
Online Learning
under Full and Bandit Information

Artem Sokolov
Computerlinguistik

Universität Heidelberg

1 Motivation
2 Adversarial Online Learning

Hedge
EXP3

3 Stochastic Bandits
ε-greedy
UCB

Real world online learning tasks

n advertising (which ad to display)

n medical treatment (which drug to prescribe)

n design/functionality rollouts (works or not)

n spam/malware filtering (filter or keep)

n stock market (sell or acquire bonds)

n network routing (which path to take)

n compression, weather, etc.

in every task there is a decision to be made under missing information

| Online Learning under Weak (Bandit) Information 1 / 48

Goals

1 introduce online learning

2 explain distinction between full and partial information tasks

3 introduce the notion of regret

4 present basic algorithms for those cases

| Online Learning under Weak (Bandit) Information 2 / 48

Relation to batch learning

Batch learning

many i.i.d examples D = {xi, yi}Ni=1

define some loss `(D) (e.g. negative log-likelihood, square error)

learn a model by `(D)→ min

deploy on a test set

Online learning

one example xt

predict ŷt

get feedback

suffer some penalty `t(xt, ŷt)

improve the model

repeat

n note: no training/testing set distinction
| Online Learning under Weak (Bandit) Information 3 / 48

Examples

input xt ∈ X input space

truth yt ∈ Y truth space

prediction ŷt ∈ P decision space

X Y P penalty/loss

online regression Rd R R |yt − ŷt|
online classification Rd {1, . . . ,K} {1, . . . ,K} [[yt 6= ŷt]]

expert advice RN Rd {1, . . . , N} yt[ŷt]
structured prediction Km Km Km

∑m
i=1[[yit 6= ŷit]]

| Online Learning under Weak (Bandit) Information 4 / 48

Why online learning?

n early days 50-70s: online learning is a requirement

á first computers, very low memory, very slow CPUs
á perceptron from 1957 is originally an online algorithm!

n later 70-90s: batch learning became possible

á reasonable CPU power, reasonable memory
á great convergence guarantees!

n 2000s-now:
á computers are very powerful, memory is cheap ©
á batch algorithms explode memory and time §

easy access to data made datasets practically infinite
discarding data is a bad idea, we want it all!

n some people say that “data acquisition outpaced the Moore’s law”

effectively are back into the 50s

| Online Learning under Weak (Bandit) Information 5 / 48

Why online learning?

not only a question of resources:

n the larger the data, the harder it is to guarantee stationarity

á cannot to be cramped into a fixed size dataset

n hence algorithms need to be adaptive

n and frequent re-training is not an option (because resources...)

| Online Learning under Weak (Bandit) Information 6 / 48

Advantages

Online learning

one example xt

predict ŷt

get feedback

suffer some penalty `t(xt, ŷt)

improve the model

repeat

n small memory footprint

n faster updates

n faster adaptation

n better test performance (in certain sense)

| Online Learning under Weak (Bandit) Information 7 / 48

Domain of online learning

n environment

á i.i.d assumption is convenient
á often cannot be guaranteed or is obviously violated
á sometimes we assume nothing about distribution: ‘adversarial case’

n feedback

á full information is best
á but correct labels are expensive and slow to get
á often partial feedback is all you have: ‘bandit case’

n structure

á no state (important but rare case)
á usually there is some state or context
á structured spaces (actions change the environment)

n resources

á batch learning is costly
á saving everything is impractical
á learn from one x and discard

| Online Learning under Weak (Bandit) Information 8 / 48

The space of online learning algorithms

feedback

environment

structure

full bandit

i.i.d

adversarial

no state

context

reinforcement learning

expert advice

adversarial bandits

stochastic bandits

[Seldin’15]

| Online Learning under Weak (Bandit) Information 9 / 48

Adversarial Environment with Full Information
(just means there are no statistical assumptions)

| Online Learning under Weak (Bandit) Information 10 / 48

Measure of success

Online learning protocol

1: for t = 0, . . . do
2: observe xt (if available)
3: predict ŷt
4: suffer loss `t(ŷt)
5: update

n `t are arbitrary (e.g., does not mean there are uniformly distributed)

n could be random or non-random, depend on previous history

n we want algorithms that work in any case

What about the goal?

n no training set, so cannot minimize loss over training set

n even if we could, does not always make sense as `t can be anything

á measure of success has to be calculated w.r.t. to the whole
interaction, not just some end objective

| Online Learning under Weak (Bandit) Information 11 / 48

Regret

What do we want to achieve?

n in principle we want to minimize our total loss

n still not ideal, because `t can scale arbitrary
n so we need a relative measure

á e.g., with respect to some fixed (but unknown) arm-pulling strategy
h = ht

á or with respect to the best arm-pulling strategy from a set H
á note: the larger is H the harder it is the task

n we measure a ‘cost of ignorance’ or ‘regret for not following that
strategy’

RT =

T∑
t=1

`t(ŷt)−
T∑
t=1

`t(ht)

RT =

T∑
t=1

`t(ŷt)−min
h∈H

T∑
t=1

`t(h)

Our ultimate goal:

n average regret RT /T → 0

n as fast as possible

n as the learning goes on, our loss is less and less different from the alternative one
(‘we have no regret’)

| Online Learning under Weak (Bandit) Information 12 / 48

Adversary restriction

Why do we need different definitions of regret?

n on the one hand, it’s a tool to analyze a problem,
to test it under different assumptions

n on the other, w/o any restrictions online learning is too hard (or
impossible)

n need to restrict the power of adversary and vary RT accordingly
n different definitions than reflect our knowledge about the

environment:
1 if we believe that true data is generated by some fixed function h∗,
yt = h∗(xt), it’s reasonable to minimize RT w.r.t. to that function

RT (h∗) =

T∑
t=1

`t(wt)−
T∑
t=1

`t(h
∗)

2 if not, the adversary must not at least change his mind at will, i.e. has
to commit to some yt before seeing ŷt; then it makes sense to optimize
RT w.r.t. to the best function from some set H:

RT (H) =

T∑
t=1

`t(wt)−min
h∈H

T∑
t=1

`t(h)

| Online Learning under Weak (Bandit) Information 13 / 48

Adversary restriction

What happens if we don’t have the commitment requirement?

Example: online classification

1: for t = 0, . . . do
2: observe xt
3: predict ŷt ∈ {0, 1}
4: receive true yt
5: suffer loss `t(ŷt) = |yt − ŷt|
6: update wt+1

RT =

T∑
t=1

`(ŷt)−min
h∈H

T∑
t=1

`t(h(xt))RT =

T∑
t=1

|yt− ŷt|−min
h∈H

T∑
t=1

|yt−h(xt)|

n take simplest H = {h0, h1}, where ha ≡ a (constant function)

n Exercise 1: can you make the learner always lose? [Shalev-Shwartz’12]

n wait until ŷt and set yt = 1− ŷt
n wait until ŷt and set yt = 1− ŷt
n for any h ∈ {h0(·), h1(·)}, minh∈H

∑T
t=1 |yt − h(xt)| ≤ T/2

n RT (H) =
∑T

t=1 |yt− ŷt|−minh∈H
∑T

t=1 |yt−h(xt)| ≥ T−T/2 = T/2

| Online Learning under Weak (Bandit) Information 14 / 48

Algorithm for the realizability case

Realizability assumption: ∃h∗ ∈ H s.t. ∀t yt = h∗(xt). Also |H| <∞

Consistent

1: Initialize V0 = H
2: for t = 0, . . . do
3: observe xt
4: choose any h ∈ Vt
5: predict ŷt = h(xt)
6: receive true yt = h∗(xt)
7: update Vt+1 = {h ∈ Vt : h(xt) = yt}

Analysis:

n ∀t at least one h is removed if there was an error (and none if not)

n 1 ≤ |Vt| ≤ |H| −#errors

n RT = #errors− 0 = #errors ≤ |H| − 1

n can we do better? hint: purge hypotheses faster

| Online Learning under Weak (Bandit) Information 15 / 48

Algorithm for the realizability case

Realizability assumption: ∃h∗ ∈ H s.t. ∀t yt = h∗(xt). Also |H| <∞

Halving

1: Initialize V0 = H
2: for t = 0, . . . do
3: observe xt
4: choose by majority vote h = arg maxr∈{0,1} |h ∈ Vt : h(xt) = r|
5: predict ŷt = h(xt)
6: receive true yt = h∗(xt)
7: update Vt+1 = {h ∈ Vt : h(xt) = yt}

Analysis:

n ∀t at least one half of Vt is removed if there was an error

n 1 ≤ |Vt| ≤ |H|/2#errors

n RT (h∗) = #errors ≤ log2 |H|

| Online Learning under Weak (Bandit) Information 16 / 48

Failure of realizability for infinite |H|

Finiteness of H is crucial

Example

n real line X = (0, 1), thresholds H =
{
hθ : (0, 1)→ {0, 1}

}
n hθ(x) = sign(θ − x)

n ∃ a sequence of xt, yt generated by some θ on which the Halving
will have RT = T

Exercise 2: construct such a sequence [Shalev-Shwartz’12] Solution:

n maintain Lt (left) and Rt (right)

n L0 = 0, R0 = 1

n pick a random xt ∈ (Lt, Rt)

n receive ŷt
n report yt = 1− ŷt
n Rt+1 = xtyt +Rtŷt
n Lt+1 = xtŷt + Ltyt
n ∀t Rt − Lt > 0

| Online Learning under Weak (Bandit) Information 17 / 48

Randomization

n realizability assumption may be too harsh for our application
n add an element of surprise to our predictions!

á remember to require the adversary to commit to yt before seeing ŷt
á will change lines 4 and 5 in the Consistent

Randomized

1: Initialize V0 = H
2: for t = 0, . . . do
3: observe xt
4: choose probability pt
5: predict ŷt(wt) = 1 with prob. pt
6: receive true yt = h∗(xt)
7: update Vt+1 = {h ∈ Vt : h(xt) = yt}

RT =

T∑
t=1

Ept [[ŷt 6= yt]]−min
h∈H

T∑
t=1

[[h(xt) 6= yt]] ← note regret changed again

=

T∑
t=1

|pt − yt| −min
h∈H

T∑
t=1

|h(xt)− yt| ≤
√

2T ln |H| proof later

| Online Learning under Weak (Bandit) Information 18 / 48

Summary so far

n so far we had full information (i.e., we received the true yt)

n different adversary restrictions help to get regret bounds
á realizability + finiteness

Consistent RT ≤ |H| − 1
Halving RT ≤ log2 |H|

á commitment

Randomized RT ≤
√

2T ln |H|

| Online Learning under Weak (Bandit) Information 19 / 48

Learning with Experts’ Advice

| Online Learning under Weak (Bandit) Information 20 / 48

Learning with Experts’ Advice

n imagine horse-races

n you know nothing about horses §
n luckily you have knowledgeable friends willing to give you advices ©
n apportion a fixed sum of money between them

á goal: minimize losses / maximize profit

| Online Learning under Weak (Bandit) Information 21 / 48

Experts’ Advice

n stateless case
(you have friend’s identity, but not horses’ breakfast menu or expert
history)

n N friends

n loss vector `t ∈ [0, 1]N e.g., `t[i] = 0.3 if ith friend lost 30 cents

n prediction pt ∈ [0, 1]N ,
∑N

i=1 pt[i] = 1 your distribution of money

n loss
∑N

i=1 pt[i]`t[i] = 〈pt, `t〉
n goal

RT =

T∑
t=1

〈pt, `t〉 − min
i=1,...,N

T∑
t=1

`t[i]︸ ︷︷ ︸
loss of the best friend

→ min

n note: you don’t know how good your friends are

n note: horses/friends can conspire against you

n but in the limit you can do as good as the best friend in hindsight!

n (in terms of average loss per race)

| Online Learning under Weak (Bandit) Information 22 / 48

Hedge algorithm

n if one of the friends is perfect can get ≤ log2N mistakes with Halving

n but making a mistake does not necessarily mean we should disqualify
a friend

Hedge

1: init vector w1 ∈ RN+ s.t.
∑N
i=1 w1[i] = 1, learning rate µ > 0

2: for t = 1, . . . do
3: compute pt = wt∑N

i=1 wt[i]

4: receive loss `t
5: update wt+1[i] = wt[i]e

−µ`t[i] ← “soft disqualification”

Theorem

For any `1, . . . , `T and any i ∈ {1, . . . , N}

RT =

T∑
t=1

〈pt, `t〉 −min
j

T∑
t=1

`t[j] ≤
√

2T lnN + lnN

| Online Learning under Weak (Bandit) Information 23 / 48

Hedge Analysis

We will upper- and lower-bounds the quantity
∑N

i=1wt+1[i]

Upper bound
N∑
i=1

wt+1[i] =

N∑
i=1

wt[i]e
−µ`t[i]

use e−αx ≤ 1− (1− e−α)x

≤
N∑
i=1

wt[i](1− (1− e−µ)`t[i])

=
(N∑
i=1

wt[i]
)
(1− (1− e−µ)〈pt, `t〉)

ln

N∑
i=1

wt+1[i] ≤ ln
(N∑
i=1

wt[i]
)
+ ln

(
1− (1− e−µ)〈pt, `t〉

)
use ln(1− x) ≤ −x

≤ ln
(N∑
i=1

wt[i]
)
− (1− e−µ)〈pt, `t〉 telescope

ln

N∑
i=1

wT+1[i] ≤ ln
(N∑
i=1

w1[i]
)
− (1− e−µ)

T∑
t=1

〈pt, `t〉

| Online Learning under Weak (Bandit) Information 24 / 48

Hedge Analysis

Lower bound

for any j ∈ 1, . . . , N

N∑
i=1

wt+1[i] ≥ wt+1[j] ≥ w1[j]e−µ
∑t
s=1 `s[j]

Combining

lnw1[j]− µ
T∑
t=1

`t[j] ≤ ln

N∑
i=1

wT+1[i] ≤

=ln(1)=0︷ ︸︸ ︷
ln(

N∑
i=1

w1[i])−(1− e−µ)

T∑
t=1

〈pt, `t〉

rearranging

T∑
t=1

〈pt, `t〉 ≤
− lnw1[j] + µ

∑T
t=1 `t[j]

1− e−µ

remember j was arbitrary, and let w1[i] = 1/N

T∑
t=1

〈pt, `t〉 ≤
lnN + µminj

∑T
t=1 `t[j]

1− e−µ
�

| Online Learning under Weak (Bandit) Information 25 / 48

Choice of µ

n suppose we can upper bound the minimal loss
(we are sure about at least one of our friends)

min
j

T∑
t=1

`t[j] ≤ L̃

n if we set µ = ln
(

1 +
√

2 lnN
L̃

)
then

T∑
t=1

〈pt, `t〉 ≤
lnN + µminj

∑T
t=1 `t[j]

1− e−µ

≤ min
j

T∑
t=1

`t[j] +
√

2L̃ lnN + lnN

n after rearranging we get a regret bound:

T∑
t=1

〈pt, `t〉 −min
j

T∑
t=1

`t[j] ≤
√

2L̃ lnN + lnN

| Online Learning under Weak (Bandit) Information 26 / 48

Regret bound

n trivially: L̃ ≤ T (yes, very loose bound)

T∑
t=1

〈pt, `t〉 −min
j

T∑
t=1

`t[j] ≤
√

2T lnN + lnN

n much better if L̃� T
(e.g., there is a friend that almost never errs, L̃ ' 0)

T∑
t=1

〈pt, `t〉 −min
j

T∑
t=1

`t[j] . lnN

n not surprisingly looks similar to the Halving bound (realizability &
finiteness hold)

| Online Learning under Weak (Bandit) Information 27 / 48

Exercise

Hedge

1: init vector w1 ∈ RN+ s.t.
∑N
i=1 w1[i] = 1, learning rate µ > 0

2: for t = 1, . . . do

3: compute pt =
wt∑N

i=1
wt[i]

4: receive loss `t
5: update wt+1[i] = wt[i]e

−µ`t[i]

Exercise 3: [Marchetti-Spaccamela’11]

n 3 experts: 1st playing always Rock, 2nd – Scissors, and 3rd – Paper
n your opponent plays Rock T/3 times, then Scissors T/3 times and

then Paper T/3 times

0 T/3 2T/3 T

Rock Scissors Paper

n loss: -1 if won, +1 if lost, 0 if tie
n describe roughly 1) the most probable strategies played by Hedge,

2) when they switch and 3) the final distribution

| Online Learning under Weak (Bandit) Information 28 / 48

http://www.dis.uniroma1.it/~alberto/didattica/tcs-2011/exercise-3/exercise-learning.pdf

Relation to batch learning

n Hedge inspired Boosting – a powerful concept of combining weak
algorithms into a strong one

n idea:

á treat your training examples as experts
á changing weights focuses attention on difficult examples

H Gödel Prize 2003

| Online Learning under Weak (Bandit) Information 29 / 48

Adversarial Multi-Armed Bandits
(how to use only one friend at a time in horse races)

| Online Learning under Weak (Bandit) Information 30 / 48

Why the name?

One-armed bandits

n you are in a casino with slot-machines (“one-armed bandits”)

n you have to find a machine that gives you most money

n can try one machine per time

n on the one hand, you should play the best machine so far → exploitation

n on the other hand, there might be better machines, not yet tried → exploration

“Considered by Allied scientists in WW2, it proved so intractable that the problem
was proposed to be dropped over Germany so that German scientists “could also
waste their time on it” [Peter’79]

| Online Learning under Weak (Bandit) Information 31 / 48

Adversarial Multi-Armed Bandits

n similar setup to expert’s advice

n you can to bid on only one of the friends (experts) at a time

n consequently, no full loss vector `t is received (you don’t know how
much lost your other friends)

n you get only the loss `t[it] of the chosen friend it

| Online Learning under Weak (Bandit) Information 32 / 48

Hedge vs Exp3

Slight change to the Hedge algorithm:

Hedge

1: init w1 s.t.
∑N
i=1 w1[i] = 1, µ > 0

2: for t = 1, . . . do
3: ‘play all friends’

pt =
wt∑N

i=1 wt[i]

4: receive `t
5:

wt+1[i] = wt[i]e
−µ`t[i]

Exp3

1: init w1[i] = 1, γ ∈ (0, 1]
2: for t = 1, . . . do
3: draw a friend it acc. to

pt[i] = (1− γ) wt∑N
i=1 wt[i]

+
γ

N

4: receive `t[it]
5:

wt+1[i] =

{
wt[i]e

−γ `t[i]
pt[i] , if i = it

wt[i], else

n random surprise actions added

n “Exponential-weight algorithm for Exploration and Exploitation” ⇒
“Exp3”

| Online Learning under Weak (Bandit) Information 33 / 48

Connection to the importance sampling

Exp3

1: init w1[i] = 1, γ ∈ (0, 1]
2: for t = 1, . . . do
3: draw a friend it acc. to

pt[i] = (1− γ) wt∑N
i=1 wt[i]

+
γ

N

4: receive `t[it]

5: wt+1[i] =

{
wt[i]e

−γ `t[i]
pt[i] , if i = it

wt[i], else

6: wt+1[i] = wt[i]e
−γ ˜̀t[i]

n denote ˜̀
t[i] =

{
`t[i]/pt[i] if i = it

0 otherwise
n then

E
[
˜̀
t[i]
∣∣ i1, . . . , it−1

]
= pt[i]

`t[i]

pt[i]
+ (1− pt[i]) · 0 = `t[i]

n this a recurring theme: unbiased estimates of losses
n we recover from lacking info by working in expectation

| Online Learning under Weak (Bandit) Information 34 / 48

Exp3 Regret

Theorem

For any γ ∈ (0, 1], N > 0 and any sequence of `1, . . . , `T

E
[T∑
t=1

`t[it]
]
−min

i

T∑
t=1

`t[i] ≤ 2
√
e− 1

√
TN lnN

Comparison to the full-information

n Hedge: O(
√
T lnN)

n Exp3: O(
√
TN lnN) the price of bandit info

| Online Learning under Weak (Bandit) Information 35 / 48

Proof

n very similar proof to Hedge

n see appendix

Exercise 4 (optional):

n explain why is the exploration necessary?

á point where the proof will fail if

pt[i] = wt[i]/

N∑
i=1

wt[i]

| Online Learning under Weak (Bandit) Information 36 / 48

Stochastic Bandits

| Online Learning under Weak (Bandit) Information 37 / 48

Stochastic Bandits

n restrict somewhat the adversarial setting

n as we have seen, restrictions lead to nicer regret (possibly under a
different definition)

n N arms as before

n this time arm’s loss `t[i] is sampled i.i.d. from Di (unknown and
fixed)

á `t[i] and `t[j] are independent for i 6= j
á mean loss µi = E[`t[i]]
á µ∗ = mini µi
á i∗ = arg mini µi

n suffered loss `t[it]

note: Di,t’s may change, keeping µi,t fixed

| Online Learning under Weak (Bandit) Information 38 / 48

Stochastic Bandits

n mean loss µi = E[`t[i]]
n µ∗ = mini µi
n ni(T) – number of pulls of i’th arm over first T plays

Goal:

n now it makes sense to speak of expected regret
n regret:

RT = E
[T∑
t=1

`t[it]
]
−min

i
E
[T∑
t=1

`t[i]
]

= E
[T∑
t=1

N∑
i=1

`t[i][[i = it]]
]
−min

i
Tµi

=

N∑
i=1

µiE
[T∑
t=1

[[i = it]]
]
− Tµ∗

=

N∑
i=1

µiE[ni(T)]− Tµ∗ → min

| Online Learning under Weak (Bandit) Information 39 / 48

Stochastic Bandits

Gaps: ∆i = µi − µ∗ ≥ 0

µ∗0 µiµj

µ∆j

∆i

RT =

N∑
i=1

µiE[ni(T)]− Tµ∗ =

N∑
i=1

∆iE[ni(T)]

Next Theorem(s)

RT ≤ C
N∑
i=2

lnT

∆i
+ o(lnT)

n smaller gaps ⇒ bigger regret

n intuition: takes more time to distinguish between close arms

n compare to Exp3: O(
√
NT lnN)

| Online Learning under Weak (Bandit) Information 40 / 48

Regret bound

RT ≤ C
N∑
i=2

lnT

∆i
+ o(lnT)

Why 1
∆i

?

Intuitive example:

n imagine Bernoulli losses with pi

n mean estimates µ̄i = 1
T

∑T
t=1 `t[i] have variance σ2 = pi(1− pi)/T

n if T ' 1
∆α
i

then σ2 ' ∆α
i pi(1− pi)

n if α ' 1, hard to say if there is a real difference between µ∗ and µi
or it’s just variance

n so we need rather α ' 2

n as on every pull we loose about ∆i, for α ' 2 we have ∆i
1

∆α
i
' 1

∆i

| Online Learning under Weak (Bandit) Information 41 / 48

ε-greedy

Simplest strategy:

ε-greedy

1: ε > 0, µ̄i = 0 empirical means of rewards
2: for t = 1, . . . do
3: with prob. 1− ε play current best arm it = arg mini µ̄i
4: with prob. ε play a random arm
5: receive `t[it]

6: update empirical means (µ̄it =
µ̄it ·nit+`t[it]

nit+1)

Regret:

n because of the constant ε, RT ∼ εT

n need to let ε to to zero at a certain rate

| Online Learning under Weak (Bandit) Information 42 / 48

εt-decreasing

Modified simplest strategy:

εt-decreasing

1: c > 0, δ > 0, µ̄i = 0
2: for t = 1, . . . do
3: εt = min{1, cN

δ2t
}

4: with prob. 1− εt play current best arm it = arg mini µ̄i
5: with prob. εt play a random arm
6: receive `t[it]
7: update means

Theorem

If 0 < δ ≤ mini:µi<µ∗ ∆i < 1 and T ≥ cN
δ

P{it 6= i∗} ≤ c

δ2t
+ o
(1

t

)
⇒ RT = O(lnT)

| Online Learning under Weak (Bandit) Information 43 / 48

UCB (upper confidence bound)

UCB-style strategies:

n pull arms and maintain empirical averages of their losses

n calculate also confidence intervals (a region around our estimate so that the
true value is within with high prob.)

μ-u μ μ+u

n repeated plays shrink the confidence bound, the average is becoming more
reliable

n now stick to the principle: “optimism in the face of uncertainty”

n play the arm whose mean loss combined with confidence bound promises the
least loss

n eventually the most optimistic arm will change because

á either that is really better
á or it wasn’t sampled often enough

n deterministic algorithm unlike ε-greedy

| Online Learning under Weak (Bandit) Information 44 / 48

UCB

UCB

1: play each arm once
2: for t = 1, . . . do

3: play the arm it = arg mini

(
µ̄i −

√
2 ln t
ni(t)

)
4: receive `t[it]
5: update averages

Theorem 1

For N > 0, T > 0 and arbitrary distributions Di,t with fixed means µi

RT =
[
8
∑

i:µi>µ∗

lnT

∆i

]
+ (1 +

π2

3
)

N∑
i=1

∆i

| Online Learning under Weak (Bandit) Information 45 / 48

Lessons learned

n lot’s of applications where traditional batch learning may fail

n goals are formulated in terms of various regrets

n the slower the upper bound on regret grows with T the better

n full information
á realizability

Consistent RT ≤ |H| − 1
Halving RT ≤ log2 |H|

á commitment + surprise

Randomized RT ≤
√

2T ln |H|
Hedge RT = O(

√
T lnN)

n adversarial bandits

á EXP3 RT = O(
√
NT lnN)

n stochastic bandits

á ε-decreasing RT = O(lnT/δ)
á UCB RT = O(lnT/∆2)

| Online Learning under Weak (Bandit) Information 46 / 48

Conclusion

n barely scratched the surface with most important algorithms

n advanced algorithms use EXP3, UCB as building blocks

| Online Learning under Weak (Bandit) Information 47 / 48

Recommended Reading

Material for this lecture

1 S. Shalev-Shwartz. “Online Learning and Online Convex Optimization”,
2012

2 Y. Seldin. “The Space of Online Learning Algorithms”, 2015

3 P. Auer et al. “The nonstochastic multiarmed bandit problem”, 2002

4 P. Auer et al. “Finite-time Analysis of the Multiarmed Bandit Problem”,
2002

Advanced Contextual Algorithms

1 EXP4: P. Auer et al. “The nonstochastic multiarmed bandit problem”, 2002

2 LinUCB: Li et al. “A contextual-bandit approach to personalized news
article recommendation”, 2010

3 Epoch-greedy: J. Langford “The epoch-greedy algorithm for multi-armed
bandits with side information”, 2003

| Online Learning under Weak (Bandit) Information 48 / 48

Appendix

| Online Learning under Weak (Bandit) Information 1 / 5

Analysis of EXP3

n similar to the Hedge algorithm

n idea: lower- and upper-bound
∑N

i=1wt+1[i]/
∑N

i=1wt[i]

n denote ˆ̀
t[i] =

{
`t[i]/pt[i] if i = it

0 otherwise

| Online Learning under Weak (Bandit) Information 2 / 5

Analysis of EXP3

Upper bound∑N
i=1 wt+1[i]∑N
i=1 wt[i]

=

N∑
i=1

wt[i]e
− γ

ˆ̀
t[i]
N (use wt+1[i] definition; note the bound ˆ̀

t[i] ≤
γ

N
)

=

N∑
i=1

pt[i]− γ
N

1− γ e−
γ ˆ̀
t[i]
N (using ex ≤ 1 + x + (e− 2)x

2 for |x| ≤ 1)

≤
N∑
i=1

pt[i]− γ
N

1− γ

[
1− γ ˆ̀t[i]

N
+ (e− 2)

(γ ˆ̀t[i]
N

)2]
≤ 1−

γ
N

1− γ

N∑
i=1

pt[i]ˆ̀t[i] +
(e− 2)(γ

N
)2

(1− γ)

N∑
i=1

pt[i](ˆ̀t[i])
2

≤ 1−
γ
N

1− γ `t[it] +
(e− 2)(γ

N
)2

(1− γ)

N∑
i=1

ˆ̀
t[i] (use ln(1 + x) ≤ x)

ln

∑N
i=1 wt+1[i]∑N
i=1 wt[i]

≤ −
γ
N

1− γ `t[it] +
(e− 2)(γ

N
)2

(1− γ)

N∑
i=1

ˆ̀
t[i]

| Online Learning under Weak (Bandit) Information 3 / 5

Analysis of EXP3

Upper bound (cont.)

sum over t = 1, . . . , T

ln

∑N
i=1 wT+1[i]∑N
i=1 wT [i]

≤ −
γ
N

1− γ

T∑
t=1

`t[it] +
(e− 2)(γN)2

(1− γ)

T∑
t=1

N∑
i=1

ˆ̀
t[i]

Lower bound

for any j = 1, . . . , N

ln

∑N
i=1 wT+1[i]∑N
i=1 wT [i]

≥ ln
wT+1[j]∑N
i=1 wT [i]

= − γ

N

T∑
t=1

ˆ̀
t[j]− lnN

Combining (and simplifying)

T∑
t=1

`t[it] ≤ (1− γ)

T∑
t=1

ˆ̀
t[j] +

N lnN

γ
+ (e− 2)

γ

N

T∑
t=1

N∑
i=1

ˆ̀
t[i]

| Online Learning under Weak (Bandit) Information 4 / 5

Analysis of EXP3

expectation to rescue:

E
[
ˆ̀
t[i]
∣∣ i1, . . . , it−1

]
= pt[i]

`t[i]

pt[i]
+ (1− pt[i]) · 0] = `t[i]

Take expectation

E
[T∑
t=1

`t[it]
]
≤ (1− γ)

T∑
t=1

`t[j] +
N lnN

γ
+ (e− 2)

γ

N

T∑
t=1

N∑
i=1

`t[i]

since j was arbitrary and by assumption
T∑
t=1

N∑
i=1

`t[i] ≤ NL̃

≤ (1− γ)min
j

T∑
t=1

`t[j] +
N lnN

γ
+ (e− 2)

γ

N
NL̃

choose γ = min
{
1,

√
N lnN

(e− 1)L̃

}
≤ 2
√
e− 1

√
L̃N lnN �

| Online Learning under Weak (Bandit) Information 5 / 5

	Motivation
	Adversarial Online Learning
	Hedge
	EXP3

	Stochastic Bandits
	-greedy
	UCB

	Appendix

