to favor real feature learning submissions might be to cross-validate them by retraining
SVM on the transformed private dataset. One may expect the “multi-purpose” reductions to be more
robust to label drifts than specialized ones; this can also be thought of as “stacked learning” [23].

Acknowledgments

We thank organizers of the SSFL Challenge for the great opportunity to evaluate several feature
learning methods and three anonymous reviewers for their helpful remarks. This work has been
partially funded by OSEO under the Quaero program.

8

References
[1] D. Sculley. Results from a deep learning and semi-supervised feature learning competition. In NIPS 2011

Workshop on Deep Learning and Unsupervised Feature Learning, Granada, Spain, 2011.

[2] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-
based Learning Methods. 1 edition, 2000.

[3] Tom Fawcett. An introduction to ROC analysis. Pattern Recogn. Lett., 27:861–874, 2006.

[4] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boosting algorithm for com-
bining preferences. J. Mach. Learn. Res., 4:933–969, 2003.

[5] Nello Cristianini, Jaz Kandola, Andre Elisseeff, and John Shawe-Taylor. On kernel-target alignment. In
Advances in Neural Information Processing Systems 14, pages 367–373, 2002.

[6] Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J.
Comput. Syst. Sci., 66:671–687, 2003.

[7] Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. Kernels as features: On kernels, margins, and
low-dimensional mappings. In Proc. of the Int. Conf. on Alg. Learning Theory, pages 79–94, 2004.

[8] Piotr Indyk. Algorithmic applications of low-distortion geometric embeddings. In Proc. of the IEEE
symposium on Foundations of Computer Science, pages 10–, DC, USA, 2001.

[9] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of dimen-
sionality. In Proc. of the ACM symposium on Theory of computing, pages 604–613, 1998.

[10] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of Johnson and Lindenstrauss.
Random Struct. Algorithms, 22:60–65, 2003.

[11] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing scheme
based on p-stable distributions. In Proc. of the Symposium on Computational geometry, pages 253–262,
NY, USA, 2004.

[12] Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In Proc. of the Annual
ACM symposium on Theory of computing, pages 380–388, NY, USA, 2002.

[13] Corinna Cortes and Mehryar Mohri. AUC optimization vs. error rate minimization. In Proc. of NIPS,
2004.

[14] Cynthia Rudin and Robert E. Schapire. Margin-based ranking and an equivalence between AdaBoost and
RankBoost. J. Mach. Learn. Res., 10:2193–2232, 2009.

[15] Harald Steck. Hinge rank loss and the area under the roc curve. In Proc. of the European Conf. on
Machine Learning, pages 347–358, Berlin, Heidelberg, 2007.

[16] Ulf Brefeld and Tobias Scheffer. AUC maximizing support vector learning. In Proc. ICML workshop on
ROC Analysis in Machine Learning, 2005.

[17] Thorsten Joachims. A support vector method for multivariate performance measures. In Proc. of the Int.
Conf. on Machine Learning, pages 377–384, 2005.

[18] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. In Proc. of the European Conf. on Computational Learning Theory, pages 23–37,
London, UK, 1995.

[19] Koby Crammer, Joseph Keshet, and Yoram Singer. Kernel design using boosting. In Advances in Neural
Information Processing Systems 15, pages 537–544, 2003.

[20] D. Sculley. Web-scale k-means clustering. In Proc. of the Int. Conf. on WWW, pages 1177–1178, NY,
USA, 2010.

[21] Artem Sokolov, Tanguy Urvoy, Ludovic Denoyer, and Olivier Ricard. MADSPAM consortium at the
ECML/PKDD Discovery Challenge 2010. In Proc. of ECML/PKDD Discovery Challenge Workshop,
Barcelona, Spain, 2010.

[22] Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hashing for scalable image search. In
IEEE Int. Conf. on Computer Vision, 2009.

[23] Kai Ming Ting and Ian H. Witten. Stacked generalization: when does it work? In Proc. of the Int. Joint
Conf. on Artificial Intelligence, pages 866–871, 1997.

9

