Computerlexikographie-Tutorium 13.06.2008

- Themen für heute:
 - I. Wiederholung:
 - Taxonomie
 - Thesaurus
 - Ontologie
 - II. Wie erstelle ich eine Ontologie? Anleitung von Natalya F. Noy and Deborah L. McGuinness
 - III. Anwendungsbeispiel: das SmartWeb-Projekt

I. Wiederholung

- Taxonomie
- Thesaurus
- Ontologie

Wiederholung: Taxonomie, Thesaurus, Ontologie

- Was sind die Ähnlichkeiten und die Unterschiede zwischen
 - Taxonomien,
 - Thesauri und
 - Ontologien? (an der Tafel)

- Zu Taxonomien:
 - Buitelaar & Cimiano 2007: Folien 4; Folien 24 [SUMO] und 20 [DOLCE]
 - Taxonomicon: http://sn2000.taxonomy.nl/Taxonomicon/Default.aspx
- Zu Thesauri:
 - OpenThesaurus: http://www.openthesaurus.de/
 - Eurovoc: http://europa.eu/eurovoc/

Wiederholung: Taxonomie, Thesaurus, Ontologie

- Zu Ontologien:
 - Buitelaar & Cimiano 2007: Folien 5–8, 10 ff.
 - Ontologienbibliothek: Ontoselect:
 - http://olp.dfki.de/ontoselect/
 - Am meisten verwendete Ontologiesprache, auch Standard: OWL
 (Ontology Web Language) (Buitelaar & Cimiano 2007: Folien 37–68)
 - Ontologietypen: Buitelaar & Cimiano 2007: Folie 16

Ontologie

- Thomas Gruber 2007: http://tomgruber.org/writing/ontology-definition-2007.htm
 - "an ontology defines a set of representational primitives with which to model a domain of knowledge or discourse. The representational primitives are typically classes (or sets), attributes (or properties), and relationships (or relations among class members)"
 - "the essential points of this definition of ontology are

- An ontology defines (specifies) the concepts, relationships, and other distinctions that are relevant for modeling a domain.
- The specification takes the form of the definitions of representational vocabulary (classes, relations, and so forth), which provide meanings for the vocabulary and formal constraints on its coherent use."

II. Erstellung einer Ontologie

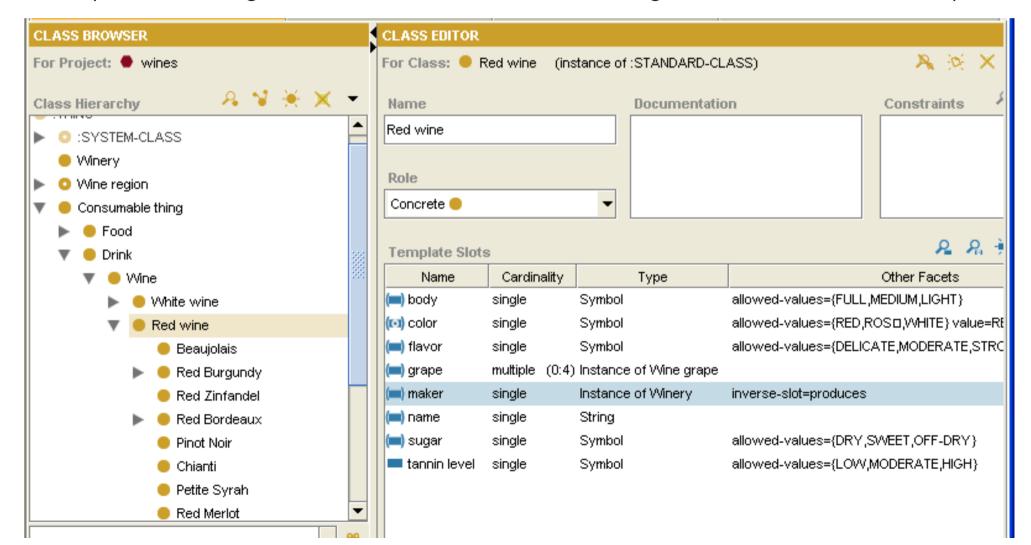
nach Natalya F. Noy and Deborah L. McGuinness

- Nach Natalya F. Noy und Deborah L. McGuinness
 - Artikel: Noy, Natalya F. & Deborah L. McGuinness (2001): Ontology
 Development 101: A Guide to Creating Your First Ontology. Link: http://www.smi.stanford.edu/projects/protege/publications/ontology_development/ontology101.pdf
 - Folien: Natalya F. Noy: Ontology Engineering for the Semantic Web and Beyond. Link: http://protege.stanford.edu/publications/ontology_development/OntologyEngineering.zip
- Ein Wissensbereich (eine Domäne) wird explizit beschrieben durch:
 - hierarchisch aufgebaute Konzepte ~ Klassen
 - Relationen zwischen den Konzepten
 - Eigenschaften der Konzepte ~ Attribute
 - systematische Einschränkungen der Attributswerte
 - Instanzen

 Schritte: im Idealfall ein Durchgang, in der Regel kehrt man öfters zu vorherigen Schritten zurück

- 1. "Determine scope": **Domäne** (Wissensbereich) auswählen
- 2. "Consider Reuse": Gibt es schon existierende Ontologien, die man als Grundlage verwenden kann?
- 3. "Enumerate terms": Relevante Einheiten und Attribute bestimmen
 - Welche Konzepte und Attribute sind zu repräsentieren?
 - Wie grobkörnig / feinkörnig muss die Ontologie die Domäne darstellen (Granularität)? – abhängig von der Anwendung, der die Ontologie als Ressource dient

- 4. "Define classes": Konzepte (Klassen) und Instanzen definieren
 - Eine Klasse ist eine Menge von Elementen, die über gleiche / ähnliche Attribute (Eigenschaften) verfügen.
 - Instanzen sind die Individuen in der Ontologie (~ Blätter in einer Baumrepräsentation der Hierarchie).
 - Die Klassen sind taxonomisch geordnet: Über- und Unterordnung
 - Hyperonymie / Hyponymie → Vererbungsstruktur:
 - Wenn eine Klasse A über ein Attribut verfügt, dann erben alle Unterklassen von A diese Eigenschaft.
 - Direkte Unterklassen einer Klasse sollten den gleichen Spezifikationsgrad haben.
 - Ebenen einer Ontologie:
 - top level: oberste Ebene(n) mit den allgemeinsten Begriffen
 - middle level: ~ Basisbegriffe
 - bottom level: unterste Ebene mit den spezifischsten Begriffen


- Ausarbeitung der Ebenen: von der allgemeinsten Klasse (top-down) oder von den spezifischsten Klassen (bottom-up) ausgehend bzw. die zwei Vorgehensweisen kombinierend (von einer mittleren Ebene ausgehend)
- 5. "Define properties": Attribute der Klassen definieren
 - Welche Attribute sind für die Ontologie relevant?
 - Wegen der Vererbung enthalten die untergeordneten Klassen alle Attribute der übergeordneten Klassen
 - Bei Mehrfachvererbung erhält die Unterklasse die Attribute aller übergeordneten Klassen.
 - Die Unterklasse kann die Werte der geerbten Attribute überschreiben oder zusätzliche Attribute haben.
 - Ein Attribut muss auf der generellstmöglichen Ebene in die Ontologie eingeführt werden.

- 6. "Define constraints": Einschränkung der möglichen Werte der Attribute
- Werttyp:
 - einfacher Wert: String, Zahl, Menge vordefinierter Werte, boolsche Werte
 - komplexer Wert: eine andere Klasse ~ Relation zur anderen Klasse
 - z.B.: Das Konzept "Red wine" hat ein Attribut "maker", das auf eine Instanz des Konzeptes "Winery" zeigt.
- Werte: Welche erlaubten / möglichen Werte kann das Attribut haben?
 - genauer Wert oder Menge der genauen Werte
 - z.B.: Die möglichen Werte des Attributs "body" sind {full, medium, light}
 - Maximum- oder Minimumwert
 - Defaultwert (kann überschrieben werden)
- Kardinalität: Wie oft wird ein Attribut an eine Instanz vergeben?
 - einfache Kardinalität: z.B.: Eine Instanz hat nur ein "name"-Attribut
 - mehrfache Kardinalität: z.B.: "Wine" wird aus null bis vier (0,4) Weinsorten –
 Attribut "grape" hergestellt.

- 7. "Create instances": Instanzen erstellen
 - Alle Attribute der Klasse, zu der die Instanz gehört, müssen mit konkreten Werten gefüllt werden.

- Allgemeine Hinweise:
 - Vermeide Zyklen z.B.: A ist eine B, B ist eine C, C ist eine A
 - Schwesterknoten sollten den gleichen Spezifikationsgrad haben.
 - z.B.: direkte Unterklassen von Wine: Rotwein, Weißwein, Rosé, aber nicht Pinot Noir
 - Unterklassen mit einem einzigen oder mit zu viel Elementen sind zu vermeiden.
 - Die Klassennamen sollten alle entweder im Singular oder im Plural stehen.
 - Die Klassennamen stehen für ein Konzept nicht für die Benennung des Konzeptes.
 - Eine eventuelle Namensänderung ändert den Inhalt des Konzeptes nicht.
 - Synonyme Bezeichnungen wie z.B. Shrimps und Prawns referieren auf dieselbe Klasse.

- Protégé: open source Ontologieeditor: http://protege.stanford.edu/
- (Die Hausaufgabe muss nicht mit einem Ontologie-Editor erstellt werden!)

III. Anwendungsbeispiel

SmartWeb-Projekt

Anwendungsbeispiel: SmartWeb

- Einbettung von Ontologien in Anwendungen wie
 - Suchmaschinen, semantische Agenten, Kommunikationssysteme, ...
- SmartWeb: http://smartweb.dfki.de/
 - eine mobile multimodale Schnittstelle zum Semantischen Web
 - hat eine eingebettete Ontologie: SWIntO (SmartWeb Integrated Ontology). SWIntO basiert auf mehreren Ontologien:
 - DOLCE, SUMO
 - domänenspezifische Ontologien für Navigation und Sportereignisse
 - Domäne: Sportereignisse, in erster Linie Fußballweltmeisterschaft 2006
 - Ontologien zur semantischen Modellierung
 - Demo für die Anwendung:
 http://smartweb.dfki.de/SmartWeb_FlashDemo_deu_v01.exe

Semantic Web

- "Semantic Web" bezeichnet eine Erweiterung des WorldWideWeb, wobei die Inhalte der Internetseiten explizit mit Auszeichnungen markiert werden, die auf die Bedeutung des Inhaltes hinweisen.
- W3C-Seite: http://www.w3.org/2001/sw/
- Ziel: Strukturierte Daten im WWW ermöglichen einen gezielten automatisierten Zugriff auf die Daten.
- Tutorial: http://ben.adida.net/presentations/www2008-rdfa/#(1)
 - vor allem die Folien: 10 ff., Beispiele: Folien 22–37, 38–49, 50–68,
 RDF: 69–79
 - http://www.w3.org/TR/xhtml-rdfa-primer/

Quellen

- Buitelaar, Paul & Philipp Cimiano (2007) (Folien): Ontologies and Lexical Semantics in Natural Language Processing. Link: http://www.cl.uni-heidelberg.de/courses/ws07/onto/Ontologies_25_10_2007.pdf
- Gruber, Thomas (2007): *Ontology.* Link: http://tomgruber.org/writing/ontology-definition-2007.htm
- Kunze, Claudia & Lothar Lemnitzer (2002): GermaNet representation, visualization, application
- Noy, Natalya F.: Ontology Engineering for the Semantic Web and Beyond. Link:
 - http://protege.stanford.edu/publications/ontology_development/OntologyEngineering.zip
- Noy, Natalya F. & Deborah L. McGuinness (2001): Ontology Development 101: A Guide to Creating Your First Ontology. Link: http://www.smi.stanford.edu/projects/protege/publications/ontology_development/ontology101.pdf
- Protégé: http://protege.stanford.edu/

Quellen

- Adida, Ben, Ivan Herman & Elias Torres (2008): WWW2008 Tutorials -RDFa: Bridging the Human and Data Webs. Link: http://ben.adida.net/presentations/www2008-rdfa/#(1)
- Eurovoc: http://europa.eu/eurovoc/
- Ontoselect: http://olp.dfki.de/ontoselect/
- OpenThesaurus: http://www.openthesaurus.de/
- RFDa-Primer: http://www.w3.org/TR/xhtml-rdfa-primer/
- Semantic Web: http://www.w3.org/2001/sw/
- SmartWeb: http://smartweb.dfki.de/SmartWeb_flashDemo_deu_v01.exe