

The Web as a Corpus: Going Beyond the n-gram

Preslav Nakov

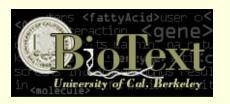
National University of Singapore (joint work with Marti Hearst, UC Berkeley)

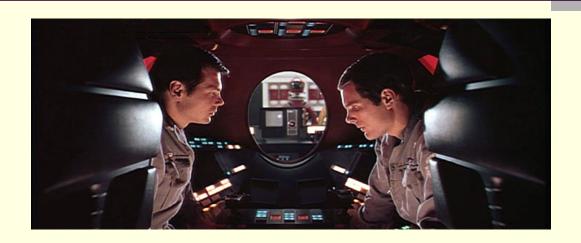
Plan

- Introduction
- Surface Features & Paraphrases
- Syntactic Tasks
- Semantic Tasks
- Application to Machine Translation

Introduction

NLP: The Dream

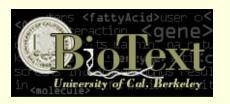




This is too hard!

So, we tackle sub-problems instead.

How to Tackle the Problem?



- The field was stuck for quite some time.
 - e.g., CYC: manually annotate all semantic concepts and relations

- A new statistical approach started in the 90s
 - Get <u>large</u> text collections.
 - Compute statistics (over the words).

Size Matters

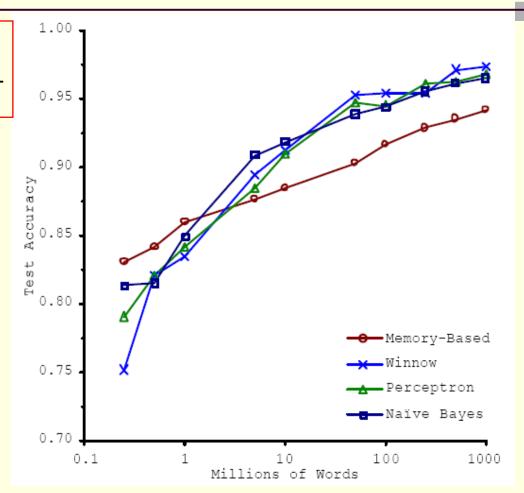
Banko & Brill '01: "Scaling to Very, Very Large Corpora for Natural Language Disambiguation", ACL

Spelling correction: Which word should we use?
<principal> <principle>

- Use context:
 - I am in my third year as the <u>principal</u> of Anamosa High School.
 - Power without <u>principle</u> is barren, but <u>principle</u> without power is futile. (Tony Blair)

Bigger is better than smarter!

For this problem, one can get a lot of training data.



Banko & Brill '01

Great idea!
Can it be
extended to
other tasks?

- Log-linear improvement even to a billion words!
- Getting more data is better than fine-tuning algorithms!

Web as a Baseline

- "Web as a baseline" (Lapata & Keller 04;05): applied simple n-gram models to
 - machine translation candidate selection
 - article generation
 - noun compound interpretation
 - noun compound bracketing
 - adjective ordering
 - spelling correction
 - countability detection
 - prepositional phrase attachment

Significantly better than the best supervised algorithm.

These are all UNSUPERVISED!

Their conclusion:

=> Web n-grams should be used as a baseline.

Contribution

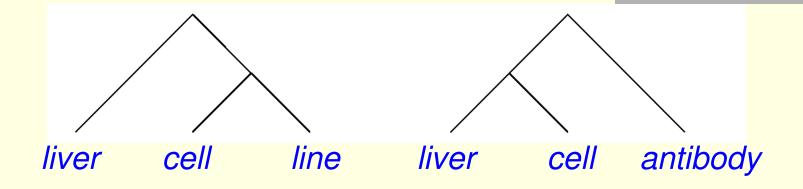
- New features
 - paraphrases
 - surface features

The ultimate goal

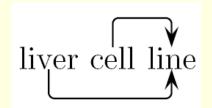
Use the Web as a <u>corpus</u>, and not just as a source of page hit frequencies!

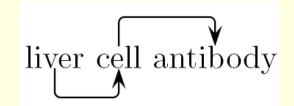
Noun Compound Bracketing

Noun Compound Bracketing: The Problem



- (a) [liver [cell line]] (right bracketing)
- (b) [[liver cell] antibody] (left bracketing)
- In (a), the cell line is derived from the liver.
- In (b), the antibody targets the liver cell.





Measuring Word Associations

Using *n*-gram Statistics

Frequencies

- Dependency: $\#(w_1, w_2)$ vs. $\#(w_1, w_3)$
- Adjacency: $\#(w_1, w_2)$ vs. $\#(w_2, w_3)$

Probabilities

- Dependency: $Pr(w_1 \rightarrow w_2 | w_2)$ vs. $Pr(w_1 \rightarrow w_3 | w_3)$
- Adjacency: $Pr(w_1 \rightarrow w_2 | w_2)$ vs. $Pr(w_2 \rightarrow w_3 | w_3)$
- Also: Pointwise Mutual Information, Chi Square, etc.

Web-derived Surface Features

Here starts the new work...

Observations

- Authors often disambiguate noun compounds using surface markers.
- The enormous size of the Web makes them frequent enough to be useful.

Idea

Look for instances of the target noun compound where it occurs with suitable surface markers.

Web-derived Surface Features: Dash (hyphen)

- Left dash
 - cell-cycle analysis → left

- Right dash
 - donor T-cell → right

Web-derived Surface Features: Possessive Marker

- Attached to the first word
 - brain's stem cell → right

- Attached to the second word
 - brain stem's cell → left

Web-derived Surface Features: Capitalization

- don't-care lowercase uppercase
 - Plasmodium vivax Malaria → left
 - plasmodium vivax Malaria > left

- lowercase uppercase don't-care
 - brain Stem cell → right
 - brain Stem Cell → right

Web-derived Surface Features: Embedded Slash

- Left embedded slash
 - leukemia/lymphoma cell → right

Web-derived Surface Features: Parentheses

- Single word
 - growth factor (beta) → left
 - (brain) stem cell → right

- Two words
 - (growth factor) beta → left
 - brain (stem cell) → right

Web-derived Surface Features: Comma, dot, column, semi-column,...

- Following the second word
 - lung cancer: patients → left
 - health care, provider → left
- Following the first word
 - home. health care → right
 - adult, male rat → right

Web-derived Surface Features: Dash to External Word

- External word to the left
 - mouse-brain stem cell → right

- External word to the right
 - tumor necrosis factor-alpha → left

Web-derived Surface Features: Problems & Solutions

- Problem: search engines ignore punctuation
 - "brain-stem cell" does not work

Solution:

- query for "brain stem cell"
- obtain 1,000 document summaries
- scan for the features in these summaries

One can get much more than 1,000 results using the "*" operator and inflections.

Other Web-derived Features: Abbreviation

- After the second word
 - tumor necrosis (TN) factor → left
- After the third word
 - tumor necrosis factor (NF) → right
- Query for e.g., "tumor necrosis tn factor" "tumor necrosis factor nf"

Other Web-derived Features: Concatenation

- Consider "health care reform"
 - healthcare : 79,500,000
 - carereform : 269
 - healthreform: 812
- Adjacency model
 - healthcare vs. carereform
- Dependency model
 - healthcare vs. healthreform
- Triples

Tests for lexicalization

"healthcare reform" vs. "health carereform"

Other Web-derived Features: Using the star operator "*"

- Single star
 - "health care * reform" → left
 - "health * care reform" → right
- More stars and/or reverse order
 - "care reform * * health" → right
 - "reform * * * health care" → left

Other Web-derived Features: Reorder

- Reorders for "health care reform"
 - "care reform health" → right
 - "reform health care" → left

Other Web-derived Features: Internal Inflection Variability

- First word
 - bone mineral density
 - bones mineral density
- → right

- Second word
 - bone mineral density

 left
 - bone minerals density

Other Web-derived Features: Switch The First Two Words

- Predict right, if we can reorder
 - adult male rat as
 - male adult rat

Paraphrases

"bone marrow cell": left- or right-bracketed?

Prepositional

- <u>cells</u> in (the) bone marrow → left (61,700)
- <u>cells from</u> (the) <u>bone marrow</u> → left (16,500)
- marrow cells from (the) bone → right (12)

Verbal

- <u>cells extracted from</u> (the) <u>bone marrow</u> \rightarrow left (17)
- <u>marrow cells found in (the) bone</u> → right (1)

Copula

<u>cells</u> that are bone marrow → left (3)

Evaluation

- Method: Exact phrase queries limited to English
- Dataset: Lauer's Dataset
 - 244 noun compounds from Grolier's encyclopedia

	Bracketing		
minority	business	development	left
satellite	data	systems	right
disaster	relief	assistance	left
county	extension	agents	right
world	food	production	right
granary	storage	baskets	right
customs	enforcement	vehicles	left
airport	security	improvements	left

Evaluation Results (1)

Co-occurrences

Model	Correct	Wrong	N/A	Prec.	Cover.
# adjacency	183	61	0	$75.00{\pm}5.79$	100.00
Pr adjacency	180	64	0	$73.77{\pm}5.86$	100.00
PMI adjacency	182	62	0	$74.59{\pm}5.81$	100.00
χ^2 adjacency	184	60	0	$75.41{\pm}5.77$	100.00
# dependency	193	50	1	$79.42{\pm}5.52$	99.59
Pr dependency (= PMI dep.)	194	50	0	$79.51{\pm}5.50$	100.00
χ^2 dependency	195	49	0	$79.92{\pm}5.47$	100.00
# adjacency (*)	152	41	51	$78.76{\pm}6.30$	79.10
# adjacency (**)	162	43	39	$79.02{\pm}6.08$	84.02
# adjacency (***)	150	51	43	$74.63{\pm}6.44$	82.38
# adjacency (*, rev.)	163	48	33	$77.25{\pm}6.11$	86.47
# adjacency (**, rev.)	165	51	28	$76.39{\pm}6.09$	88.52
# adjacency (***, rev.)	156	57	31	$73.24{\pm}6.32$	87.30

Evaluation Results (2)

Paraphrases, surface features, majority vote

Model	Correct	Wrong	N/A	Prec.	Cover.
Concatenation adjacency	175	48	21	$78.48{\pm}5.85$	91.39
Concatenation dependency	167	41	36	$80.29{\pm}5.93$	85.25
Concatenation triples	76	3	165	$96.20{\pm}6.78$	32.38
Inflection variability	69	36	139	65.71 ± 9.49	43.03
Swap first two words	66	38	140	$63.46{\pm}9.58$	42.62
Reorder	112	40	92	$73.68 {\pm} 7.52$	62.30
Abbreviations	21	3	220	$87.50{\pm}18.50$	9.84
Possessives	32	4	208	$88.89{\pm}14.20$	14.75
Paraphrases	174	38	32	$82.08{\pm}5.72$	86.89
Surface features (sum)	183	31	30	$85.51{\pm}5.34$	87.70
Majority vote	210	22	12	$90.52 {\pm} 4.46$	95.08
Majority vote, then default to 'left'	218	26	0	$89.34{\pm}4.50$	100.00
Baseline (choose left)	163	81	0	$66.80{\pm}6.13$	100.00

Comparison to Others

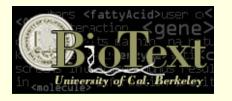
Model	Accuracy (%)
baseline (left)	66.80 ± 6.13
[Lauer, 1995] adjacency	68.90 ± 6.07
[Lauer, 1995] dependency	77.50 ± 5.65
$My \chi^2 dependency$	79.92 ± 5.47
[Lauer, 1995] tuned	80.70 ± 5.41
$My \; majority \; vote ightarrow left$	$89.34{\pm}4.50$
[Lapata and Keller, 2004]: baseline (122 examples)	63.93 ± 8.83
[Lapata and Keller, 2004]: best BNC (122 examples)	68.03 ± 8.72
[Lapata and Keller, 2004]: best Alta Vista (122 examples)	78.68 ± 8.08
*[Girju et al., 2005]: best C5.0 (shuffled dataset)	83.10 ± 5.20

Application: Query Segmentation

S. Bergsma, Q. Wang. Learning Noun Phrase Query Segmentation. EMNLP'07, pp. 819-826.

- Segmentation
 - [used car parts]
 - [used car] [parts]
 - [used] [car parts]
 - [used] [car] [parts]

- Bracketing
 - [[used car] parts]
 - [used [car parts]]



Prepositional Phrase Attachment

PP attachment

PP combines with the NP to form another NP

(a) Peter spent millions of dollars.

(noun)

(b) Peter spent time with his family.

(verb)

PP is an indirect object of the verb

quadruple: (v, n1, p, n2)

- (a) (spent, millions, of, dollars)
- (b) (spent, time, with, family)

Results

Model	P(%)	R (%)
Baseline (noun attach)	41.82	100.00
#(x,p)	58.91	83.97
$\Pr(p x)$	66.81	83.97
$\Pr(p x)$ smoothed	66.81	83.97
$\#(x,p,n_2)$	65.78	81.02
$\Pr(p, n_2 x)$	68.34	81.62
$\Pr(p, n_2 x)$ smoothed	68.46	83.97
(1) " $v n_2 n_1$ "	59.29	22.06
$(2) "p n_2 v n_1"$	57.79	71.58
$(3) "n_1 * p n_2 v"$	65.78	20.73
$(4) "v p n_2 n_1"$	81.05	8.75
(5) " v pronoun p n_2 "	75.30	30.40
(6) "be $n_1 p n_2$ "	63.65	30.54
n_1 is pronoun	98.48	3.04
v is to be	79.23	9.53
Surface features (summed)	73.13	9.26
Maj. vote, of \rightarrow noun	85.01±1.21	91.77
Maj. vote, of \rightarrow noun, $N/A \rightarrow verb$	83.63±1.30	100.00

Simpler but not significantly different from 84.3% (Pantel&Lin,00).

Noun Phrase Coordination

NP Coordination: Ellipsis

- Ellipsis
 - car and truck production
 - means car production and truck production

- No ellipsis
 - president and chief executive

NP Coordination: Ellipsis

- Penn Treebank annotations
 - ellipsis:
 (NP car/NN and/CC truck/NN production/NN).
 - no ellipsis:
 (NP
 (NP president/NN)
 and/CC
 (NP chief/NN executive/NN))

Results 428 examples from Penn TB

Model	P (%)	R (%)
Baseline: ellipsis	56.54	100.00
(n_1,h) vs. (n_2,h)	80.33	28.50
(n_1,h) vs. (n_1,c,n_2)	61.14	45.09
(n_2, c, n_1, h)	88.33	14.02
(n_2, h, c, n_1)	76.60	21.96
(n_1, h, c, n_2, h)	75.00	6.54
(n_2, h, c, n_1, h)	78.67	17.52
Heuristic 1	75.00	0.93
Heuristic 4	64.29	6.54
Heuristic 5	61.54	12.15
Heuristic 6	87.09	7.24
Number agreement	72.22	46.26
Surface sum	82.80	21.73
Majority vote	83.82	80.84
Majority vote, $N/A \rightarrow$ no ellipsis	80.61	100.00

Comparable to other researchers (but no standard dataset). 40

Paraphrasing Noun Compounds

Noun Compound Semantics

- Traditionally choose <u>one</u> <u>abstract</u> relation
 - Fixed set of abstract relations (Girju&al.,2005)
 - malaria mosquito → CAUSE

 - olive oil → SOURCE
 - **Prepositions** (Lauer, 1995):
 - malaria mosquito → WITH
 - olive oil
- → FROM
- **Recoverably Deletable Predicates** (Levi, 1978):
 - malaria mosquito → CAUSE
 - olive oil
 → FROM
- Our approach: use multiple paraphrasing verbs
 - **Paraphrasing verbs**
 - malaria mosquito -> carries, spreads, causes, transmits, brings, has
 - olive oil

→ comes from, is obtained from, is extracted #om

NC Semantics: Method

pre-modifier

■ For NC "noun1 noun2", query for:

THAT can be that, which or who; up to 8 "*"s.

- POS tag the snippets.
- Extract verbal paraphrases.

NC Semantics: Sample Verbal Paraphrases

Verbs+prepositions for *migraine treatment*

- 7 prevent
- 3 be given for
- 3 be for
- 2 reduce
- 2 benefit
- 1 relieve

Example: Treatments

Dynamic componential analysis

	"cancer treatment"	"migraine treatment"	"wrinkle treatment"	"herb treatment"
treat	+	+	+	_
prevent	+	+	_	_
cure	+	_	_	_
reduce	_	+	+	_
smooth	_	_	+	_
contain	_	_	_	+
use	_	_	_	+

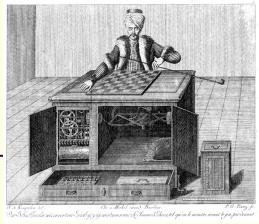
Classic componential analysis

	man	woman	boy	bull
ANIMATE	+	+	+	+
HUMAN	+	+	+	_
MALE	+	_	+	+
ADULT	+	+	_	+

Comparing to (Girju&al.,05)

Sem. relation	Example	Verbs extracted
POSSESSION	"family estate"	be in(29), be held by(9), be owned by(7)
TEMPORAL	"night flight"	arrive at(19), leave at(16), be at(6), be conducted at(6), occur at(5)
IS-A (HYPERNYMY)	"Dallas city"	include(9)
CAUSE	"malaria mosquito"	carry(23), spread(16), cause(12), transmit(9), bring(7), have(4),
		be infected with (3) , be responsible for (3) , test positive for (3) ,
		infect many with(3), be needed for(3), pass on(2), give(2), give out(2)
MAKE/PRODUCE	"shoe factory"	produce(28), make(13), manufacture(11)
INSTRUMENT	"pump drainage"	be controlled through(3), use(2)
LOCATION/SPACE	"Texas university"	$\frac{be(5)}{be(4)}$
PURPOSE	"migraine drug"	treat(11), be used for(9), prevent(7), work for(6), stop(4), help(4), work(4)
		be prescribed for (3), relieve (3), block (3), be effective for(3), be for(3),
		help ward off(3), seem effective against(3), end(3), reduce(2), cure(2)
SOURCE	"olive oil"	come from (13), be obtained from (11), be extracted from (10),
		be made from (9), be produced from (7), be released from (4), taste like (4),
		be beaten from(3), be produced with(3), emerge from(3)
TOPIC	"art museum"	focus on(29) , display(16), bring(14) , highlight(11) , house(10), exhibit(9)
		demonstrate(8), feature(7), show(5), tell about(4), cover(4), concentrate in(4)
MEANS	"bus service"	use(14), operate(6), include(6)
EXPERIENCER	"disease victim"	spread(12), acquire(12), suffer from(8), die of(7), develop(7), contract(6),
		catch(6), be diagnosed with(6), have(5), beat(5), be infected by(4), survive(4),
		die from(4), $get(4)$, $pass(3)$, fall by(3), $transmit(3)$, $avoid(3)$
THEME	"car salesman"	sell(38), mean inside(13), buy(7), travel by(5), pay for(4), deliver(3), push(3)
		demonstrate (3), purr (3), bring used(3) , <i>know more about</i> (3), <i>pour through</i> (3)
RESULT	"combustion gas"	support(22), result from(14), be produced during(11), be produced by(8),
		be formed from(8), form during(8), be created during(7), originate from(6),
		be generated by(6), develop with(6), come from(5), be cooled(5)

Amazon's Mechanical Turk: *Malaria Mosquito*



Five judges: The program: 5 carries ← 23 carry 16 spread 3 causes [₹] 12 cause 2 transmits 9 transmit 2 infects with 7 bring ■ 1 has 4 have 1 supplies 3 be infected with 3 be responsible for

MTurk: Comparison to 30 Humans

0.96 "blood donor" NOMINALIZATION:AGENT

MTurk: give(30), donate(16), supply(8), provide(6), share(2), contribute(1), volunteer(1), offer(1), choose(1), hand over(1), ...

Web: give(653), donate(395), receive(74), sell(41), provide(39), supply(17), be(13), match(11), contribute(10), offer(9), . . .

0.95 "women professors" BE

MTurk: <u>be(22)</u>, <u>teach(2)</u>, look like(2), be born(2), <u>research(1)</u>, <u>study(1)</u>, be comprised of(1), behave like(1), include(1), be gendered(1), . . .

Web: <u>be(251)</u>, <u>teach(46)</u>, <u>study(38)</u>, specialize in(26), appear as(13), think(10), take(10), <u>research(9)</u>, work with(9), think that(9), . . .

0.94 "student friends" BE

MTurk: $\underline{\text{be}(18)}$, $\underline{\text{come from}(2)}$, $\underline{\text{help}(2)}$, be had by(2), be made by(2), $\underline{\text{include}(1)}$, $\underline{\text{involve}(1)}$, $\underline{\text{act like}(1)}$, $\underline{\text{live as}(1)}$, work as(1), . . .

Web: <u>be(1250)</u>, have(34), <u>support(33)</u>, know(31), teach(22), give(21), <u>meet as(19)</u>, <u>help(16)</u>, guide(15), pose as(12),

0.93 "city wall" HAVE₂

MTurk: <u>surround(24)</u>, <u>protect(10)</u>, <u>enclose(8)</u>, <u>encircle(7)</u>, <u>encompass(3)</u>, be in(3), <u>contain(2)</u>, <u>snake around(1)</u>, border(1), go around(1), . . .

Web: surround(708), encircle(203), protect(191), divide(176), enclose(72), separate(49), ring(41), be(34), encompass(25), defend(25), . . .

Average cosine correlation

Average cosine correlation (in %) between human- and program-generated verbs for the Levi-250 dataset.

Min # of	Number of	Correlation with Humans		
Web Verbs	Compounds	Using All Verbs	First Verb Only	
0	250	31.8%	30.6%	
1	236	33.7%	32.4%	
3	216	35.4%	34.1%	
5	203	36.9%	35.6%	
10	175	37.3%	35.5%	

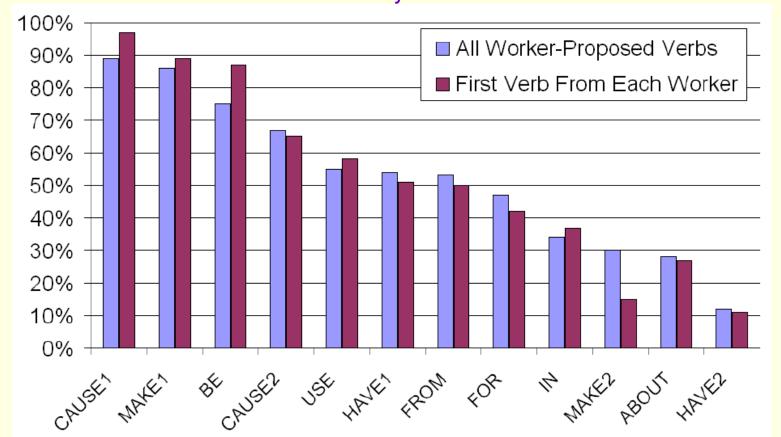
$$cos(\overrightarrow{h}, \overrightarrow{p}) = \frac{\sum_{i=1}^{n} h_i p_i}{\sqrt{\sum_{i=1}^{n} h_i^2} \sqrt{\sum_{i=1}^{n} p_i^2}}$$

Levi's Recoverably Deletable Predicates

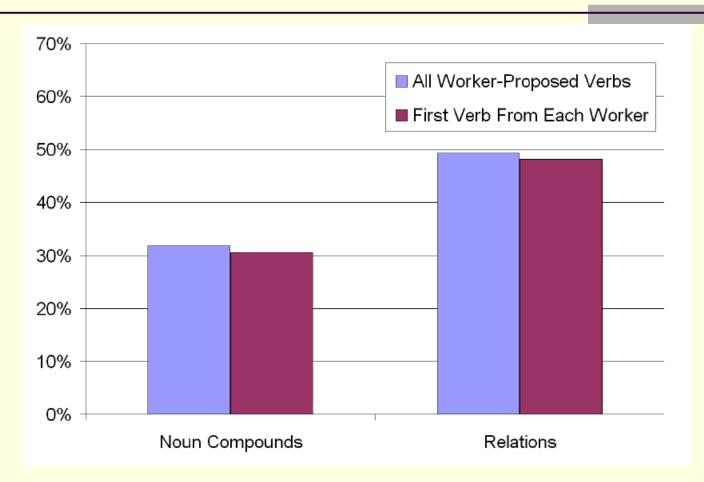
RDP	Example	Subj/obj	Traditional Name
CAUSE ₁	tear gas	object	causative
\mathtt{CAUSE}_2	drug deaths	subject	causative
${\tt HAVE}_1$	apple cake	object	possessive/dative
${\tt HAVE}_2$	lemon peel	subject	possessive/dative
\mathtt{MAKE}_1	silkworm	object	productive/composit.
\mathtt{MAKE}_2	snowball	subject	productive/composit.
USE	steam iron	object	instrumental
BE	soldier ant	object	essive/appositional
IN	field mouse	object	locative
FOR	horse doctor	object	purposive/benefactive
FROM	olive oil	object	source/ablative
ABOUT	price war	object	topic

MTurk (human) vs. Web (program): Aggregated by Levi's RDP

Cosine correlation (in %s) between the human- and the programgenerated verbs by Levi's RDP: using all human-proposed verbs vs. using the first verb from each worker only.



Average Cosine Correlation



- Left: calculated for each noun compound
- Right: aggregated by relation

Predicting Abstract Semantic Relations

Levi's Recoverably Deletable Predicates

RDP	Example	Subj/obj	Traditional Name
CAUSE ₁	tear gas	object	causative
\mathtt{CAUSE}_2	drug deaths	subject	causative
${\tt HAVE}_1$	apple cake	object	possessive/dative
${\tt HAVE}_2$	lemon peel	subject	possessive/dative
\mathtt{MAKE}_1	silkworm	object	productive/composit.
\mathtt{MAKE}_2	snowball	subject	productive/composit.
USE	steam iron	object	instrumental
BE	soldier ant	object	essive/appositional
IN	field mouse	object	locative
FOR	horse doctor	object	purposive/benefactive
FROM	olive oil	object	source/ablative
ABOUT	price war	object	topic

Search Engine Queries

Given noun1 and noun2, query for:

```
"noun2 * noun1"
"noun1 * noun2"
```

Use up to 8 "*"s.

- POS tag the snippets.
- Extract: verbs, prep, verb+prep, coordinations.

Most Frequent Features for *committee member*

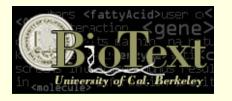
Freq.	Feature	POS	Direction
2205	of	P	$2 \rightarrow 1$
1923	be	V	$1 \rightarrow 2$
771	include	V	$1 \rightarrow 2$
382	serve on	V	$2 \rightarrow 1$
189	chair	V	$2 \rightarrow 1$
189	have	V	$1 \rightarrow 2$
169	consist of	V	$1 \rightarrow 2$
148	comprise	V	$1 \rightarrow 2$
106	sit on	V	$2 \rightarrow 1$
81	be chaired by	V	$1 \rightarrow 2$
78	appoint	V	$1 \rightarrow 2$
77	on	P	$2 \rightarrow 1$
66	and	C	$1 \rightarrow 2$
66	be elected	V	$1 \rightarrow 2$
58	replace	V	$1 \rightarrow 2$
48	lead	V	$2 \rightarrow 1$
47	be intended for	V	$1 \rightarrow 2$
45	join	V	$2 \to 1$
	• • •		
4	be signed up for	V	$2 \rightarrow 1$

Predicting Semantic Relations Levi's RDPs

Model	Accuracy	$\overline{\text{Coverage}}$	Avg #feats	$\mathbf{Avg}\ \Sigma\mathbf{feats}$
Human: all v	78.4 ± 6.0	99.5	34.3	70.9
Human: first v from each worker	72.3 ± 6.4	99.5	11.6	25.5
Web: $v + p + c$	50.0 ± 6.7	99.1	216.6	1716.0
Web: $v + p$	50.0 ± 6.7	99.1	208.9	1427.9
Web: $v + c$	46.7 ± 6.6	99.1	187.8	1107.2
Web: v	$45.8 {\pm} 6.6$	99.1	180.0	819.1
Web: p	33.0 ± 6.0	99.1	28.9	608.8
Web: $p + c$	32.1 ± 5.9	99.1	36.6	896.9
Baseline (majority class)	19.6 ± 4.8	100.0	_	_

- Vector-space model
- kNN Classifier
- Dice coefficient (freqs)

- v − verb
- p preposition
- c coordinating conjunction



Relations Between Complex Nominals

SemEval'07: Data

"Among the contents of the <e1>vessel</e1> were a set of carpenter's <e2>tools</e2>, several large storage jars, ceramic utensils, ropes and remnants of food, as well as a heavy load of ballast stones."

```
WordNet(e1) = "vessel%1:06:00::",
WordNet(e2) = "tool%1:06:00::",
Content-Container(e2, e1) = "true",
Query = "contents of the * were a"
```

SemEval'07: Results

Team	P	R	F	Acc
A WordNot -	- NO % O	nomi – NO		
A – WordNet =				
UCD-FC	66.1	66.7	64.8	66.0
ILK	60.5	69.5	63.8	63.5
UCB	62.7	63.0	62.7	65.4
UMELB-B	61.5	55.7	57.8	62.7
UTH	56.1	57.1	55.9	58.8
UC3M	48.2	40.3	43.1 /	49.9
avg±stdev	58.7 ± 6.9	59.3±11.6	58.1±9,1	60.7 ± 6.7

kNN classifier with the Dice coefficient

Using up to 10 stars: 67.0

SemEval'07: Results

Team	P	R	F	Acc
C – WordNet =	= NO & Qu	ery = YES		
UCB	64.2	66.5	65.1	67.0
UCD-FC	66.1	66.7	64.8	66.0
UC3M	49.4	43.9	45.3	/ 50.1
avg±stdev	59.9 ± 9.1	59.0±13.1	58.4±11.3	3 61.0±9.5

kNN classifier with the Dice coefficient

Using up to 10 stars: 68.1

SAT Analogy Questions

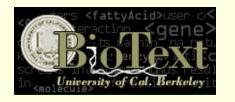
SAT Analogy Questions

	ostrich:bird		palatable:toothsome
$\overline{(a)}$	lion:cat	(a)	rancid:fragrant
(b)	goose:flock	<i>(b)</i>	chewy:textured
(c)	ewe:sheep	(c)	coarse:rough
(d)	cub:bear	(d)	solitude:company
(e)	primate:monkey	(e)	no choice

Table 2: **SAT analogy examples from the set of 374.** The stems are in **bold**, the solutions are in *italic*, and the distractors are in plain text.

SAT: Nouns Only

Model	\checkmark	×	Ø	Accuracy	Cover.
v+p+c	129	52	3	71.3 ± 7.0	98.4
v	122	56	6	68.5 ± 7.2	96.7
v + p	119	61	4	66.1 ± 7.2	97.8
v + c	117	62	5	65.4 ± 7.2	97.3
p+c	90	90	4	50.0 ± 7.2	97.8
p	84	94	6	47.2 ± 7.2	96.7
baseline	37	147	0	20.0 ± 5.2	100.0
LRA	122	59	3	67.4 ± 7.1	98.4



Head-Modifier Relations in Noun-Noun Compounds

30-Relations from (Nastase & Szpakowicz,2003)

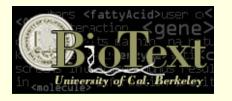
		U 1	U U
Participant			
agent	ag	student protest	M performs H , M is animate or
			natural phenomenon
beneficiary	ben	student discount	M benefits from H
instrument	inst	laser printer	H uses M
object	obj	metal separator	M is acted upon by H
object property	obj_prop	sunken ship	H underwent M
part	part	printer tray	H is part of M
possessor	posr	national debt	M has H
property	prop	blue book	H is M
product	prod	plum tree	H produces M
source	src	olive oil	M is the source of H
stative	st	sleeping dog	H is in a state of M
whole	whl	daisy chain	M is part of H
Quality			
container	cntr	film music	M contains H
content	cont	apple cake	M is contained in H
equative	eq	player coach	H is also M
material	mat	brick house	H is made of M
measure	meas	expensive book	M is a measure of H
topic	top	weather report	H is concerned with M
type	type	oak tree	M is a type of H

Noun-Modifier Relations: 30 classes



Model	\checkmark	×	Ø	Accuracy	Cover.
$\overline{v+p}$	240	352	8	40.5±3.9	98.7
v + p + c	238	354	8	40.2 ± 3.9	98.7
v	234	350	16	40.1 ± 3.9	97.3
v + c	230	362	8	38.9 ± 3.8	98.7
p+c	114	471	15	19.5 ± 3.0	97.5
p	110	475	15	19.1 ± 3.0	97.5
baseline	49	551	0	8.2±1.9	100.0
LRA	239	361	0	39.8 ± 3.8	100.0

- $\sim v \text{verb}$
- p preposition
- \mathbf{c} coordinating conjunction



Application to Machine Translation

MT: Parallel Text



- 1 Europe's Divided Racial House
- 2 A common feature of Europe's e of the immigration issue as a
- 3 The Lega Nord in Italy, the VI supporters of Le Pen's Nationa of parties or movements formed immigrants and promotion of si
- 4 While individuals like Jorg Ha and (never to soon) go, the ra European politics anytime soon
- 5 An aging population at home ar increasing racial fragmentatic
- 6 Mainstream parties of the cent confronted this prospect by hi hoping against hope that the p
- 7 It will not, as America's raci
- 8 Race relations in the US have the center of political debate cleavages are as important as determinants of political pref
- 9 The first step to address raci

- 1 La Dividida Cámara Racial de
- 2 Una característica común de su racismo y su uso del tema política.
- 3 La Lega Nord de Italia, el V partidarios del Frente Nacio ejemplos de partidos o movim tema común de la aversión a de políticas simplistas para
- 4 Aunque los individuos como J vienen y (nunca demasiado pr raza no desaparecerá de la p momento cercano.
- 5 La población cada vez más vi abiertas que nunca, implican los países europeos.
- 6 Los principales partidos de derecha se han enfrentado a cabeza en la tierra, abrigan problema desaparezca.
- 7 No lo hará, como claramente

Paraphrasing the Phrase Table (1)

Phrase Table Entry

, spain 's economy ||| , la economía española ||| 1 0.0056263 1 0.00477047 2.718

Paraphrased Entries

- , economy of spain ||| , la economía española ||| 1 0.0056263 1 0.00477047 2.718
- , the economy of spain |||, la economía española ||| 1 0.0056263 1 0.00477047 2.718
- , spain economy ||| , la economía española ||| 1 0.0056263 1 0.00477047 2.718
- , economy of a spain || , la economía española || 1 0.0056263 1 0.00477047 2.718
- , economy of an spain ||| , la economía española ||| 1 0.0056263 1 0.00477047 2.718
 - , <u>economy of the spain</u> ||| , la economía española ||| 1 0.0056**2**63 1 0.00477047 2.718

Web-based filtering

Paraphrasing the Phrase Table (2)

- 1 % of members of the irish parliament
 - % of irish parliament members % of irish parliament 's members
- 2 universal service of quality . universal quality service . quality universal service . quality 's universal service .
- 3 action at community level community level action
- 4 , and the aptitude for communication and , and the communication aptitude and
- to the fall-out from chernobyl. to the chernobyl fall-out.
- 6 flexibility in development and quick development flexibility and quick
- 7 , however, the committee on transport , however, the transport committee
- 8 and the danger of infection with aids and the danger of aids infection and the aids infection danger and the aids infection 's danger

Paraphrasing the Training Corpus

We must cooperate internationally, and this should include UN initiatives.

We must cooperate internationally, and this should include *initiatives of the UN*.

We must cooperate internationally, and this should include *initiatives at the UN*.

We must cooperate internationally, and this should include initiatives in the UN.

Both reports on economic policy confirm the impression that environment policy is only a stepchild.

Both reports on economic policy confirm the impression that *policy on the environment* is only a stepchild.

Both reports on economic policy confirm the impression that *policy on environment* is only a stepchild.

Both reports on economic policy confirm the impression that policy for the environment is only a stepchild.

Both economic policy reports confirm the impression that environment policy is only a stepchild.

Both economic policy reports confirm the impression that *policy on the environment* is only a stepchild .

Both economic policy reports confirm the impression that *policy on environment* is only a stepchild.

Both economic policy reports confirm the impression that *policy for the environment* is only a stepchild.

To the contrary, what is needed now - absolutely needed - is a reduction in the taxation of labour.

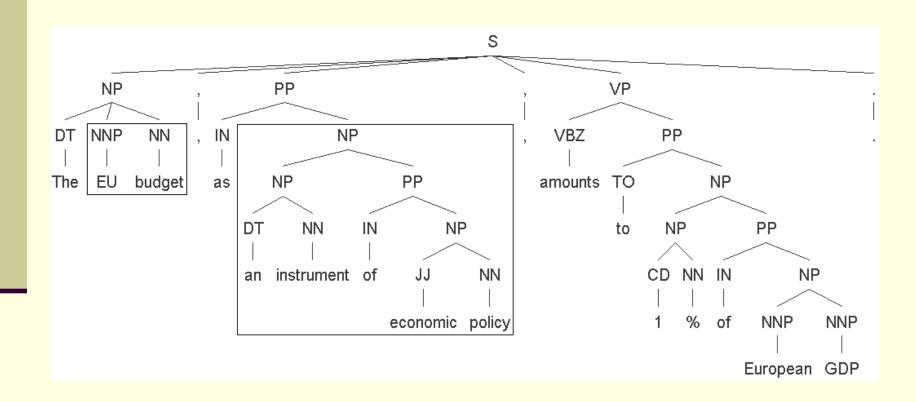
To the contrary, what is needed now - absolutely needed - is a reduction in the labour taxation.

To the contrary, what is needed now - absolutely needed - is a labour taxation reduction.

To the contrary, what is needed now - absolutely needed - is a reduction in the labour's taxation.

To the contrary, what is needed now - absolutely needed - is a labour's taxation reduction.

Paraphrasing a Sentence



Paraphrasing NPs/NCs

purely syntactic

- 1. $[_{\mathbf{NP}} \ \mathbf{NP}_1 \ \mathbf{P} \ \mathbf{NP}_2] \Rightarrow [_{\mathbf{NP}} \ \mathbf{NP}_2 \ \mathbf{NP}_1]$.

 the lifting of the beef import ban \Rightarrow the beef import ban lifting.
- 2. $[NP NP_1 \text{ of } NP_2] \Rightarrow [NP NP_2 \text{ poss } NP_1]$.

 the lifting of the beef import ban \Rightarrow the beef import ban's lifting.
- 3. $NP_{poss} \Rightarrow NP$.

 Commissioner's statement \Rightarrow Commissioner statement.
- 4. $NP_{poss} \Rightarrow NP_{PP_{of}}$.

 Commissioner's statement \Rightarrow statement of (the) Commissioner.
- 5. $\mathbf{NP}_{NC} \Rightarrow \mathbf{NP}_{poss}$.

 inquiry committee chairman \Rightarrow inquiry committee's chairman.

the ban on beef import.

- 6. $\mathbf{NP}_{NC} \Rightarrow \mathbf{NP}_{PP}$.

 the beef import ban \Rightarrow
- use Web stats

Results

	Bleu score					
System	10k	20k	40k	80k		
S (baseline)	22.38	24.33	26.48	27.05		
S_{parW}	22.57	24.41	25.96			
S^{\star}	22.58	25.00	26.48			
$S + S_{parW}$	23.05	25.01	26.75			

 S_{parW} original corpus, augmented with sentencelevel paraphrases, all transformations;

means paraphrasing the phrase table;

+ means merging the phrase tables;

Conclusion

Conclusion



- Tapped the potential of very large corpora for unsupervised algorithms:
 - Go beyond n-grams
 - Surface features
 - Paraphrases
 - Results
 - competitive with the best unsupervised algorithms
 - can rival supervised algorithms

Resume

- Surface Features & Paraphrases
- Syntactic Tasks
 - Noun Compound Bracketing
 - Prepositional Phrase Attachment
 - Noun Compound Coordination
- Semantic Tasks
 - Paraphrasing Noun Compounds
 - Predicting Abstract Semantic Relations
 - Relations Between Complex Nominals
 - SAT Analogy Questions
 - Head-Modifier Relations
- Application
 - Machine Translation

Future Work

New exciting features

Other problems

Use less queries

Use the Web as a <u>corpus</u>, and not just as a source of page hit frequencies!

Thank You



Questions?