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Abstract

In Machine Translation, it is customary to
compute the model score of a predicted hy-
pothesis as a linear combination of multiple
features, where each feature assesses a partic-
ular facet of the hypothesis. The choice of a
linear combination is usually justified by the
possibility of efficient inference (decoding);
yet, the appropriateness of this simple com-
bination scheme to the task at hand is rarely
questioned. In this paper, we propose an ap-
proach that replaces the linear scoring func-
tion with a non-linear scoring function. To
investigate the applicability of this approach,
we rescore n-best lists generated with a con-
ventional machine translation engine (using a
linear scoring function for generating its hy-
potheses) with a non-linear scoring function
learned using the learning-to-rank framework.
Moderate, though consistent, gains in BLEU
are demonstrated on the WMT’10, WMT’11
and WMT’12 test sets.

1 Introduction

In modern statistical machine translation (SMT), the
dominating approach to model the probability that
sentence e is a translation of source sentence f is to
use linear models (Och and Ney, 2002): p(e,a|f) ∼
exp(λ̄ · ḡ(a, e, f)), where a is an alignment between
e and f , ḡ(a, e, f) is the feature vector represent-
ing various compatibility measures between a, e and
f , and λ̄ is a parameter vector. Using this model,
searching for the most probable translation boils
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down to finding (a, e) that maximizes the scoring
function λ̄ · ḡ(a, e, f).

Several papers have recently pointed out that the
scoring function is the main bottleneck of today’s
SMT systems: the search space of decoders contains
hypotheses of very high quality that are discarded
because of their model score (Wisniewski et al.,
2010; Sokolov et al., 2012; Turchi et al., 2012). The
choice of a linear model seems mainly motivated
by the simplicity of integrating the scoring function
during decoding and of optimizing the model during
training. It may also be motivated by the acknowl-
edged success of linear models in many NLP tasks.
The situation in SMT is quite different: while sev-
eral SMT systems have been proposed that use thou-
sands (Chiang et al., 2009) or millions (Lavergne et
al., 2011) of features, in practice, however, the ma-
jority of available systems are based on linear scor-
ing functions defined over a very small number of
features (between 10 and 20). In the same time,
most NLP systems routinely use million of features
to achieve state-of-the-art performance.

The small number of features and the simplicity
of the scoring model contrast with automatic eval-
uation metrics that hinge on complex quality mea-
sures, specially hand-crafted to mimic the human
notion of translation quality. Because of the diffi-
culty or even impossibility to adequately define the
latter, quality measures generally depend on multi-
ple inter-constrained characteristics describing the
source sentence and the translation hypotheses. For
instance, popular evaluation metrics, like BLEU (Pa-
pineni et al., 2002) or METEOR (Banerjee and Lavie,
2005), consider quantity and (fuzzy) alignments of



common n-grams in a reference and a hypothesis.
To sum up, approximating such complex qual-

ity measures with a linear combination of a few
loosely related probabilistic features appears like a
daunting task and there is little chance that current
scoring functions can actually sort good translations
from the remaining lot of hypotheses in the low-
dimensional feature space. Indirect confirmation of
the difficulty of this task comes from the inability
of MERT’s advanced variants to come nearer to or-
acle BLEU scores or to substantially increase per-
formance (Kumar et al., 2009), even when an al-
most exact optimization method is used (Galley and
Quirk, 2011). Modeling inadequacy, and, in partic-
ular, the use of over-simplistic linear scoring func-
tions in low-dimensional space can be held respon-
sible for this disappointing performance.

This paper can be seen as an attempt to verify
whether the mere replacement of a linear with a non-
linear scoring function in a conventional phrase-
based SMT system that uses only a few dozens fea-
tures can actually improve performance, by captur-
ing more precisely the complex boundaries between
good and bad translations.

The rest of the paper is organized as follows. In
the next section, we review related work. In Sec-
tion 3, we describe a ranking approach to tuning
SMT systems, together with our method of learning
a non-linear scoring function in the learning-to-rank
paradigm. Next, we explain feature transformations
(Section 4) used in the experiments reported in Sec-
tion 5. Discussions in Section 6 close the paper.

2 Related Work

Recently, new approaches to tuning SMT systems
have received attention, namely the ranking meth-
ods (Hopkins and May, 2011; Haddow et al., 2011).
The motivation for these is as follows. Although
BLEU is defined for a pair of corpora, one can use the
same formula to calculate a sentence-level approxi-
mation of BLEU that evaluates the similarity between
a single hypothesis e and its reference r, and to order
hypotheses according to it. This natural ordering is
used by ranking approaches in SMT to learn system
parameters, taking advantage of the fact that one can
deduce information about parameters even from the
comparison between mediocre or bad hypotheses.

Ranking approaches, however, were until now
used only from the perspective of redefining the
target loss in optimization. Scoring functions re-
mained simple linear combinations, and the demon-
strated performance remains basically the same as
for classical MERT (Hopkins and May, 2011). As
we will see, while our gains are still modest, they
are higher than those obtained with previous rank-
ing approaches based on linear scoring functions.

One method for deriving flexible scoring func-
tions is boosting. Being an attractive learning al-
gorithm, it was applied several times in the context
of SMT. However, to the best of our knowledge all
attempts concentrated on boosting for classification
(like AdaBoost) and boosting from the ranking per-
spective was never applied to machine translation.
Duh and Kirchhoff (2008) and Xiao et al. (2010)
use the whole MERT procedure as a weak learner
and maintain a distribution over n-best-lists to al-
low concentrating on the ones where, under current
model, a winning hypothesis is too far from this n-
best-lists’ oracle. The definition of BLEU needs to
be changed to allow running MERT on weighted
n-best-lists. The final model is a voting scheme
of the linear models found on each invocation of
weak MERT. Although in the end, a non-linear scor-
ing function can be obtained, this non-linearity is a
byproduct of the voting selection process and, con-
trary to our approach, is not constructed directly.
Lagarda and Casacuberta (2008) apply AdaBoost
by reweighting on each boosting iteration a sepa-
rate “translation model” introduced into the linear
model.

3 Non-Linear Hypotheses Reranking

Motivated by the inability of linear models to im-
prove standard MERT training, we propose to learn
the scoring function of an SMT system in a richer
class of functions, namely the family of linear com-
binations of simple non-linear functions defined on
individual features.

The well-known RankBoost algorithm (Freund
et al., 2003) is able to efficiently select the best
predictor in this class of functions by optimiz-
ing a weighted pair-wise ranking loss. This loss,
closely related to the one introduced by Hopkins and
May (2011), penalizes incorrect (with respect to a



sentence-level evaluation of translation quality) or-
derings of pairs of hypotheses.

We restrict ourselves to n-best list reranking (as
do most ranking approaches) to avoid, at this prelim-
inary stage, tighter integration with decoder, which
is still a subject of ongoing work. We thus concen-
trate, in this paper, on post-factum reranking of the
n-best-list produced by the last iteration of MERT.

3.1 Finding Rescoring Function with Boosting
In this section, we first briefly recollect the principle
of RankBoost and explain how it can be used to train
the scoring function of an SMT system.

RankBoost learns a scoring function H , defined
on feature vectors, which is a linear combination of
T simple, non-linear functions ht defined on feature
vectors ḡ(e, f)1 and called weak learners:

H(ḡ(e, f); λ̄) =
T∑
t=1

αtht(ḡ(e, f)), (1)

where each αt is the weight assigned to the weak
function ht and λ̄ denotes the set of parameters of
the scoring function, namely the coefficients (α)Tt=1

and the parameters of the weak learners.
The function H is expected to score hy-

potheses: if hypothesis e1 is preferred to
e2, then H(ḡ(e1, f); λ̄) should be greater than
H(ḡ(e2, f); λ̄). RankBoost achieves this by opti-
mizing a convex upper bound of the following loss
function (Freund et al., 2003):

L =
∑
f

∑
ei,ej∈n-best(f)

b(ei,rf )<b(ej ,rf )

D(i, j)[[H(ḡ(ei, f)) ≥ H(ḡ(ej , f))]]

where b(e, rf ) is the value of the sentence-level
quality measure (e.g., BLEU) between hypothesis e
and reference rf . Operator [[A]] = 1 if the A is true
and 0 otherwise and the positively-valued preference
values D weight hypothesis pairs from the training
set. The higher D(i, j), the more important it is to
preserve the relative ordering of two hypotheses ei
and ej (for example, a very good ej against very
poor ei). Thus, for each source sentence the loss
L adds up a penalty equals to D(i, j) each time a
low quality (according to b) hypothesis ei is scored

1In the remainder, we will omit alignment a from the argu-
ments of feature vectors ḡ(e,a, f) to simplify notation.

higher than a high quality hypothesis ej . The pairs
over which the loss is defined, are drawn from n-best
lists that correspond to each source sentence f .

Optimizing the loss function L to find the scoring
function H is done in a step-wise fashion outlined
in Algorithm 1 (for details see (Freund et al., 2003)).
Having builtH with tweak learners, the next in turn
(t + 1)’s weak function is selected, optimized and
weighted with the corresponding coefficient αt+1.
In addition to the training of the t-th weak learner,
on each step t of the learning process, values of im-
portance weights D are updated to concentrate on
hypotheses pairs that have not been correctly ranked
so far (Freund et al., 2003).

Algorithm 1: RankBoost optimization cycle

Input: max number of weak learners T , initial
distribution D1(i, j) on hypotheses pairs

Output: set of weak learners {ht, αt}, t = 1, . . . , T
for t = 1, . . . , T do
1. Find weak learner ht by minimizing Zt over h

Zt(α, h)=
∑
f

∑
i,j

Dt(i, j)eα(h(ḡ(ei,f))−h(ḡ(ej ,f)))

2. Find optimal αt by minimizing Zt(α, h) over α
3. Update

Dt+1(i, j)=
1
Zt
Dt(i, j)eαt(ht(ḡ(ei,f))−ht(ḡ(ej ,f))),

where = Zt(αt, ht) is a normalization factor

end

3.2 Weak Learners
The success of RankBoost relies on the definition a
good family of weak learners, powerful enough to
capture information relevant to ranking, and in the
same time robust to over-fitting. We tested three
families of weak learners that only depend on one
single feature:

• decision stumps

h(ḡ(e, f); θ, k) = [[gk > θ]],

• linear weak learners:

h(ḡ(e, f); k) = gk, and



• piece-wise linear decision learners:

h(ḡ(e, f); θ, k) = gk · [[gk > θ]],

where k is the selected feature index and θ is a
learned threshold. The first family is arguably
the simplest possible family of 1-dimensional non-
linear functions, with which it is however possible
to approximate complex curves. Linear weak learn-
ers are interesting, as they allow us to discriminate
between the effects of adopting ranking loss and of
introducing non-linearity in scoring function. Fi-
nally, piece-wise linear functions are capable, on the
one hand, of modeling linear dependencies in re-
gions where decision stumps would require many
more weak learners to approximate a line. On the
other hand, they are more flexible than simple lin-
ear functions. Being capable of modeling functions
that are more generic than linear functions remains
important for the task of n-best list reranking as the
decoder uses beam-search pruning based on linear
scoring functions.

Training stump learners can be done using the ap-
proximate “3-rd method” described in (Freund et
al., 2003), the other two learners using a straight-
forward generalization of the same method.

4 Features

4.1 Baseline Configurations

We test our proposal on two decoder configurations
that differ by the number of features considered.
First, the basic configuration uses only the 11 fea-
tures routinely found in any SMT decoder;2 the
extended configuration contains an enriched set of
23 features and corresponds to the state-of-the-art
translation system – the best system for the French-
English pair in the recent WMT’12 evaluation (Le
et al., 2012b). The additional features considered
are mainly based on neural network language mod-
els and translation models (Le et al., 2011; Le et
al., 2012a). These features are integrated within a
reranking step optimized with MERT.3 A summary

2Target language model, translation model, 2 CFB lexical-
ized reordering models, 4 lexical translation weights, distortion
and 2 penalties for words and phrases: 11 features in total.

3To construct the extended feature set, the basic feature set
was first augmented with two supplementary translation mod-
els on bilingual tuples and four lexicalized reordering features,

configuration feature sets #features

lin
ea

r basic 11
extended 23

no
n-

lin
ea

r

basic
scale 32

scale & rank 44

extended
scale 68

scale & rank 92

Table 1: Feature numbers for the baseline linear and two
tested non-linear configurations, with two variants of fea-
ture sets.

of the number of features used in each system is
given in Table 1.

4.2 Feature Transformations for Reranking
In a linear model, the order induced by the scoring
function is kept unchanged when the features are
rescaled. This is no longer the case for non-linear
models the output of which depends on the actual
feature value. Thus features should now be regular-
ized so that a learner (applied in a same fashion to
each hypothesis) could learn a consistent model.

In this work, we consider three different ways to
regularize features. First, to make them compara-
ble, we normalize features by dividing them by the
number of words and (separately) by the number of
phrases contained in a particular output hypothesis.
In this way we obtained about twice more features
then we initially had.

To further regularize feature values, we rescale
them into the interval [0, 1]: for each separate source
sentence f , and for each hypothesis ej ∈ n-best(f),
feature gkj was mapped to:

g̃kj =
gkj −mini∈n-best(f) g

k
i

maxi∈n-best(f) g
k
i −mini∈n-best(f) g

k
i

.

We call these renormalized features scale-features.
Finally, we also consider additional rank-features:

for each hypothesis ej and feature gkj , the rank fea-
ture is equal to the rank of this hypothesis if the n-
best(f) were sorted by the value of gk.

for a total of 17 features. After tuning with MERT and decod-
ing to obtain 300-best lists, we further augmented them with
the 5 following features: the optimized linear score (over previ-
ous 17 features) for each hypotheses, a feature for a continuous
space monolingual neural-network target language model (Le
et al., 2011) and four supplementary bilingual neural-network
translation models (Le et al., 2012a). In total – 23 features, on
which MERT was relaunched to obtain the extended baseline.
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Figure 1: Comparison of weak learners, weighting schemes and feature sets on the WMT’10 test set. Weighting:
uniform (uni), weighted with sentence-BLEU (wht). Learners: stumps (stm), linear (lin), piece-wise linear (pwl).
Mean baseline MERT score is shown with 1σ interval.

In our experiments, we only consider scale-
features (after normalization) and rank-features. Be-
fore feature rescaling an additional score feature is
added that is equal to the score of the linear model
found by MERT. Original features are discarded to
avoid interference with learning. In the following,
we make a distinction between configurations with
only scale-features and configurations where scale-
features are combined with rank-features (Table 1).

5 Experiments

We now describe the experiments conducted to val-
idate our approach. We will first describe our ex-
perimental setting, then evaluate the impact of the
various hyper-parameters of RankBoost and finally
evaluate the results achieved in terms of translation
quality.

5.1 Experimental Setting

We evaluate our approach for the French-English
language pair with the N-code4 decoder. Similar re-
sults were obtained with Moses but are not reported
here because of space reasons.

Basic and extended systems are trained on the
data provided for the WMT’12 Evaluation task5,
tuned with MERT on the WMT’09 test data and
evaluated on WMT’10, WMT’11 and the WMT’12

4http://ncode.limsi.fr/
5http://www.statmt.org/wmt12

test sets.6 For each baseline (basic and ex-
tended) configuration, we run 8 independent MERT
pipelines on the newstest2009 set, each with 20
restart points and 30 random independent directions
supplemental to the default axis-aligned direction.
For the extended configuration, n-best lists of the
last MERT iteration are augmented with 5 neural-
network models (Section 4.1) and reoptimized with
MERT before applying features transformations.

RankBoost training is performed on the WMT’09
evaluation set on 100-best and 300-best lists, respec-
tively, for the basic and extended configurations, us-
ing the final n-best lists after the complete MERT
optimization, separately for each MERT rerun.

In all our experiments, we consider the sentence
level BLEU+1 approximation (Lin and Och, 2004)
to evaluate translation quality. Similarly to (Hopkins
and May, 2011), to reduce the number of pairs and to
speed up learning we sampled the n-best lists leav-
ing only 2, 000 randomly selected pairs with quality
difference superior to 0.05 BLEU points. Tests with
different number of sampled pairs showed little sen-
sitivity to this parameter in the range between 50 and
5, 000 pairs (outside of this interval the performance
considerably decreases). Conversion to a bipartite
ranking problem (that enables a more efficient and
simpler algorithm (Freund et al., 2003)) with gaps
did marginally help on for 100-best lists; as the size
of the n-best list goes up the effect vanishes.

6All BLEU scores are reported using the multi-bleu.pl script
on the scale from 0 to 100.
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Figure 2: Maximum relative gains in BLEU on the
WMT’10 test set. Each point on the x-axis corresponds
to an outcome of one of 8 reruns of MERT; while the y-
axis shows the peak BLEU (over T ) for the same system
after reranking with RankBoost.

5.2 Selecting RankBoost Parameters

Reranking n-best lists with RankBoost requires us
to choose a family of weak learners and a weighting
scheme. In addition to the three weak learner fam-
ilies introduced in Section 3.2, we test two weight-
ing schemes: uniform, in which D(i, j) = 1 for all
i, j and weighted, in which D(i, j) = b(ej , r) −
b(ei, r) > 0. The weighted scheme gives more
importance to pairs with large difference in their
scores, which, intuitively should help learning. Such
a scheme has already been proposed in (Hopkins and
May, 2011).

The comparison of weighting schemes and weak
families is depicted in Figure 1. As can be seen in
the plot, the piece-wise linear weak learners outper-
form all others configurations by up to 1 BLEU point
whatever features set is used.

Contrary to our anticipations regarding weighted
loss optimization, the uniform scheme performs
much better than the other one. This result may be
explained by the noise contained in the training set,
especially in the tail of the n-best list, which makes
efforts in modeling the complete order useless.

In view of these two findings, in the remainder, we
only report the performance for the uniform weight-
ing and piece-wise linear weak functions.

5.3 RankBoost Performance

The achieved maximum (over T ) final BLEU-gains
exhibit an unexpected dependence on the perfor-

mance of the MERT-optimized system it is trained
from. The BLEUs for 8 different runs of MERT and
the best scores achieved by reranking are depicted
in Figure 2. It clearly appears that poor-performing
runs of MERT, possibly stuck in a local minima,
are regularly amenable to a much larger relative im-
provement with non-linear reranking, surpassing the
results of the best MERT run. While it is expected
that re-ranking would make worse systems go rela-
tively farther, provided the improvement were up to
roughly the same BLEU score on a given test set,
in practice the absolute values of BLEU for a non-
linearly rescored “poor” MERT-optimized system
always surpass these values for a “good” system. In-
deed, the best final rescoring results were obtained
for the runs that performed the worst with a lin-
ear function and the runs with best performance af-
ter MERT show little improvement after non-linear
rescoring and the worst final absolute BLEUs. Fur-
ther investigation is needed to understand and ex-
ploit this behavior. On Figure 3, the performance
on two test sets is represented as a function of the
number of weak learners T . Means and variances of
different MERT runs are also reported. The results
show that it is possible to gain up to 0.4 in BLEU over
standard MERT training by using non-linear scoring
functions. It also appears that the impact of the weak
learner numbers is always the same: at the begin-
ning, performance quickly improves with T , reaches
a peak and, then, slowly decreases, which means the
reranker is overfitting the training set. Consequently,
for the application of our method, it is necessary to
use a validation set to find the optimal value for T .

The results of applying this methods are presented
in Table 2 for the extended configuration with scale-
features. For these experiments the value of T is
chosen by maximizing the BLEU score on WMT’10
(resp., WMT’11, WMT’12) test set and the perfor-
mance is then evaluated on WMT’11 and WMT’12
(resp., WMT’10 and WMT’12 or WMT’10 and
WMT’11) test set. Although, because of hetero-
geneous nature of these two particular test sets the
improvements are not as good as the potential ob-
served in Figure 3, the method always improves over
the mean MERT performance and often exceeds the
maximum values in the interval of MERT results.

Table 2 also includes, as a baseline, the BLEU

scores obtained with a large-margin linear reranker,
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Figure 3: RankBoost performance with piece-wise linear weak learners and uniform weighting as a function of number
of weak learners. Left plots are obtained with only scale-features, the right ones with additional rank-features included.
Each plot contains 3 curves: averaged BLEU over rerankings of 8 runs tuned with MERT, with the linear score included
as a feature (mean), BLEU of a reranked system without linear score included (no scores) and BLEU with all 8
linear scores included as separate features (all scores). Mean baseline MERT score is shown with its 1σ interval.



SVMrank (Joachims, 2006), trained on the same
set of transformed features.7 On these experiments,
the gain achieved on this feature set is higher than
for linear-based reranking on untransformed fea-
tures (Hopkins and May, 2011). The performances
of SVMrank and RankBoost are only marginally dif-
ferent and, in both cases, the gains remain modest
compared to oracle performance. As a consequence,
these results do not allow one to decide in favor of
linear or non-linear modeling under the particular
tested conditions (linear-based pruning, no integra-
tion with decoder and heterogeneous data).

To check whether the test data’s heterogeneity is
one of the causes for less than optimal results in
Table 2, we randomly split WMT’10 test set into
10 folds of equal-size validation and test subsets.
For each fold, parameter T found on the validation
subset was used to run the reranker on the corre-
sponding test subset. We found that in almost all
cases the peaks on the validation and test subsets
perfectly coincide and relative improvements for ev-
ery split are similar (Table 3). This confirms that test
sets’ heterogeneity can noteworthy decrease perfor-
mance, and homogeneous dataset can consistently
benefit from the non-linear reranking. It is impor-
tant, though, to be sure that the BLEU differences
are statistically significant: the probability that the
observed difference could be obtained by chance
should be less than a commonly used threshold of
0.95. We used the Approximate Randomization
(AR) method (Noreen, 1989), that is known to have
less Type I errors (falsely claiming a significant dif-
ference) in SMT applications (Riezler and Maxwell,
2005) than another popular technique of bootstrap-
ping (Koehn, 2004). The AR method repeatedly
randomly exchanges hypotheses from baseline and
tested system’s translation outputs and calculates
BLEU score of the shuffled sets. The ratio of cases
when the difference of BLEU score exceeds the ob-
served difference on the original outputs is called p-
value; if it is larger than 1 − 0.95 = 0.05, the dif-
ference is claimed to be not significant. For the 8
independent runs of MERT8 and 10 random splits
for each of them, in 86% of cases the difference is
significant (Table 3). Most insignificant differences

7The regularization parameter C has been set to 1. SVM-
rank on original features gives considerably lower performance.

8The same data used to plot Figure 2.

were detected for the case of a strong MERT base-
line, which was found, earlier in this section, hard to
improve upon.

5.4 Weak Learner Analysis

As the piece-wise linear functions include linear
functions as a special class, it is possible that Rank-
Boost still selects linear models over the interval
[0, 1] of scale-features. An analysis of the models
learned shows that the learning process has roughly
3 phases: (1) during ∼ 10 iterations (on average)
the most selected feature is the final linear score
feature, promoting the same hypotheses as MERT
by effectively reusing the same linear model; (2) be-
tween ∼ 10-th and ∼ 50-th iterations, other features
are selected, but still in their linear form over the
interval [0, 1], resulting in a linear scoring function,
with a better test BLEU than the one found by MERT;
(3) above 50 iterations, piece-wise linear models
start to appear in the sum (1). As reranking is based
on n-best lists (formed with a linear model) it is not
surprising that RankBoost sticks to the already op-
timized score during the first phase, starting during
the second stage to take advantage of the ordering
information in pair-wise loss and finally resorting to
non-linear functions to further improve quality.

As can be seen in Figure 3, the phase when the
model gives maximum test performance depends on
a particular test set. In our case for WMT’10 it was
mostly thanks to the “ranking” second phase, while
for WMT’12 it is the use of non-linear functions that
helps achieve gains over baselines.

Inclusion or exclusion of the linear score fea-
ture was found to have large effect. To separate its
influence from the rest of features we performed ex-
periments with this feature excluded (no scores)
and with all such score features from all 8 runs
included (all scores). Not being able to profit
from the score features, it often takes longer for
the former variant (no scores) to reach a max-
imum and vice versa for the configuration with
all scores (except in the basic configuration).

6 Discussion and Conclusion

We have presented a non-linear approach to rerank-
ing n-best lists of phrase-based SMT system. In our
experiments the approach was shown to potentially



test \valid WMT’10 WMT’11 WMT’12
MERT
mean

MERT
interval SVMrank

300-best
oracle

WMT’10
mean - 29.68±0.07 29.58±0.09

29.38±0.09 [29.26,29.54]
29.74±0.03

39.72all scores - 29.66 29.55 29.68
no scores - 29.58 29.54 29.70

WMT’11
mean 30.42±0.07 - 30.41±0.05

30.16±0.11 [29.97,30.34]
30.50±0.05

41.11all scores 30.55 - 30.46 30.48
no scores 30.26 - 30.35 30.38

WMT’12
mean 30.50±0.08 30.52±0.06 -

30.38±0.12 [30.19,30.62]
30.64±0.02

40.64all scores 30.59 30.62 - 30.70
no scores 30.36 30.42 - 30.55

Table 2: BLEU scores for the extended system, scale-feature set and three test sets.

MERT BLEU

run # baseline reranked ∆ fold 1 fold 2 fold 3 fold 4 fold 5 fold 6 fold 7 fold 8 fold 9 fold 10
1 29.43 29.74 0.31 0.25p=0.02 0.32p=0.00 0.29p=0.01 0.38p=0.00 0.30p=0.01 0.24p=0.02 0.27p=0.02 0.25p=0.01 0.34p=0.00 0.38p=0.00

2 29.54 29.60 0.06 0.00p=0.90 0.02p=0.81 0.03p=0.74 0.03p=0.76 -0.02p=0.77 0.04p=0.68 -0.08p=0.42 -0.01p=0.86 0.00p=0.00 0.09p=0.42

3 29.26 29.78 0.52 0.45p=0.00 0.49p=0.00 0.47p=0.00 0.32p=0.00 0.39p=0.00 0.48p=0.00 0.50p=0.00 0.47p=0.00 0.48p=0.00 0.60p=0.00

4 29.32 29.75 0.43 0.35p=0.00 0.37p=0.00 0.40p=0.00 0.41p=0.00 0.41p=0.00 0.43p=0.00 0.39p=0.00 0.41p=0.00 0.33p=0.00 0.39p=0.00

5 29.26 29.65 0.39 0.33p=0.00 0.39p=0.00 0.36p=0.00 0.28p=0.01 0.32p=0.00 0.29p=0.00 0.36p=0.00 0.46p=0.00 0.36p=0.00 0.40p=0.00

6 29.33 29.77 0.44 0.39p=0.00 0.38p=0.00 0.46p=0.00 0.30p=0.00 0.32p=0.00 0.40p=0.00 0.43p=0.00 0.40p=0.00 0.38p=0.00 0.46p=0.00

7 29.40 29.77 0.37 0.34p=0.00 0.23p=0.03 0.30p=0.00 0.13p=0.18 0.26p=0.02 0.30p=0.00 0.31p=0.01 0.20p=0.02 0.33p=0.00 0.36p=0.00

8 29.46 29.71 0.25 0.21p=0.02 0.28p=0.00 0.26p=0.00 0.13p=0.14 0.20p=0.03 0.18p=0.06 0.18p=0.04 0.22p=0.02 0.29p=0.00 0.27p=0.00

Table 3: Reranking results on random sub-datasets of WMT’10. The first column identifies MERT’s run; second, third
and forth contain, resp., baseline MERT performance, maximum achievable performance after reranking (on the full
WMT’10) and difference between these numbers. The rest of columns contain differences between reranked results
and baseline results on 10 random test halves of the full test WMT’10 test set. Reranked test results were obtained for
T found on the validation half of the WMT’10 set. Confidence p-values are given for each difference in subscript.

boost performance by 0.4 BLEU-points (for optimal
values of algorithms’ hyper parameter T ) on a mod-
est size n-best list. In practice, however, mismatches
between dev and test data diminish gains when T is
optimized and tested on heterogeneous sets.

It should be emphasized that restricting non-linear
reranking to n-best lists obtained by pruning with
a linear function and using non-linear scoring func-
tions defined on additive features is forced by the
complexity of tighter integration of non-standard
scoring functions into current decoders. It does
probably not do full justice to the power of non-
linear scoring function modeling as it does not in-
terfere with pruning and scoring partial hypotheses;
a stage during which many excellent translations are
actually lost.

Consequently, the main conclusion of this work
is the following: under the tested conditions that
bypass tight integration with decoder, with pruning
still based on linear scoring functions and with few
standard features, we cannot claim that non-linearity
makes a significant step towards reaching oracle per-
formance. Non-linearity alone appears not to be suf-

ficient, and should be exploited earlier in the search
space construction and/or with an increased number
of features. Despite these limitations, the gains ob-
tained in our experiments can be attributed to the
appropriateness of the ranking loss and to the flexi-
bility of non-linear modeling, and surpass the gains
demonstrated by solely resorting to ranking losses,
without changing the scoring function family, and
using original features.

Several works hint, that for linear models MERT
on n-best lists already achieves almost optimal per-
formance (Duh and Kirchhoff, 2008; Galley and
Quirk, 2011), so in future work we plan to pursue
extensions of this work to non-linear lattice rescor-
ing. The main problem of the straight-forward appli-
cation of the presented approach to lattice rescoring
is the impossibility to combine general non-linear
functions with dynamic programming, as this will
lead to early discarding of hypotheses that could
eventually receive greater scores than their retained
competitors. This problem can be partially allevi-
ated by restricting the weak function family used by
RankBoost to the monotone functions (Freund et al.,



2003). Another step in this direction could be to
model scoring functions that are non-linear with re-
spect to features on arcs. This might avoid the prob-
lem with the applicability of approximate dynamic
programming to pruning and search for the best hy-
potheses.
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