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Introduction

Distributional Hypothesis

You shall know a word by the company it keeps (Firth, 1957).

A word’s context provides information about its meaning.
Words are similar if they share similar linguistic contexts.
Distributional vs. semantic similarity.
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Introduction

A Simple Semantic Space

Stuart B. Opotowsky was named vice president for
this company with interests in insurance, tobacco, ho-
tels and broadcasting.

Select 2,000 most common content words as contexts.
Five word context window each side of the target word.
Convert counts to probabilities: p(c|w).

Divide through by probabilities of each context word: p(c|w)
p(c) .

Cosine similarity: sim(w1,w2) = w1·w2
|w1||w2| .
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Introduction

A Simple Semantic Space

vice president interests insurance . . .
company 1 1 1 1 . . .

Select 2,000 most common content words as contexts.
Five word context window each side of the target word.

Convert counts to probabilities: p(c|w).
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Introduction

A Simple Semantic Space

vice president tax interests . . .
company 25 103 19 55 . . .

Select 2,000 most common content words as contexts.
Five word context window each side of the target word.

Convert counts to probabilities: p(c|w).

Divide through by probabilities of each context word: p(c|w)
p(c) .

Cosine similarity: sim(w1,w2) = w1·w2
|w1||w2| .
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Introduction

A Simple Semantic Space

vice president tax interests . . .
company 0.06 0.26 0.05 0.14 . . .

Select 2,000 most common content words as contexts.
Five word context window each side of the target word.
Convert counts to probabilities: p(c|w).

Divide through by probabilities of each context word: p(c|w)
p(c) .

Cosine similarity: sim(w1,w2) = w1·w2
|w1||w2| .
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Introduction

A Simple Semantic Space

vice president tax interests . . .
company 1.52 2.32 1.14 1.06 . . .

Select 2,000 most common content words as contexts.
Five word context window each side of the target word.
Convert counts to probabilities: p(c|w).

Divide through by probabilities of each context word: p(c|w)
p(c) .

Cosine similarity: sim(w1,w2) = w1·w2
|w1||w2| .
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Introduction

An Alternative: Topic Models

Key Idea: documents are mixtures of topics, topics are probability
distributions over words (Blei et al., 2003; Griffiths and Steyvers, 2002;
2003; 2004).

Topic models are generative and structured. For a new document:

1 Choose a distribution over topics
2 Choose a topic at random according to distribution
3 draw a word from that topic

Statistical techniques used to invert the process: infer set of topics that
were responsible for generating a collection of documents.
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Introduction

Probabilistic Generative Process

2. Generative Models 

loan

PROBABILISTIC GENERATIVE PROCESS

TOPIC 1

money
loan
bank

money
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k

river
TOPIC 2

river

riverstream
bank

bank
stream

bank loan

DOC1: money1 bank1 loan1
bank1 money1 money1
bank1 loan1

DOC2: money1 bank1
bank2 river2 loan1 stream2
bank1 money1

DOC3: river2 bank2
stream2 bank2 river2 river2
stream2 bank2
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TOPIC 2

DOC1: money? bank? loan?
bank? money? money?
bank? loan?

DOC2: money? bank?
bank? river? loan? stream?
bank? money?

DOC3: river? bank?
stream? bank? river? river?
stream? bank?

STATISTICAL INFERENCE

?
?

?

Figure 2.
Mirella Lapata and Jeff Mitchell 6



Introduction

Statistical Inference

2. Generative Models 
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Introduction

Meaning Representation

Topic 1 Topic 2 Topic n
practical 0.39 0.02 . . .
difficulty 0.03 0.44 . . .
produce 0.06 0.17 . . .

Topic 2
difficulty
problem
situation
crisis
hardship

Topics are the dimensions of the space (500, 1000)
Vector components: probability of word given topic
Topics correspond to coarse-grained sense distinctions
Cosine similarity can be used (probabilistic alternatives)
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Introduction Semantic Space Models

Semantic Space Models

Semantic space models are extremely popular across disciplines!

Semantic Priming (Lund and Burgess, 1996)
Text comprehension (Landauer and Dumais, 1997)
Word association (McDonald, 2000)
Information Retrieval (Salton et al., 1975)
Thesaurus extraction (Grefenstette, 1994)
Word Sense disambiguation (Schütze, 1998)
Text Segmentation (Hirst, 1997)
Automatic, language independent

Catch: representation of the meaning of single words. What about
phrases or sentences?
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Introduction Semantic Space Models

Quick Fix

It was not the sales manager who hit the bottle that day, but
the office worker with the serious drinking problem.

That day the office manager, who was drinking, hit the prob-
lem sales worker with the bottle, but it was not serious.

Vector averaging: p = 1
2(u + v) (Foltz et al., 1998; Landauer et al.,

1997); syntax insensitive
Add a neighbor to the sum: p = u + v + n (Kintsch, 2001);
meaning of predicate depends on its argument
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Introduction Logic-based View

Logic-based View

Meaning of whole is function of meaning of its parts (Frege, 1957).

a horse ran

λu.λv .∃x(u@x ∧ v@x) λy .HORSE(y) λz.RUN(z)

∃x(HORSE(x) ∧ RUN(x))

Logic can account for sentential meaning (Montague, 1974).
Differences in meaning are qualitative rather than quantitative.
Cannot express degrees of similarity.
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Introduction Logic-based View

Compositionality

Partee (1995): the meaning of the whole is a function of the meaning
of the parts and of the way they are syntactically combined.

Lakoff (1977): the meaning of the whole is a greater than the meaning
of the parts.

Frege (1884): never ask the meaning of a word in isolation but only in
the context of a statement.

Pinker (1994): composition of simple elements must allow the
construction of novel meanings which go beyond those of the
individual elements.
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Introduction Connectionism

Connectionism

v3

v2

v1

u1v3

u1v2

u1v1

u2v3

u2v2

u2v1

u3v3

u3v2

u3v1

u1 u2 u3

Tensor products: p = u⊗ v (Smolensky, 1990); dimensionality

Circular convolution: p = u ~ v (Plate, 1991); components are
randomly distributed
Spatter codes: take the XOR of two vectors (Kanerva, 1998);
components are random bits
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Composition Models

A Framework for Semantic Composition

p = f (u,v,R ,K)

composition of u,v

syntactic relationship

background knowledge

Assumptions:
1 eliminate background knowledge K
2 vary syntactic relationship R
3 p is in same space as u and v
4 f () is a linear function of Cartesian product (additive model)
5 f () is a linear function of tensor product (multiplicative model)
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Composition Models

Models

Additive Models

p = Au + Bv

Instances

p = u + v

p = u + v +
∑

i
ni

p = αu + βv

p = v

music solution economy craft create
practical 0 6 2 10 4
difficulty 1 8 4 4 0
problem 2 15 7 9 1

practical + difficulty = [1 14 6 14 4]

practical + difficulty + problem = [3 29 13 23 5]

0.4 · practical + 0.6 · difficulty = [0.6 5.6 3.2 6.4 1.6]

difficulty = [1 8 4 4 0]
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Composition Models

Models

Multiplicative Models

p = Cuv

Instances

p = u� v
pi = uivi

p = u⊗ v
pi,j = ui · vj

p = u ~ v
pi =

∑
j uj · vi−j

music solution economy craft create
practical 0 6 2 10 4
difficulty 1 8 4 4 0

practical� difficulty = [0 48 8 40 0]

practical⊗difficulty =

0 0 0 0 0
6 48 24 24 0
2 16 8 8 0

10 80 40 40 0
4 32 16 16 0

practical ~ difficulty = [116 50 66 62 80]
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Composition Models

Models

Dilation Models

p = Cuv = Uv
Uij = 0,Uii = ui

x = u·v
u·uu y = v− x = v− u·v

u·uu

v′
= λx + y = (λ− 1)u·v

u·uu + v

p = (λ− 1)(u · v)u + (u · u)v
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Dilation Models

p = Cuv = Uv
Uij = 0,Uii = ui

x = u·v
u·uu y = v− x = v− u·v

u·uu

v′
= λx + y = (λ− 1)u·v

u·uu + v
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Evaluation Phrase Similarity Task

Phrase Similarity Task

Originally proposed in Kintsch (2002):

Elicit similarity judgments for adjective-noun, noun-noun,
verb-object combinations.
Phrase pairs from three bands: High, Medium, Low.
Compute vectors for phrases, measure their similarity.
Correlate model similarities with human ratings.

High Medium Low
old person elderly lady right hand small house
kitchen door bedroom window office worker housing department
produce effect achieve result consider matter start work
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Evaluation Phrase Similarity Task

Experimental Setup

Similarity Ratings
36 pairs (adj-noun, noun-noun, verb-noun) × 3 bands
(324 pairs in total, created automatically, substitutability test)
Ratings collected using Webexp (90 participants)
Participants use 7-point similarity scale

Semantic Space
Compare simple semantic space against LDA topic model
(Blei et al. 2003)
2000 dimensions vs 100 topics, using cosine similarity measure
Parameters for composition models tuned on dev set

Mirella Lapata and Jeff Mitchell 19



Evaluation Phrase Similarity Task

Results (for verb-obj)

Model Simple LDA
Additive 0.30 0.40
Kintsch 0.29 0.33
Weighted Additive 0.34 0.40
Multiplicative 0.37 0.34
Tensor Product 0.33 0.33
Circular Convolution 0.10 0.12
Dilation 0.38 0.41
Head Only 0.24 0.17
Humans 0.55

Multiplicative and dilation models best for simple space
Dilation and Additive models best for LDA model
Circular convolution is worst performing model
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Evaluation Phrase Similarity Task

Interim Summary

General framework of semantic composition
Different composition functions appropriate for different
representations (additive vs. multiplicative)
Dilation models overall best, syntax sensitive, parametric
Results generalize to noun-noun, adj-noun, verb-obj combinations
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Evaluation Phrase Similarity Task

Modeling Brain Activity

Tom Mitchell and collaborators
Wang et al., 2003; Mitchell et al., 2004; Mitchell et al., 2008;
Hutchinson et al., 2009; Chang et al., 2009; Rustandi, 2009

Can we observe differences in neural activity as people think
about different concepts?
Can we use vector-based models to explain observed neural
activity?

Mirella Lapata and Jeff Mitchell 22



Evaluation Phrase Similarity Task

Functional MRI

Monitors brain activity when people comprehend words or phrases.
Measures changes related to blood flow and blood oxygenation.
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Evaluation Phrase Similarity Task

Functional MRI

soft bear

strong dog
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Evaluation Phrase Similarity Task

Chang et al. (ACL, 2009)

Participants see adjective-noun phrases
Adjectives emphasize semantic properties of nouns
Use vector-based models to account for variance in neural activity.
Train regression model to fit activation profile of stimuli
Multiplicative model outperforms non-compositional and additive
model.

Mirella Lapata and Jeff Mitchell 25



Evaluation Phrase Similarity Task

Interim Summary

General framework of semantic composition
Different composition functions appropriate for different
representations (additive vs. multiplicative)
Dilation models overall best, syntax sensitive, parametric
Results generalize to noun-noun, adj-noun, verb-obj combinations
What are composition models good for?

modeling brain activity
sentential priming, inductive inference
textual entailment, information retrieval, language modeling
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Evaluation Language Modeling

Language Modeling

What is the next word?

He is now president and chief operating

officer of the company.
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Evaluation Language Modeling

Language Modeling

What is the next word?

He is now president and chief operating officer of the company.

Given semantic representations for ‘president’, ‘chief’, ‘operating’ and
‘officer’ how do we combine them to make the most predictive
representation of this history?

Mirella Lapata and Jeff Mitchell 27



Evaluation Language Modeling

Language Modeling

Use vector composition in a language model as a way of capturing
long-range dependencies.
Not a new idea: Bellegarda (2000), Coccaro & Jurafsky (1998),
Gildea & Hofmann (1999), Deng and Khundapur (2003)
How to combine vectors? How to construct them?
Focus on multiplicative and additive models.

Mirella Lapata and Jeff Mitchell 28



Evaluation Language Modeling

A Language Model Based on Vector Composition

He is now president and chief operating officer of the company
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Evaluation Language Modeling

Experimental Setup

BLLIP Corpus
Training set - 38M words
Development set - 50K words
Test set - 50K words

Numbers replaced with <NUM>
Vocabulary of 20K word types
Others replaced with <UNK>
Perplexity of model predictions on test set
Compare simple semantic space against LDA topic model

Mirella Lapata and Jeff Mitchell 30



Evaluation Language Modeling

Integrating with an Ngram model

Linear interpolation
λp1(w) + (1− λ)p2(w)

But this will be most effective when models comparable in
predictiveness.

Modify p(w |h)

p(wn)
∑ p(ci |wn)

p(ci )
p(ci |h)
p(ci )

p(ci)

p(wn|wn−1,wn−2)
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Evaluation Language Modeling
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Evaluation Language Modeling

Comparison to Parsing

Model incorporates semantic dependencies into a trigram model.
Increases the probability of upcoming words which are
semantically similar to the history.
Syntactic information also captures long-range dependencies.
Language models based on syntactic structure.
Interpolate composition models with Roark’s (2001) parser.
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Evaluation Language Modeling
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Conclusions

Conclusions

Work so far
Vector composition for phrase similarity and language modeling
Compared a simple semantic space to LDA
Different composition functions appropriate for each model
Semantic dependencies complementary to syntactic ones
Cognitive Science (to appear), ACL 2008, EMNLP 2009.

Future work
Incorporate syntax into composition (parser that outputs a
compositional vector-based representation of a sentence)
Optimize vectors and composition function on specific tasks
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