A Modified Joint Source-Channel Model for NE Transliteration

Asif Ekbal

Department of Computer Science and Engineering, Jadavpur University, Kolkata-700032, India

and

EMMA Post-doctoral Student, Department of Computational Linguistics, University of Heidelberg, Germany Email: <u>ekbal@cl.uni-heidelberg.de</u> <u>asif.ekbal@gmail.com</u>

Transliteration System

- Input: Character string in the source language
- Output: Character in the target language as output
- Two Steps of Transliteration
 - Segmentation of the source string into transliteration units (TUs)
 - Relating the source language TUs to the corresponding units in the target language; resolving different combinations of alignments and unit mappings
- Mathematical Formulation
 - Source language name: S
 - Target language name: T
 - Maximize P(T | S)

Bayes' Rule (Source to Target Language Transliteration, S2T):

$$P(S,T) = P(S \mid T) \times P(T)$$

(1)

- $P(S|T) \rightarrow Probability$ of transliterating T to S through a noisy channel (Transformation rules)
- $P(T) \rightarrow$ Probability distribution of source
 - Reflects what is considered good target language transliteration in general
- Back Transliteration: Target to Source Transliteration (T2S)

 $P(S,T) = P(T \mid S) \times P(S)$

(2)

- □ P(S) and P(T) of (1) and (2) → Estimated using n-gram language models
- Estimation of P(S|T) and P(T|S) using Phoneme-based approach
 - Approximate probability distribution by introducing a phonemic representation
 - Source name S converted into an intermediate phonemic representation P
 - P further converted into the target language name T

- S2T transliteration
 - $\square P(T \mid S) = P(T \mid P) \times P(P \mid S)$ (3)
- T2S transliteration
 - $\square P(S \mid T) = P(S \mid P) \times P(P \mid T)$
- Joint Source-Channel Model (Hazhiou et al., 2004)
 - Alternative to Phoneme-based approach
 - Based on the close coupling of the source and target transliteration units (TUs)

(4)

For K aligned TUs

$$P(S,T) = P(s_1, s_2, ..., s_k, t_1, t_2, ..., t_k)$$

= P(1, 2, ..., k)
K
= $\prod P(_k | _1^{k-1})$
k=1
(5)

- Let us consider
 - Source name: $\alpha = x_1 x_2 \dots x_m$ [xi, i = 1: m are source TUs]
 - Target name: $\beta = y_1 y_2 \dots y_n$ [y_j, j = 1: n are target TUs]
 - m + n (very often) (i.e., Target TU may correspond to one or more Source TUs)
 - □ Alignment (γ)= <s, t>₁ = <x₁, y₁>; <s, t>₂ = <x₂x₃, y₂>; <s, t>_k = <x_m, y_n>
 - □ TU correspondence <s, t> \rightarrow Transliteration pair

• S2T transliteration $\rightarrow \qquad \overline{\beta} = \arg \max P(\alpha, \beta, \gamma) \\ \beta, \gamma$

- T2S transliteration $\rightarrow \quad \overline{\alpha} = \arg \max P(\alpha, \beta, \gamma)$ α, γ
- *n*-gram transliteration model: Conditional probability or transliteration probability of a transliteration pair <s, t>_k depending on its immediate *n* predecessor pairs

$$P(S,T) = P(\alpha, \beta, \gamma)$$
$$= \prod_{k=1}^{K} P(\langle s, t \rangle_k \mid \langle s, t \rangle_{k-n+1}^{k-1}$$

Bengali to English Machine Transliteration

- Bengali and English names divided into Transliteration Units (TUs)
 - ➢Regular expression for Bengali TU: C⁺M ?

where, C represents a vowel or a consonant or a conjunct and M represents the vowel modifier or matra

- Regular expression for English TU: C*V* where, C represents a consonant and V represents a vowel
- Contextual information in the form of collocated TUs considered

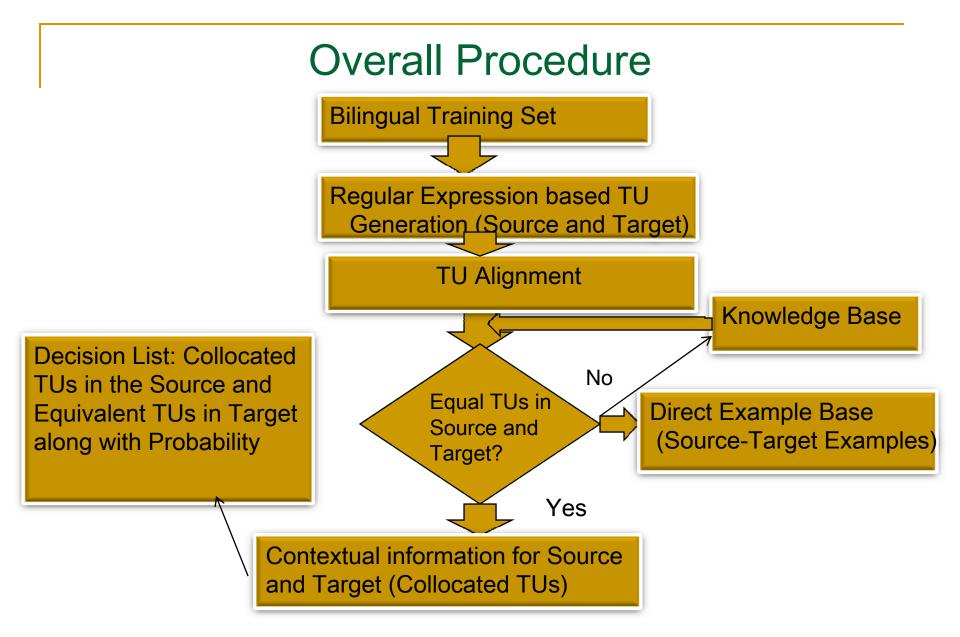
Bengali to English Machine Transliteration

Examples of TUs :

শচীন (*sachin*) → [শ | চী | ন] sachin → [sa | chi | n]

মনোজ (*manoj*)→ [ম | নো | জ] manoj→ [ma | no | j]

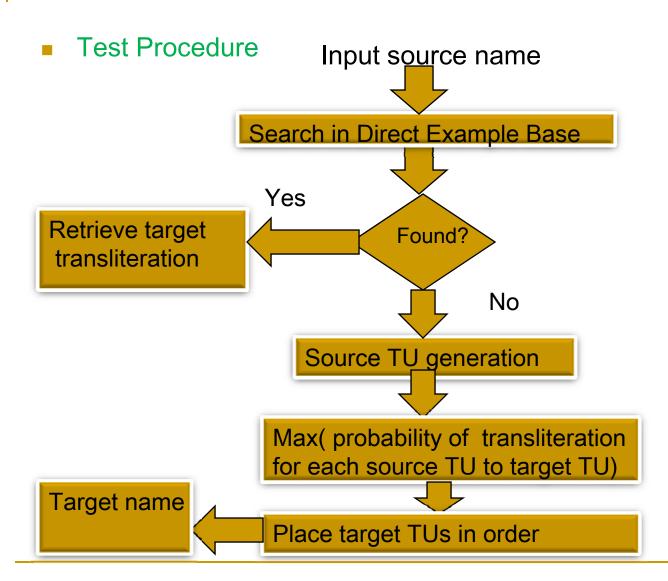
শ্রীকান্ত (*srikant*) → [শ্রী | কা | ন্ত] srikant → [sri | ka | nt]



Overall Procedure (Contd..)

- Bilingual training set: Bengali-English name pairs
- TU Generation: TUs generated according to corresponding regular expression
- TU alignment: Process of mapping each source TU to the target TU
- Number of TUs in the source and target may not be equal
 - Direct Example base: Examples that do not result in one to one correspondence
 → Language Independent Version
 - □ Knowledge base: Conjuncts and/or diphthongs in Bengali and their equivalent representations in English → Language Dependent Version
- Output of alignment: Decision-list classifier
 - Collocated TUs in the source language and their equivalent TUs in collocation in the target language
 - Probability of each decision obtained from the training set

Overall Procedure (Contd..)



Overall Procedure (Contd..)

Calculate plausibility of transliteration from each source to various target candidate

→Choose Target candidate TU with maximum probability

→Appropriate sense of a word in the source language to identify its representation in the target language

- Direct orthographic mapping for transliteration
 - Identify equivalent target TU for each source TU
 - Place Target TUs in order

Proposed Models for Transliteration

Baseline Model

- □ English consonant / sequence of consonants → Bengali consonant / conjunct/ sequence of consonants
- □ English vowels \rightarrow Bengali vowels/ matra (vowel modifier)
- English diphthongs \rightarrow Vowel/semi-vowel-matra combination in Bengali
- Model A (Monogram): No context in source and target

$$P(S,T) = \prod_{k=1}^{K} P(\langle s,t \rangle_{k})$$
$$S \to T(S) = \arg\max_{T} \{P(T) \times P(S,T)\}$$

 Model B (Bigram): Previous source TU (TU occurring to the left of current TU) as the context

$$P(S,T) = \prod_{k=1}^{K} P(\langle s,t \rangle_{k} \mid s_{k-1})$$

$$S \to T(S) = \operatorname{arg\,max}_T \{P(T) \times P(S, T)\}$$

Proposed Models for Transliteration (Contd..)

■ Model C: Bigram model with next source TU as the context

$$P(S,T) = \prod_{k=1}^{K} P(\langle s,t \rangle_{k} \mid s_{k+1})$$
$$S \to T(S) = \arg\max_{T} \{P(T) \times P(S,T)\}$$

Model D (Joint Source-Channel model) : Previous TUs in source and target as the context

$$P(S,T) = \prod_{k=1}^{K} P(\langle s,t \rangle_{k} | \langle s,t \rangle_{k-1})$$

$$S \to T(S) = \arg \max_{T} \{P(T) \times P(S, T)\}$$

Proposed Models for Transliteration (Contd..)

Model E (Trigram model) :Previous and next source TUs as the context

$$P(S,T) = \prod_{k=1}^{K} P(\langle s,t \rangle_{k} \mid s_{k-1},s_{k+1})$$
$$S \to T(S) = \arg\max_{T} \{P(T) \times P(S,T)\}$$

Model F (Modified Joint Source-Channel Model): Previous and the next TUs in the source and the previous target TU as the context

$$P(S,T) = \prod_{k=1}^{K} P(\langle s,t \rangle_{k} | \langle s,t \rangle_{k-1}, s_{k+1})$$
$$S \to T(S) = \arg\max_{T} \{P(T) \times P(S,T)\}$$

Bengali to English Transliteration

- Retrieve TUs from Bengali-English name pair
- Associate the Bengali TUs to the respective English TUs along with the TUs in context
- An Example: ক্রীন্দ্রনাথ (rabIndranAth) → rabindranath

Source Language			Target Language	
Previous TU	TU	Next TU	Previous TU	TU
-	র	বী	-	r
র	বী	ন্দ্র	bi	r
বী	ন্দ্র	না	bi	ndra
ন্দ্র	না	থ	ndra	th
না	থ	-	th	-

Problem : Unequal number of TUs in Source and Target

- Example 1: ব্ | জ | মো | হ | ন (*brijmohan*) ↔ bri | jmo | ha | n
- Example 2: রা | ই | মা (*raima*) ↔ rai | ma
- Solution:
 - Knowledge base: Lists of Bengali conjuncts and diphthongs and their possible representations in English
- Hypothesis:
 - The problem TU in the English side has always the maximum length

Example 1:

- Same length TUs: bri and jmo
- Consult with knowledge
 - Valid conjunct: bri
 - Invalid conjunct: jmo
 - □ Split *jmo*
 - Jmo $\rightarrow j / mo$
 - New alignment of TUs

```
[বৃ|জ|মো|হ|ন↔ bri|j|mo|ha|n]
```

Example 2:

- Longest TU in English side: rai
- TU resolved to: ra | i
- Help of diphthongs

- Intermediate form of the name pair
 বা | ই | মা (*raima*) ↔ r | ai | ma]
- Matra associated with the Bengali TU that corresponds to English TU r
 - A vowel must be attached with TU r
- Final TU alignment

```
রা | ই | মা (raima) ↔ ra | i | ma
```

Solution of Knowledge base is not always sufficient

Example :

দে |ব|রা|জ (*devraj*) ↔ de | vra | j

- Longest TU in English side →vra
- vr → Valid conjunct
- Realignment using knowledge base

দে | ব | রা | জ (devraj) ↔ de | vr | a | j → Wrong alignment

- Contain constituent Bengali consonants in order and not the conjunct representation
 - Option 1: Remove the conjunct (vr) from the knowledge base Put the examples in the *Direct Example Base*
 - Option 2: Do not exclude conjunct from the knowledge base Move training examples with constituent consonant representations to the Direct Example Base

I Actual realignment : দে | ব | রা | জ (*devraj*) ↔ de | v | ra | j

Source and Target TUs may not result into one to one correspondence after the use of linguistic knowledge base

Examples:

 $\Box \quad Zero-to-one \ relationship \ [\Phi \rightarrow h]$

আ | ল্লা (*aallA*) ↔ a | lla | h

মা | ল | দা (*mAldA*) ↔ ma | l | da | h

Many-to-one relationship [আ, ই→ i]

আ | ই | ভি (*aaivi*)↔ i | vy

আ|ই|জ|ল(*aaijal*) ↔ i|zwa||

ক্ | ষ্ণ | ন | গ | র *(krishnanagar)* →kri | shna | ga | r

Step: Put such examples in the Direct Example Base

Linguistic knowledge apparently solves mapping problem sometimes

```
■ Example 1: ব | র | খা ↔ ba | rkha
```

■ Example 2: ঝা | ড় | খ | न্ড ↔ jha | rkha | nd

✓ Applying linguistic knowledge (rk→ valid conjunct)

rkha \rightarrow rk | ha (Example 1 and Example 2)

ব | ব | খা ↔ ba | rk | ha (Incorrect TU pair)

ঝা | ড় | খ | न্ড ↔ jha | rk | ha | nd (Incorrect TU pair)

- ✓ Actual TU alignment:
 - ব|র|খা↔ ba|r|kha
 - ঝা | ড় | খ | न্ড⇔jha | r | kha | nd

Step: Put such examples in the Direct Example Base

Evaluation Scheme

Evaluation Parameters:

Transliteration Unit Agreement Ratio (TUAR) and

Word Agreement Ratio (WAR)

➡ Input Bengali Word : B

⇔Gold standard transliteration of the Bengali word : E

System generated transliteration of the all input Bengali words : E/

⇔Err: Total no. of wrongly transliterated TUs in E/

⇔Err/: Total no. of erroneous names generated by the system

DTUAR = (L-Err) / L, L: No. of TUs in all E

DWAR = (S- Err[/]) / S, S: Test Sample Size

Evaluation Results

- Two Versions of each models evaluated
 - Language Independent Version (does not use the knowledge of conjuncts and/or diphthongs)
 - Language Dependent Version (uses the knowledge of conjuncts and/or diphthongs)

Training Set:

- 25,000 Bengali-English bilingual database
- Bengali names extracted from a Bengali news corpus (Ekbal and Bandyopadhyay, 2008a) and their transliterations stored manually
- Person names=18,500
- Location names=5000
- Organization names=1500

Evaluation procedure

- 5-fold cross validation
- Consistent error rates with less than 0.5% deviation for each of the 5-fold cross validation tests
- Random selection of one of the 5 subsets as the standard open test

Evaluation Results

■ Test set → 5000

Test Set Type	Sample Size	Number of TUs	Average Number of	
	(S)	(L)	TUs Per Name	
Person name	4100	18450	5	Test set statistics
Location name	675	2598	4	
Organization name	225	1305	6	

Results of Language Independent Evaluation (B2E)

Table 1 : Results with evaluation metrics [Training set: 20,000 and Test set:4000]

Model	WAR (in %)	TUAR (in %)
Baseline	52.7	76.8
A	54.4	79.5
В	62.1	84.3
С	59.6	82.2
D	72.5	85.2
E	75.3	87.8
F	76.9	91.6

Results of Language Dependent Evaluation (B2E)

Table 2 : Results with evaluation metrics [Training set: 20,000 and Test set: 5000]

Model	WAR (in %)	TUAR (in %)
Baseline	52.7	76.8
А	57.8	83.3
В	67.3	87.3
С	64.9	85.7
D	75.8	89.8
E	79.6	91.4
F	81.4	95.7

Effects of Linguistic Knowledge during B2E Transliteration

Table 2A: Results with evaluation metrics [Training set: 20,000 and Test set: 5000]

	With Linguistic Knowledge		Without Linguistic Knowledge	
Model	WAR (in %)	TUAR (in %)	WAR (in %)	TUAR(in %)
Baseline	52.7	76.8	52.7	76.8
А	57.8	83.3	54.4	79.5
В	67.3	87.3	62.1	84.3
С	64.9	85.7	59.6	82.2
D	75.8	89.8	72.5	85.2
E	79.6	91.4	75.3	87.8
F	81.4	95.7	76.9	91.6

Results of Language Independent Evaluation (E2B)

Table 3 : Results with evaluation metrics [Training set: 20,000 and Test set: 5000]

Model	WAR (in %)	TUAR (in %)
Deceline	- / -	70.0
Baseline	51.8	76.6
A	53.5	79.4
В	61.4	82.5
С	59.5	81.9
D	73.4	84.6
E	73.8	87.2
F	74.8	89.6

Results of Language Dependent Evaluation (E2B)

Table 4 : Results with evaluation metrics [Training set: 4,000 and Test set:5000]

Model	WAR (in %)	TUAR (in %)
Baseline	51.8	76.6
А	56.4	83.2
В	65.4	85.5
С	62.6	83.6
D	76.7	89.3
E	77.4	91.5
F	79.5	93.8

Effects of Linguistic Knowledge during E2B Transliteration

Table 4A: Results with evaluation metrics [Training set: 20,000 and Test set: 5000]

	Without linguistic knowledge		With linguistic knowledge	
Model	WAR (in %)	TUAR (in %)	WAR (in %)	TUAR (in %)
Baseline	51.8	76.6	51.8	76.6
A	53.5	79.4	56.4	83.2
В	61.4	82.5	65.4	85.5
С	59.5	81.9	62.6	83.6
D	73.4	84.6	76.7	89.3
E	73.8	87.2	77.4	91.5
F	74.8	89.6	79.5	93.8

Results of Language Independent Evaluation (B2E)

- 5000 bilingual examples randomly selected from the 25000 bilingual examples
 - □ Training set \rightarrow 4000 out of 5000 bilingual examples
 - □ Test set \rightarrow 1000 out of 5000 bilingual examples

Table 5 : Results with evaluation metrics [Training set: 4,000 and Test set: 1000]

Model	WAR (in %)	TUAR (in %)
Baseline	47.1	71.3
A	47.2	75.3
В	54.9	79.6
С	54.6	78.1
D	58.9	80.2
E	62.4	83.3
F	66.3	86.5

Effects of Linguistic Knowledge during B2E Transliteration

Table 5A: Results with evaluation metrics [Training set: 4,000 and Test set: 1000]

	Without Linguistic Knowledge		With Linguistic Knowledge	
Model	WAR (in %)	TUAR (in %)	WAR (in %)	TUAR(in %)
Baseline	47.1	71.3	47.1	71.3
А	47.2	75.3	49.3	77.2
В	54.9	79.6	58.2	81.6
С	54.6	78.1	56.8	80.7
D	58.9	80.2	60.8	82.2
E	62.4	83.3	65.7	86.4
F	66.3	86.5	69.8	89.6

Effects of Data Size during B2E Transliteration

	Training =4000, Test=1000		Training =20000, Test=5000	
Model	WAR (in %)	TUAR (in %)	WAR (in %)	TUAR(in %)
Baseline	47.1	71.3	52.7	76.8
А	49.3	77.2	57.8	83.3
В	58.2	81.6	67.3	87.3
С	56.8	80.7	64.9	85.7
D	60.8	82.2	75.8	89.8
E	65.7	86.4	79.6	91.4
F	69.8	89.6	81.4	95.7

Results of Language Independent Evaluation (E2B)

Table 6 : Results with evaluation metrics [Training set: 4000 and Test set:1000]

Model	WAR (in %)	TUAR (in %)
Baseline	45.9	70.2
A	45.4	74.9
В	50.6	76.5
С	48.6	75.9
D	57.6	77.6
E	61.9	81.8
F	65.7	85.5

Effects of Linguistic Knowledge during E2B Transliteration

Table 6A: Results with evaluation metrics [Training set: 4000 and Test set: 1000]

	Without linguistic knowledge		With linguistic knowledge	
Model	WAR (in %)	TUAR (in %)	WAR (in %)	TUAR (in %)
Baseline	45.9	70.2	45.9	70.2
A	45.4	74.9	47.2	76.3
В	50.6	76.5	52.5	79.3
С	48.6	75.9	51.6	78.5
D	57.6	77.6	60.5	81.7
E	61.9	81.8	64.3	84.1
F	65.7	85.5	67.9	87.5

Effects of Data Size during E2B Transliteration

	Training =4000, Test=1000		Training =20000, Test=5000	
Model	WAR (in %)	TUAR (in %)	WAR (in %)	TUAR(in %)
Baseline	45.9	70.2	52.7	76.8
А	47.2	76.3	57.8	83.3
В	52.5	79.3	67.3	87.3
С	51.6	78.5	64.9	85.7
D	60.5	81.7	75.8	89.8
E	64.3	84.1	79.6	91.4
F	67.9	87.5	81.4	95.7

Results for Hindi to English Transliteration

- Training Set: Created from the 4000 Bengali-English examples with the help of GIST SDK toolkit (http://www.cdac.in/html/gist/down/sdk_d.asp)
- Some manual corrections required after the font conversions

Model	WAR (in %)	TUAR (in %)
А	45.3	73.8
В	54.4	78.4
С	52.6	77.3
D	56.3	80.2
E	61.4	81.7
F	64.8	85.7

Results for Telugu to English Transliteration

- Training Set: Created from the 4000 Bengali-English examples with the help of GIST SDK toolkit (http://www.cdac.in/html/gist/down/sdk_d.asp)
- Some manual corrections

Model	WAR (in %)	TUAR (in %)
А	42.7	71.8
В	51.7	75.3
С	49.7	74.9
D	54.6	78.2
E	59.2	79.7
F	62.2	82.4

Conclusion

- Modified Joint Source-Channel Model (Model F) performs best in all the cases
- Linguistic knowledge helps to improve system performance
- Most of the errors are t the matra level, i.e., a short matra might have been replaced by a long matra or vice versa
- More linguistic knowledge is necessary to disambiguate the short and the long vowels and the *matra* representations in Bengali
- Inclusion of triphthongs and tetraphthongs
- TU alignment process is general and applicable for the pair of languages that share a comparable orthography

Relevant Publications

- A. Ekbal, S. Naskar and S. Bandyopadhyay (2007). Named Entity Transliteration. International Journal of Computer Processing of Oriental Languages (IJCPOL), Vol. 20(4), 289-310, World Scientific Press, Singapore.
- 2. A. Ekbal, S. Naskar and S. Bandyopadhyay (2007). Language Independent Named Entity Transliteration. In *Proceedings of 3rd Indian International Conference on Artificial Intelligence, Natural Language Independent Engineering Track,* India, PP: 1936-1950.
- 3. A. Ekbal, S. Naskar and S. Bandyopadhyay (2006). A Modified Joint Source-Channel Model for Transliteration. In *Proceedings of COLING/ACL 2006*, Sydney, Australia, pp. 191-198.