Cross-Lingual WSD Using Multilingual Co-occurrence Graphs

> Simone Paolo Ponzetto Carina Silberer University of Heidelberg

Outline

- 1. Cross-lingual WSD
- 2. CL-WSD using multilingual co-occurrence graphs
- 3. Conclusions

Outline

- 1. Cross-lingual WSD:
 - what is it?
 - why do we need it?
 - how to tackle it?

Word Sense Disambiguation

- WSD is the task of computationally determining which sense of a word is activated by its use in a particular context [Ide and Véronis, 1998; Agirre and Edmonds, 2006; Navigli, 2009b]
- basically, a classification task
 - i.e. how to classify words into word senses

I drank a cup of chocolate at the bar

Source: Navigli [2009, RANLP tutorial]

Ponzetto & Silberer: SCL Kolloquium

What is a Word Sense?

- a word sense is a commonly-accepted meaning of a word:
 - We are fond of fruit such as **kiwi_{/fruit}** and banana.
 - The **kiwi_{/bird}** is the national bird of New Zealand.
- how to represent word senses?
 - can we enumerate the senses of a word?

"Kiwi is my mother tongue, but I also speak all other English languages"

Source: Navigli [2009, RANLP tutorial]

Ponzetto & Silberer: SCL Kolloquium

Typical WSD Framework

10.6.2010

Lexical sample vs. All words

• Lexical sample

- disambiguate **a restricted set of words**:
 - We are fond of fruit such as kiwi and banana.
 - The **kiwi** is the national bird of New Zealand.
 - ... a perspective from a native kiwi speaker (NZ).
- All words
 - disambiguate **<u>all content words</u>** in a sentence:
 - The kiwi is the national bird of New Zealand.
 - ... a perspective from a native kiwi speaker (NZ).

Why WSD?

- examples of AI/NLP applications which can benefit from word senses:
 - Information Retrieval
 - Information Extraction
 - Machine Translation

Applications: Information Extraction

- distinguishing between specific instances of concepts
 - Bioinformatics: solve ambiguities in naming genes and proteins
 - acronym expansion (MP: member of parliament or military police?)
 - metonymy recognition (BMW: the company or the car?)
 - Semeval-2007 Metonymy Recognition task [Markert and Nissim, 2007]
 - disambiguate people names
 - Semeval-2007 Web People Search task [Artiles et al. 2007]

Source: Navigli [2009, RANLP tutorial]

Applications: Information Retrieval

- state-of-the-art search engines do not use explicit semantics
- WSD could be used for two purposes:
 - discarding documents which contain a query word w used in a different sense (**polysemy** problem)
 - retrieving documents which contain a word w' which is synonymous of w (synonymy problem)

Applications: Machine Translation

- choose better translation candidates
 - English: We ate a kiwi
 - German: Wir haben eine Kiwi gegessen
 - (instead of e.g. Neuseeländer)
- contrasting evidence that 'classic' WSD can benefit MT ...
- ... BUT if seen as <u>a model for the selection of the</u> <u>most likely translation</u> (i.e. integrated into the MT procedure), <u>it has been shown to improve MT</u> [Carpuat and Wu, 2007; Chan et al., 2007]

CROSS-Lingual WSD

- disambiguates a target word by labeling it with the appropriate translation
 - the plausible translations of a word in context restrict its possible senses to a subset
- <u>does not necessarily perform full disambiguation</u> (words might remain ambiguous from language to language)
 - cf. interest (in English), interesse (in Italian), intérêt (in French)

CROSS-Lingual WSD

- disambiguates a target word by labeling it with the appropriate translation in multiple languages
- Input: an English (i.e. source language) sentence
 - "I'll buy a train or **coach** ticket".
- Output: translations in five (i.e. target) languages
 - DE: Bus (3); Linienbus (2); Omnibus (2); Reisebus (2);
 - NL: autobus (3); bus (3); busvervoer (1); toerbus (1);
 - IT: autobus (3); corriera (2); pullman (2); pulmino (1);
 - FR: autobus (2); autocar (1); bus (3); car (3);
 - ES: autobús (3); autocar (3);

CROSS-Lingual WSD

different contexts can trigger different translations

- Input: Agassi's coach came to me with the rackets.
- <u>Output</u>:
 - DE: Coach (2); Trainer (3);
 - NL: coach (3); speler-trainer (1); trainer (3);
 - IT: allenatore (3);
 - FR: capitaine (1); entraîneur (3);
 - ES: entrenador (3);

Take home message 1

- contrasting results about the benefits of WSD in NLP applications:
 - i.e. no clear benefits have been shown in end-to-end applications such as e.g. (semantic) IR
- WSD improves MT when viewing translations as senses
- we can formulate WSD as a translation task

WSD AND MT ARE BENEFICIAL TO EACH OTHER

Main WSd Approaches

Supervised WSD

- Formulates the disambiguation problem as a supervised classification task
- Requires sense-tagged training sets (e.g. SemCor)
- Knowledge-based WSD
 - Uses <u>knowledge resources</u> to identify word senses in context
 - Weak supervision (i.e. no training phase)
- Unsupervised WSD (aka Word Sense Discrimination/Induction)
 - Does not need manually-tagged datasets
 - Non-fixed sense inventory makes the task more difficult to evaluate

Main WSd Approaches

Supervised WSD

- + most successful approach
- relies on training data; limited portability across domains

Knowledge-based WSD

- + more promising on the short-medium term
- needs wide-coverage knowledge resources
- Unsupervised WSD (aka Word Sense Discrimination/Induction)
 - + no need manually-tagged datasets
 - + produces sense clusters as output

Take home message 2

• given (a) lack of annotated data; (b) lack of a widecoverage multilingual knowledge resource

UNSUPERVISED METHODS ARE THE MOST PROMISING TO PERFORM CL-WSD

- <u>our proposal</u>
 - **build multilingual co-occurrence graphs** from automatically aligned text
 - apply graph-based algorithms, e.g. Hyperlex [Véronis, 2004] and PageRank [Brin and Page, 1998] to <u>discriminate and</u> <u>assign word senses across languages</u>

Outline

- 1. Cross-lingual WSD
- 2. CL-WSD using multilingual co-occurrence graphs

A. Methods

- a) Multilingual graph construction
- b) Finding root hubs
- c) Multilingual disambiguation
- B. Experiments
 - a) Task setup
 - b) Evaluation

Methodology

CL-WSD using multilingual co-occurrence graphs

 in a nutshell, apply the method from [Véronis, 2004] and [Agirre et al., 2006] to a structured – i.e. graphbased – representation of multilingual context

Methodology

- build for each target word a multilingual cooccurrence graph based on the target word's aligned contexts found in parallel corpora
- use an adapted PageRank algorithm [Agirre et al., 2006] to select the nodes (hubs) which represent the target word's different senses
- **3. compute the Minimum Spanning Tree** (MST), which is used to select the most relevant words for each word sense/usage
- 4. use the MST to disambiguate a given test instance in context

HyperLex [Véronis, 2004]

based on the "small-world assumption"

- 1) given a target word w, build a co-occurrence graph
 - an edge is added between w_i and w_j if w_i cooccurs with w_j at least 5 times in a corpus
- 2) the weight of an edge $\{w_i, w_j\}$ is given by:

where:

$$P(w_i \mid w_j) = \frac{count(w_i, w_j)}{count(w_j)}$$

3) edges with a weight \geq threshold are removed

Hub selection and MST

- 4) select hubs, that is nodes which "represent" senses of the target word:
 - a) select as hub the node h with the highest degree in the graph
 - b) the neighbors of h are no more eligible as hubs
 - c) if highest degree \leq threshold, go to step 5
 - d) otherwise, go to step a
- 5) connect all hubs to the target word w with weight 0
- 6) calculate the minimum spanning tree (MST) of the graph

HyperLex: Example

Inital cooccurrence graph

Minimum Spanning Tree

Source: Navigli [2009, RANLP tutorial]

Hub selection with PageRank [Agirre et al., 2006]

 an option is to perform hub selection with PageRank rather than by iteratively selecting nodes with highest degree

- the initial PageRank of all vertices is set to 1/N, where N is the number of vertices (i.e. N = |V|)
- PageRank is applied
- the top ranking nodes are selected as hubs

Hyperlex: Disambiguation

• each node in the MST is assigned a **score vector** with as many dimensions as there are components

• <u>Step 1</u>:

• for a given context, add the score vectors of all words in that context.

• <u>Step 2</u>:

• select the component that receives the highest weight.

Hyperlex: Disambiguation

- example: "I drank a cup of chocolate at the bar"
 - <u>step 1</u>: (0, 0.09, 0, 0)
 - step 2: "bar" as [chocolate, wine, cocktail]

Methodology

 we apply the Hyperlex/PageRank approach in a multilingual setting

- 1. monolingual graph construction
- 2. multilingual graph extension
- 3. computing root hubs and MST
- 4. multilingual disambiguation

Monolingual Graph

- given (a) a target word w in a source language s, and (b) all contexts of w in a corpus we first construct a monolingual graph
 - we collect all pairs of co-occurring nouns or adjectives in (excluding the target word itself) and add each word as a node into the initially empty graph
 - each co-occurring word pair is connected with an edge
 - $(v_i, v_j) \in E_s$ which is assigned a "dissimilarity" weight:

$$w(v_i, v_j) = 1 - \max\left[p(cw_i | cw_j), p(cw_j | cw_i)\right]$$

Ponzetto & Silberer: SCL Kolloquium

Monolingual Graph

example: monolingual graph for plant (excerpt)

Multilingual graph

- given a set of *target* languages *L*, we extended to a labeled multilingual graph $G_{ML} = \langle V_{ML}, E_{ML} \rangle$
 - $V_{ML} = V_s \cup \bigcup_{l \in L} V_l$ is a set of nodes representing content $l \in L$ words from either the source or the target languages
 - $E_{ML} = E_s \cup \bigcup_{l \in L} \{E_l \cup E_{s,l}\}$ is a set of edges which include:
 - **co-occurrence edges** in the target language
 - labeled translation edges

Ponzetto & Silberer: SCL Kolloquium

Co-occurrence edges

- for each target language $I \in L$ in turn
- given a parallel corpus of sentences *word-aligned* with the sentences in
- build co-occurrence edges E_l ⊆ V_l × V_l between nodes representing words in a target language (V_l), weighted in the same way as the edges in the monolingual graph

• e.g. "Tier" co-occurs with "Biotechnologie" in German

Translation Edges

- translation edges $E_{s,l}$ represent translations of words from the source language s into a target language *l*
 - add the translation edges $(v_s, t, v_l) \in E_{s,l}$ of each word in the source language
- in order to include the information about the translations of the target word *w* in the different languages
 - each translation edge receives a translation label t

Translation labels

- in a nutshell, a label to capture the **translation of the target word in the aligned context** where the translation of a word in the source language is found
- given:
 - $C_{v,s} \subseteq C_s$: the contexts where v_s and w co-occur,
 - $C_{v,l}$: the word-aligned contexts in language *l* of $C_{v,s}$, where v_s is translated as v_l
- label the edge between v_s and v_l with
 - (a) translation of w in $C_{v,I}$
 - (b) **frequency** of the translation
 - (c) whether the translation is **monosemous** as found in EuroWordNet or PanDictionary [Mausam et al., 2009]

Ponzetto & Silberer: SCL Kolloquium

Bringing it all together ...

Multilingual graph

example: multilingual graph for plant (excerpt)

Computing root hubs

we use the adapted PageRank from [Agirre et al. 2006]

$$PRie = \{1 = d_1 + d_2\} \sum_{l = 1}^{n} \sum_{m \in M_{l,l}} \frac{n}{m_{l,l}} \sum_{m \in M_{l,l}} PE_{m,l}$$

- only nodes referring to English words can be identified as hubs...
- but we also include information from other languages:
- include co-occurrence edges from other languages in the PR computation if the *respective translation* edges are labeled with monosemous translations Ponzetto & Silberer: SCL Kolloquium

10.6.2010

Computing the MST

- following [Véronis, 2004], a MST is built e.g. we can use Kruskal's algorithm with the target word as its root and the root hubs of G_{ML} forming its first level
- by using a multilingual graph, we are able to obtain
 MSTs which contain translation nodes and edges

Multilingual MST

example: MST for plant (excerpt)

Ponzetto & Silberer: SCL Kolloquium

Multilingual WSD

 given a context W = {cw₁...cw_n} for the target word w in the source language, use the MST to find the most relevant words in W for disambiguating w

Multilingual WSD

• find the correct hub (i.e. sense) as

$$di \cdot Hab = \arg\max_{u \in [u] \in W_{u}} \sum_{d \in U_{u}} \frac{d(eu)}{di \cdot t(eu, b)} + 1$$

- *d(cw)*: distance in words between *cw* and *w*
- dist(cw,h): number of edges between cw and h in the MST
- retain only those context nodes linked to disHub
- collect the translations of the target word along the translation edges (use the counts to rank them)

Multilingual MST

example: "a virus which attack animals and plants"

Outline

- 1. Cross-lingual WSD
- 2. CL-WSD using multilingual co-occurrence graphs
 - A. Methods
 - a) Multilingual graph construction
 - b) Finding root hubs
 - c) Multilingual disambiguation
 - **B. Experiments**
 - a) Task setup
 - b) Evaluation

Experimental setup

- dev set : 5 words / 20 sentences per word
- test set : 20 words / 50 sentences per word
- for each language, each sentence is annotated with at most three translations from the same multilingual cluster
- "Strangely, the national **coach** of the Irish teams down the years has had little direct contact with the four provincial coaches."
 - DE: Nationaltrainer (2)/ Trainer (3) / Coach (1)
 - NL: trainer (3) / coach (3) / voetbaltrainer (1)

Ponzetto & Silberer: SCL Kolloquium

Evaluation

- Evaluation scheme inspired by the English lexical substitution task in SemEval 2007 [McCarthy and Navigli, 2007]
- (standard) Precision / Recall
- **Mode** Precision / Recall (computed on the most preferred translation)
- Best result vs. Out-of-five evaluation

Best result evaluation

- systems can propose as many guesses as the system believes are correct
- the resulting score is divided by the number of guesses
- (systems that output a lot of guesses are not favored)

$$\begin{array}{ccc} \rho_{\rm COP} & = \frac{\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \frac{1}{i!} & \\ & & \prod_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \frac{\sum_{i=1}^{n} \sum_{i=1}^{n} \frac{1}{i!} \\ & & \prod_{i=1}^{n} \frac{1}{i!} \end{array}$$

OOF Evaluation

- systems can propose up to five guesses
- the resulting score is not divided by the number of guesses
- (more relaxed evaluation)

$$P_{ICC} = \frac{\sum_{n=0}^{\infty} \sum_{i=1}^{n} \sum_{i$$

Baselines

- **best result evaluation**: select the most frequent lemmatized translation from the GIZA++ alignments
- **out-of-five evaluation**: select the five most frequent translations from the GIZA++ alignments.

UHD Experimental setup

- submitted two runs (UHD-1/UHD-2)
- UHD-1 uses Europarl [Koehn, 2005] ...
- incremented with JRC-Aquis [Steinberger et al., 2006] for UHD-2
- PoS-tagging: TreeTagger [Schmid, 1994]
- word-alignments: GIZA++ [Och and Ney, 2003]
- morphological analysis for German: Morphisto [Zielinski et al., 2009]

Results: UHD

• Best result evaluation

Language	P	R	Mode P	Mode R
FRENCH	20.22	16.21	17.59	14.56
GERMAN	12.20	9.32	11.05	7.78
ITALIAS -	15.94	12.78	12.34	8.48
SPANISH	20.48	15.33	28.48	22.19

• **OOF** evaluation

Language	P	R	Mode P	Mode R
FRENCH	39,06	32,00	37,00	26.79
GLRMAN	27.62	22.82	25.6-8	21.16
Trat.tax -	33.72	27.49	27.54	21.81
SPANISH	38,78	31.81	40.6-8	32.38

Ponzetto & Silberer: SCL Kolloquium

Results: Best overall

	Pro	-30%	M_{P}	M_R	
	- Space	nish			
U.v.L-v	-23, 12	21.98	-24.98	-24.98	1.3-COLI
U villing	19.92	-19.92	-24.17	21.17	VHD-
13-COLEUR	19.78	-19.59	-21.59	(24.58)	UID-
CHD-1	20.48	16.13	28.48	(22.19)	
VHD-2	20.2	16.09	-28.18	22.65	1.21-0
FCC-WSD1	15.09	-15.039	11.31	11.31	LeTa
FCC-WSD3	$ _{1,13}$	11.13	13.41	13.11	1.3-COL1
	Fre	nch			
13-COLEUR	-21.96	21.73	-10.15	15.93	LECOL
VHD-2	-20.93	16.65	17.78	11.15	
VHD-1	20.22	16/24	17.59	-14.56	100
OW/NS2	16.05	16.65	11.21	11.21	5.111-6
OWNSI -	[16.05]	16-05	11.21	11.21	
OWN83	12.53	12.53	11.21	14.21	
OW NS1	10.19	10.19	11.21	14.21	

		11.2.1.2		
3-COLEUR	15,55	15.4	10.2	-10.12
V31D-2	16.28	1.3(0.3)	1.1.89	$-\Theta_{n}(t, t)$
VHD-1	15,94	12.78	12.24	$-N_{\rm e}(N)$
	Dm	teh		
UVI-V	17.7	1.7.7	12.05	-12.05
U.C.Ta,	15,93	$\{1,2,3,3\}$	10.11	-100.54
3-COLEUR	10.71	$\{0,1,0\}$	± 6.18	-0.10
	Gen	ninak bi		
3-COLEUR	13.79	13.63	8.1	-8.1
VHD-1	12.2	9.32	11.05	$-7.7 \times$
V31D-2	12.03	-9.23	12.11	-6, -22

It is here a

Results: OOF overall

	2°ann	Rec	-MP	M_R	
	-Spa	nish			
Viv1-g	13.12	13.12	13.94	$\{3,9\}$	13-COI
VIVIL-X	12.17	12.17	10.62	10.62	UHL.
FCC-WSD2	10.70	(0.7)	11.81	T1.S1	UHL.
FCC-WSD1	48.46	(38,0)	-39, 19	-39, 19	
TR-COLEUR:	35.84	$(3.5,1)_{\rm eff}$	39.01	38.78	1×1
UHD-I	(s,7s)	31.81	10.4δ	32.38	L v I
UHD-2	37.71	31.3	395.03	32.05	13-00
	Free	nch			
TR-COLLUR:	19.11	18.90	12.13	11.77	13-00
OWNST	13.11	13.11	38.29	38.29	L FIL
OWNS2	-38.74	38.71	37.73	37.73	U FIL
UHD-I	$\mathcal{A}^{(0)}(0)$	32	3700	26.79	
UHD-2	37.92	31.38	37.66	27.08	

T3-COLEUR	10.7	20.41	38.99	(8.70)				
UHD-1	33.72	-17, 19	27.54	21.81				
UHD-2	.42.68	17.42	20.82	24.20				
Dutch								
$U \ll L - c$	$\{1,0,7\}$	1.075	24.62	24.62				
UVI-g	31.92	.192	(20.72)	19.72				
TRECOLEUR	21.47	-11.27	(2.05)	12.03				
German								
T3-COLEUR	-33(21)	.2.82	3.3.60	34,56				
UHD-1	27.62	12.82	25.68	21.16				
UHD-2	27.24	12.55	(27.19)	22.30				

Itzdizar.

Discussion

- BEST: evaluation we **rank in the middle** for those languages where the majority of systems participated
 - i.e. second and fourth out of 7 submissions for FRENCH and SPANISH
- compared against the baseline in the BEST evaluation
 - higher precision for ITALIAN and SPANISH (+1.9% and +2.1%, respectively); FRENCH and GERMAN lie near below the baseline scores (-0.5% and -1.0%, respectively)

• trade-off is a recall always below the baseline

Discussion

- compared against the <u>baseline in the BEST</u> evaluation
 - higher precision for ITALIAN and SPANISH (+1.9% and +2.1%)
 - FRENCH and GERMAN lie near below the baseline scores (-0.5% and -1.0%)
 - trade-off is a **recall** always below the baseline
 - we beat the Mode precision baseline for all languages, i.e. up to +5.1% for SPANISH

our system is strongly precision-oriented

Ponzetto & Silbeler fsclow performance in the OOF evaluation)

Conclusions

- <u>outcome</u>: a graph-based approach to perform CL-WSD
- <u>results</u>: a upper/middle-tier ranking system showing the feasibility of approaching CL-WSD from a graphbased perspective
- <u>limitations:</u> a limited performance shared with all task participants.

Future work

- building a unique graph with all languages at the same time could introduce noise ...
 - possible extension/modification of the algorithm, e.g.
 computing hubs in each language independently and combining them as a joint problem
- most frequent translations tend to receive too much weight and accordingly crowd out more appropriate translations
 - developing robust techniques for unsupervised tuning of the graph weights

Future work

• investigate the application of our approach *directly* to multilingual lexical resources

Examples:

- PanDictionary [Mausam et al., 2009]
- ??? ← your resource here?
- ... stay tuned for our ACL dry-run 🙂

Questions?

YOUR TURN! ③

- Acknowledgements: SCL for infrastructure and inspirational environment
- check out our papers (out from beginning of July) @ http://www.cl.uni-heidelberg.de/~ponzetto