Speaker: Juri Opitz 1: Automatic Accuracy Prediction for AMR Parsing --------------------------------------------- Abstract: Meaning Representation (AMR) represents sentences as directed, acyclic and rooted graphs, aiming at capturing their meaning in a machine readable format. AMR parsing converts natural language sentences into such graphs. However, evaluating a parser on new data by means of comparison to manually created AMR graphs is very costly. Also, we would like to be able to detect parses of questionable quality, or preferring results of alternative systems by selecting the ones for which we can assess good quality. We propose AMR accuracy prediction as the task of predicting several metrics of correctness for an automatically generated AMR parse - in absence of the corresponding gold parse. We develop a neural end-to-end multi-output regression model and perform three case studies: firstly, we evaluate the model's capacity of predicting AMR parse accuracies and test whether it can reliably assign high scores to gold parses. Secondly, we perform parse selection based on predicted parse accuracies of candidate parses from alternative systems, with the aim of improving overall results. Finally, we predict system ranks for submissions from two AMR shared tasks on the basis of their predicted parse accuracy averages. All experiments are carried out across two different domains and show that our method is effective. 2: An Argument-Marker Model for Syntax-Agnostic Proto-Role Labeling ---------------------------------------------------------------- Abstract: Semantic proto-role labeling (SPRL) is an alternative to semantic role labeling (SRL) that moves beyond a categorical definition of roles, following Dowty's feature-based view of proto-roles. This theory determines agenthood vs. patienthood based on a participant's instantiation of more or less typical agent vs. patient properties, such as, for example, volition in an event. To perform SPRL, we develop an ensemble of hierarchical models with self-attention and concurrently learned predicate-argument-markers. Our method is competitive with the state-of-the art, overall outperforming previous work in two formulations of the task (multi-label and multi-variate Likert scale prediction). In contrast to previous work, our results do not depend on gold argument heads derived from supplementary gold tree banks. Speaker: Debjit Paul 3: Handling Noisy Labels for Robustly Learning from Self-Training Data for Low-Resource Sequence Labeling. --------------------------------------------- Abstract: In this paper, we address the problem of effectively self-training neural networks in a low resource setting. Self-training is frequently used to automatically increase the amount of training data. However, in a low-resource scenario, it is less effective due to unreliable annotations created using self-labeling of unlabeled data. We propose to combine self-training with noise handling on the self-labeled data. Directly estimating noise on the combined clean training set and self-labeled data can lead to corruption of the clean data and hence, performs worse. Thus, we propose the Clean and Noisy Label Neural Network which trains on clean and noisy self-labeled data simultaneously by explicitly modeling clean and noisy labels separately. In our experiments on Chunking and NER, this approach performs more robustly than the baselines. Complementary to this explicit approach, noise can also be handled implicitly with the help of an auxiliary learning task. To such a complementary approach, our method is more beneficial than other baseline methods and together provides the best performance overall. 4: Ranking and Selecting Multi-Hop Knowledge Paths to Better Predict Human Needs --------------------------------------------- Abstract: To make machines better understand sentiments, research needs to move from polarity identification to understanding the reasons that underlie the expression of sentiment. Categorizing the goals or needs of humans is one way to explain the expression of sentiment in text. Humans are good at understanding situations described in natural language and can easily connect them to the character's psychological needs using commonsense knowledge. We present a novel method to extract, rank, filter and select multi-hop relation paths from a commonsense knowledge resource to interpret the expression of sentiment in terms of their underlying human needs. We efficiently integrate the acquired knowledge paths in a neural model that interfaces context representations with knowledge using a gated attention mechanism. We assess the model's performance on a recently published dataset for categorizing human needs. Selectively integrating knowledge paths boosts performance and establishes a new state-of-the-art. Our model offers interpretability through the learned attention map over commonsense knowledge paths. Human evaluation highlights the relevance of the encoded knowledge.