

CLASSICAL RANDOM FEATURE HASHING [GANCHEV AND DREDZE, 2008, SHI ET AL., 2009, WI Consider **classification task** (for simplicity):

→ sparse **high-dimensional** labeled data: $(\boldsymbol{\phi}_n, y_n) \in \mathbb{R}^D \times \{-1, +1\}, D \gg 1$

UNIVERSITÄT

HEIDELBERG

ZUKUNFT

SEIT 1386

- \rightarrow linear scoring $f(\phi; \mathbf{w}) = \langle \mathbf{w}, \phi \rangle$
- ✓ high dimension $D \Rightarrow$ approximate separability
- ***** But we need to access w rapidly:
 - \rightarrow must keep w in RAM \rightarrow may not fit
- → storage model matters:
 - (un)ordered associative tables need RAM and/or are slow
 - \checkmark linear arrays are fastest \Rightarrow need integer feature indexes

IDEA OVERVIEW

Intuition: hashing d, d' together entails less loss change if $w_d \simeq w_{d'}$ \Rightarrow approximate $w_d - w_{d'}$ as dist. between learnable representations:

- **0** Equip each feature d with a vector $\boldsymbol{\nu}(d) \in \mathbb{R}^V$ (e.g. some NLP stats about d's usage in the wild)
- **1** Learn a map $\boldsymbol{\nu}(d) \mapsto \mathcal{H}(\boldsymbol{\nu}(d)) \in \{0,1\}^T$, s.t. the Hamming dist. between $\mathcal{H}(\boldsymbol{\nu}(d_1)), \mathcal{H}(\boldsymbol{\nu}(d_2))$ captures d_1, d_2 's similarity for task
- 2 Apply surjection $\mathcal{B}: \{0,1\}^T \to \{0...M\}, \text{ s.t. close Hamming}$ vectors get projected into the same integer
- **3** Define $HASH_{new} = \mathcal{H} \circ \mathcal{B}$, interpret outputs as RAM addresses.

PROOF-OF-CONCEPT EXPERIMENTS \star dataset #1: 20-newsgroups 0.90.8-3 (one vs. all) class. tasks for 0.7comp, sci, talk 0.6 -70% train / 30% test – feature dim.: 700K (all 2-grams)

\star dataset #2: **RCV1**

- hashes learned on 100K examples – Vowpal Wabbit ran on full train set
- feature dim.: 40K

Task-driven Greedy Learning of Feature Hashing Functions Artem Sokolov **Stefan Riezler**

Heidelberg University, Germany {sokolov, riezler}@cl.uni-heidelberg.de

Common solution:

- **feature hashing trick** (alphabet elimination/random
- Idea: – per-coordinate mapping into a lower-dimensi - with **data-independent** pseudo-random fur

$$\phi'_{d'} = \sum_{d:HASH(d)=d'} \phi_d$$
, where d is a feat

 $\checkmark ||\phi'|| \simeq ||\phi||$ with high probability ✓ works surprisingly well: little or no sacrifice in qu ✓ implemented in many learning kits (Vowpal Wabbit,

Can we do even better with **data-dependant**

LEARNING FEATURE HASHI

1: greedy learning of Hamming repr

- will look for w_d representable as $\sum_{t < d}$
- close $\mathcal{H}(\boldsymbol{\nu}(d)) = [h_1(\boldsymbol{\nu}(d)), \dots, h_T(\boldsymbol{\nu}(d))]$ **close** values of respective w_d .

Hinge loss: $L = \sum_{n} \left(1 - y_n \sum_{d} \sum_{t < T} \alpha_t h \right)$ Learning $\mathcal{H}(\boldsymbol{\nu}_d)$ in a **boosting** fashion:

- $\mathcal{H}^{t-1}(\nu) = [h_1(\nu), \dots, h_{t-1}(\nu)] \in \{0, \dots, h_{t-1}(\nu)\}$
- $\mathcal{H}^t(\boldsymbol{\nu})$ is obtained by appending a bita per-coordinate decision stump $h_t =$

$$x^*, \theta^* = rg\max_{k, \theta} \Big| \sum_{n: y_n \langle \mathbf{w}^t, \boldsymbol{\phi}_n \rangle < 1} y_n$$

- the higher the curve, the better

EINBERGER ET AL., 2009]	PAPER HIGHLIGHT
om feature mixing)	replaces random feature
sion feature space inction $HASH$:	 simple greedy algorit learning optimizes tas
ure key (usually a string)	data-dependent hashing
	$\star \text{ for high-dimension} \\ \star \text{ in case of tight met}$
uality! etc.)	New hash function HA
hashing 🕐	 is informed of the final I can be done in preproce leverages existing optime
ES BY OPTIMIZING	HINGE LOSS WITH
$ \sum_{\substack{d \in T \\ \mathbf{v}(d)}} \alpha_t h_t(\mathbf{\nu}(d)) \\ \alpha_t(\mathbf{\nu}(d)) \phi_{n,d} \Big)_+ $ $ h_t(\mathbf{\nu}(d)) \phi_{n,d} \Big)_+ $ $ h_t(\mathbf{\nu}(d)) \phi_{n,d} \Big)_+ $	listance-sensitive projection Task : compress $\mathcal{H}(\boldsymbol{\nu})$ into shorprobability for close $\mathcal{H}(\boldsymbol{\nu})$. we use the KOR random trac – for a bit-vector $\boldsymbol{h} = [h_1, \dots$ – and random Bernoulli vector – the trace is $\boldsymbol{t} = [t_1, \dots, t_M]$ t_m has a bias towards closer \boldsymbol{h} , a collision probability decays $\boldsymbol{\nu}$ $P[\boldsymbol{t}_1 = \boldsymbol{t}_2 D_H(\boldsymbol{h}_1, \boldsymbol{h}_2) \leq$
	CONCLUSION
Random Hash Learned Hash 8 10 12 14 16 18 20	 For the considered classification the less RAM is available or the higher dim. input the more sense it makes
talk	Future work:
E coefficients: processed data	ranking objectivestasks with very large direction
⊭ of bits b r	 information retriev collaborative filteri

- e hashes with **learned feature hashes**
- ithm for learning hashes

sk objective

g **improves classification** accuracy:

nal features

emory constrains (many collisions)

$4SH_{new}$ that:

learning task essing nization procedures

BOOSTING

ort codes that have a high collision

ces [Kushilevitz et al., 1998]:

 $., h_T$ tors $\boldsymbol{r}_{m} = [r_{m,1}, \dots, r_{m,T}]$ [], s.t. $t_m = \langle \boldsymbol{h}, \boldsymbol{r}_m \rangle \mod 2$.

amplified by repeating M times with $D_H(\boldsymbol{h}_1, \boldsymbol{h}_2)$ and M:

$$\Delta] \ge \left(\frac{1}{2} + \frac{1}{2}(1-2p)^{\Delta}\right)^M$$

ation task:

ble (the smaller b) ut feature space has

es to learn hashes

```
imension:
\operatorname{val}
ring
```

References

- Linguistics.
- Theory of computing, STOC '98, pages 614–623, New York, NY, USA. ACM.

[Shi et al., 2009] Shi, Q., Petterson, J., Dror, G., Langford, J., Smola, A. J., and Strehl, A. L. (2009). Hash Kernels. 5:496–503.

[Weinberger et al., 2009] Weinberger, K., Dasgupta, A., Langford, J., Smola, A. J., and Attenberg, J. (2009). Feature hashing for large scale multitask learning. Computing Research Repository, abs/0902.2:140–1120.

[Ganchev and Dredze, 2008] Ganchev, K. and Dredze, M. (2008). Small statistical models by random feature mixing. In Proceedings of the ACL-2008 Workshop on Mobile Language Processing. Association for Computational

[Kushilevitz et al., 1998] Kushilevitz, E., Ostrovsky, R., and Rabani, Y. (1998). Efficient search for approximate nearest neighbor in high dimensional spaces. In Proceedings of the thirtieth annual ACM symposium on