Task-driven Greedy Learning of Feature Hashing Functions

UNIVERSITAT .
HEIDELBERG Artem Sokolov Stefan Riezler
ZUKUNFT Heidelberg University, Germany

SEIT 1386

{sokolov, riezler}@cl.uni-heidelberg.de

Consider classification task (for simplicity):

Common solution:

v’ replaces random feature hashes with learned feature hashes

= sparse high-dimensional labeled data: e feature hashing trick (alphabet elimination/random feature mixing)

Yn) € RP x {=1,+1},D > 1 Idea: . o o i i j
(P> Yn) { } ¢ asar per-coordinate mapping into a lower-dimension feature space v simple greedy algorithm for learning hashes
= linear scoring f(¢;w) = (w, @) — with data-independent pseudo-random function HASH: v learning optimizes task objective
v/ high dimension D = approximate separability o Z b, where d is a feature key (usually a string) v data-dependent hashing improves classification accuracy:
¥ But we need to access w rapidly: d:HASH(d)=d’ % for high-dimensional features
= must keep w in RAM — may not fit v ||@'|| ~ ||¢|| with high probability * in case of tight memory constrains (many collisions)

= storage model matters:
- (un)ordered associative tables need RAM

v worl
v imp!

ks surprisingly well: little or no sacrifice in quality!

emented in many learning kits (Vowpal Wabbit, etc.)

New hash function HASH,,.,, that:

and /or are slow

¢ linear arrays are fastest =

Can we do even better with data-dependant hashing (7

e is informed of the final learning task

e can be done in preprocessing

need integer feature indexes

Intuition: hashing d,d’ together entails less loss change if wg ~ wy
— approximate wyg — wy as dist. between learnable representations:

0 Equip each feature d with a vector v(d) € RY
(e.g. some NLP stats about d’s usage in the wild)

Learn a map v(d) — H(v(d)) € {0,1}*, s.t. the Hamming dist.
between H(v(dy)), H(v(ds)) captures dy, do’s similarity for task

Apply surjection B : {0,1}* — {0... M}, s.t.
vectors get projected into the same integer

close Hamming

Define HASH,,.., = H o B, interpret outputs as RAM addresses.

e leverages existing optimization procedures

1 : greedy learning of Hamming representation 2 : distance-sensitive projection B

e Task: compress H(v) into short codes that have a high collision
probability for close H(v).

e will look for w, representable as), . aihi(v(d))
e close H(v(d)) = [h1(v(d)),...,hr(v(d))] for different d =

close values of respective wy. e we use the KOR random traces |Kushilevitz et al., 1998]:
Hinge loss: L= (1 =y, D> 4> tc7 atht(u(d))gbn,d)jL — for a bit-vector h = |hq,..., hp]
Learning H(v4) in a boosting fashion: — and random Bernoulli vectors 7., = [T 1, Tim, T
— the trace is t = [t1,...,trp], s.t. £, = (h,7,,) mod 2.

O Ht_l(l/) — [hl(l/), Ceey ht_l(l/)] - {O, 1}t_1

e H!(v) is obtained by appending a bit-function — ® im

has a bias towards closer h, amplified by repeating M times

a per-coordinate decision stump h; = [vg- > 0*]: o collision probability decays with Dg(h1,he) and M:
k 9 —argmax Z ynz¢nd de >0]]| P[tl —tQ‘DH(hl,hQ) <A} (_|_§(1_2p)A)

n: yn<wta¢ ><1

* dataset #1: 20-newsgroups

— 3 (one vs. all) class. tasks for
comp, sci, talk

— 70% train / 30% test
— feature dim.: 700K (all 2-grams) S

accuracy

Random Hash ——— -
Learned Hash

P

10 12
b

comp

14 16

* dataset #2: RCV1

— hashes learned on 100K examples

accuracy
-
00

— Vowpal Wabbit ran on full train set
— feature dim.: 40K

Random Hash ——— |
Learned Hash

14 16

For the considered classification task:

e the less RAM is available (the smaller b)

0.6 - e or the higher dim. input feature space has

0.5 |-
04 L

0.3 | |
20 1 6 8

accuracy
accuracy

Random Hash ——— -
Learned Hash

12 14 16

Random Hash ——— -
Learned Hash

12 14 16 10
scg tafk
e vectors v filled with 1/2-gram DICE coefficients:
v/ (d) = dice(d,d’) for all d,d’
e Vowpal Wabbit was trained on preprocessed data
(with learned hashes)
e plots: classification accuracy vs. #£ of bits b

e the higher the curve, the better

P

. the more sense 1t makes to learn hashes

1 6 8 10

Future work:

e ranking objectives
e tasks with very large dimension:

— information retrieval
— collaborative filtering

References

|Ganchev and Dredze, 2008] Ganchev, K. and Dredze, M. (2008). Small statistical models by random feature mixing. In Proceedings of the ACL-2008 Workshop on Mobile Language Processing. Association for Computational
Linguistics.

|Kushilevitz et al., 1998] Kushilevitz, E., Ostrovsky, R., and Rabani, Y. (1998). Efficient search for approximate nearest neighbor in high dimensional spaces. In Proceedings of the thirtieth annual ACM symposium on
Theory of computing, STOC ’98, pages 614-623, New York, NY, USA. ACM.

|Shi et al., 2009| Shi, Q., Petterson, J., Dror, G., Langford, J., Smola, A. J., and Strehl, A. L. (2009). Hash Kernels. 5:496-503.

|Weinberger et al., 2009] Weinberger, K., Dasgupta, A., Langford, J., Smola, A. J., and Attenberg, J. (2009). Feature hashing for large scale multitask learning. Computing Research Repository, abs/0902.2:140-1120.

