Juri Opitz: Addressing the Winograd Schema Challenge as a Sequence Ranking Task (joint work with Anette Frank) The Winograd Schema Challenge targets pronominal anaphora resolution problems which require the application of cognitive inference in combination with world knowledge. These problems are easy to solve for humans but most difficult to solve for machines. Computational models that previously addressed this task rely on syntactic preprocessing and incorporation of external knowledge by manually crafted features. We address the Winograd Schema Challenge from a new perspective as a sequence ranking task, and design a Siamese neural sequence ranking model which performs significantly better than a random baseline, even when solely trained on sequences of words. We evaluate against a baseline and a state-of-the-art system on two data sets and show that anonymization of noun phrase candidates strongly helps our model to generalize. --- Juri Opitz: Induction of a Large-Scale Knowledge Graph from the Regesta Imperii (joint work with Leo Born and Vivi Nastase) We induce and visualize a Knowledge Graph over the Regesta Imperii (RI), an important large-scale resource for medieval history research. The RI comprise more than 150,000 digitized abstracts of medieval charters issued by the Roman-German kings and popes distributed over many European locations and a time span of more than 700 years. Our goal is to provide a resource for historians to visualize and query the RI, possibly aiding medieval history research. The resulting medieval graph and visualization tools are shared publicly. --- Ines Rehbein: Sprucing up the trees – Error detection in treebanks (joint work with Josef Ruppenhofer) We present a method for detecting annotation errors in manually and automatically annotated dependency parse trees, based on ensemble parsing in combination with Bayesian inference, guided by active learning. We evaluate our method in different scenarios: (i) for error detection in dependency treebanks and (ii) for improving parsing accuracy on in- and out-of-domain data. --- Josef Ruppenhofer: Distinguishing affixoid formations from compounds (joint work with Michael Wiegand, Rebecca Wilm and Katja Markert) We study German affixoids, a type of morpheme in between affixes and free stems. Several properties have been associated with them – increased productivity; a bleached semantics, which is often evaluative and/or intensifying and thus of relevance to sentiment analysis; and the existence of a free morpheme counterpart – but not been validated empirically. In experiments on a new data set that we make available, we put these key assumptions from the morphological literature to the test and show that despite the fact that affixoids generate many low-frequency formations, we can classify these as affixoid or non-affixoid instances with a best F1-score of 74%.