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Course plan

Scheduling:

e Lecture: Thursdays, 14-16, here
e Office hours: Thursdays, 11-12 (Room 121)
e e-mail: nastase@cl.uni-heidelberg.de
Work:
e attend the lectures, and interact — bring pens and papers! |
will rarely have slides
e a semester long project
e present and discuss an assigned paper

e oral exam



Goals

understand the mathematical formalism behind topic models

figure out the strengths and weaknesses of this type of
approaches (the hunting joke is true!)

look at some of the more interesting extensions of the vanilla
LDA

give you hands on experience in developing a topic model



Project: LDA with your favourite extension

Homework 1, due date May 17th:
e pick your favourite text collection from the ICL's resources

e implement a system that splits the input data into fragments
(sentences / paragraphs/ documents) — this should be a
parameter

e represent the data in a structure that matches the split

e send me an archive with your code and documentation by
May 17th



Why topic models?



Topic models

Assumptions

Inference Discovered structure
algorithm

from David Blei, KDD-11 tutorial
e Observation: a collection of texts

e Assumption: the texts have been generated according to some
model

e Output: the model that has generated the texts



Topic models

e Discover hidden topical patterns that pervade the collection
through statistical regularities

e Annotate documents with these topics

e Use the topic annotations to organize, summarize, search
texts ...



Topic examples

Topic 247 Topic 5 Topic 43 Topic 56
word  prob. word  prob. word  prob. word _prob.
DRUGS .069 RED .202 MIND .081 DOCTOR  .074
DRUG  .060 BLUE .099 THOUGHT  .066 DR. 063
MEDICINE .027 GREEN  .096 REMEMBER .064 PATIENT .061
EFFECTS .026 YELLOW .073 MEMORY  .037 HOSPITAL  .049
BODY .023 WHITE .048 THINKING  .030 CARE .046
MEDICINES .019 COLOR  .048 PROFESSOR  .028 MEDICAL  .042
PAIN .01 BRIGHT .030 FELT .025 NURSE .031
PERSON .01 COLORS  .029 REMEMBERED  .022 PATIENTS 029
MARIJUANA 014 ORANGE .027 THOUGHTS  .020 DOCTORS  .028
LABEL .012 BROWN .027 FORGOTTEN  .020 HEALTH 025
ALCOHOL  .012 PINK .017 MOMENT  .020 MEDICINE .017
DANGEROUS  .011 LOOK .017 THINK  .019 NURSING 017
ABUSE  .009 BLACK .0l6 THING .0l6 DENTAL 015
EFFECT .009 PURPLE .015 WONDER .014 NURSES 013
KNOWN 008 CROSS  .011 FORGET .012 PHYSICIAN 012
PILLS .008 COLORED _ .009 RECALL .012 HOSPITALS 011

Figure 1. An illustration of four (out of 300) topics extracted from the TASA corpus.

Steyvers & Griffiths, 2006



LSA and topic models

documents dims
dims documents
Lsa B k= Z 9 T
= —_ = E
5] = = E
e fUED|E Vv
documents topics
documents
TOPIC 3 ';'Lf 5
MODEL % ( =5 O & ®
2 B =
normalized mixture mixture
co-occurrence matrix components Welghts

Steyvers & Griffiths, 2006



Topic models — intuition

Seeking Life’s Bare (Genetic) Necessities

ing. " Stripping down. Corg ysis yields an esti-
May 810 12. mate of the minimum moder and ancient genomes.

SCIENCE o VOL. 272 » 24 MAY 1996

e Find the latent structure of “topics” or “concepts” in a text
corpus, which is obscured by “word choice” noise

e Deerwester et al (1990) — LSA — co-occurrence of terms in
text documents can be used to recover this latent structure,

without additional knowledge.

e Latent topic representations representations of text allow
modelling linguistic phenomena, like synonymy and

polysemy.
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Topic models

w

Topics Documents Topic proportions and

assignments

e (Genetic) Necessities
b el e o

Each document is a mixture of topics:

Y pzm=k) = Omi=1
k k

Each word is drawn from one of its document's topics:

P(Wm,n) = ZP(Wm,n’Zm,n = k)p(zm,n =k)= Z‘Pk(wm,n)am,k
k k
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Topic models

Topic proportions and

Topics Documents ssnments

re (Genetic) Necessities

LR

The observations are the documents: wy,, me 1, M
We need to infer the model, i.e the underlying topic structure,
i.e. the topic assignments z,, , the topic 0, mec1l,M and
word distributions ,, kel K
Priors:

0 ~ distribution with hyperparameter «

@ ~ distribution with hyperparameter 3
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Topic models — Latent Dirichlet Allocation

p(fle) = B(la) [Tee

k
> Oy =1
k

« controls the mean shape and sparsity of 8
The topic proportions (6,,) are a K-dimensional Dirichlet
Zm n are multinomial distributions from 6,

K

NI e
p(zZm,n|0m) = e mk
| J PR e
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Topic models — Latent Dirichlet Allocation

[ controls the mean shape and sparsity of ¢
The topics (k) are a V-dimensional Dirichlet
Wm,n are multinomial distributions from ¢,

P(Wm n"Pk HSO

—Vvl
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Topic models — inference via Gibbs sampling
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Topic

"Theoretical Physics"

examples

"Neuroscience”

1880 1900 1920 1940 1960 1980 2000

OXYGEN

1880 1900 1920 1940 1960 1980 2000
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Topic examples

SKY WATER TREE SCOTLAND WATER SKY WATER BUILDING
MOUNTAIN PEOPLE FLOWER HILLS TREE PEOPLE WATER

FISH WATER OCEAN PEOPLE MARKET PATTERN BIRDS NEST TREE
TREE CORAL TEXTILE DISPLAY BRANCH LEAVES

Object = bag of words with labels
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Topic examples

[ gutamate |
Syapte |

~
stars \
reaction [ astronomers |
reactions. universe |
/" women . molecule || galayies
| universities AN m‘smh':t ANCEY
‘ \ \, VAN /
| students )\ \ansition statg \

e

\_education / ,
AN / /

Basic components:
e A set of entities (e.g. documents, images, individuals, genes)

e A set of relations (e.g. citation, coauthor, co-tag, friends,
pathways)
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Topic models in machine learning

generative — assume an underlying model (probability
distribution, parameters) generated the observed data

the class is a hidden variable
can handle a large number of classes

difference relative to discriminative models?

20



Topic models in machine learning

generative — assume an underlying model (probability
distribution, parameters) generated the observed data

the class is a hidden variable
can handle a large number of classes
difference relative to discriminative models?

discriminative: P(Y|X)
generative: P(Y, X)
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References

Probabilistic topic models, Mark Steyvers, Tom Griffiths
Parameter estimation for text analysis, Gregor Heinrich
Topic Models, David Blei (tutorial, videolectures.net)

Any of the many tutorials you can find on-line
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Probabilities refresher

23



probability /probable

late 14c., from O.Fr. probable (14c.), from L. probabilis
"provable,” from probare "to try, to test”

Wabhrsheinlichkeit/wahrsheinlich

seems to be true

24



Probabilities refresher

An experiment whose outcome depends on chance
random variable X captures the outcome of the experiment
sample space S the set of all possible outcomes
event EC S
X can be

discrete if S is finite or countably infinite

continuous

Examples?
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Distributions and probabilities

The distribution function:
p:S—[0,1]

p(x) >0,Vx € S

D op(x)=1

XES
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Distributions and probabilities
The distribution function:
p:S—[0,1]

p(x) >0,¥x €S

D op(x)=1

XES

Probability of an event:
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1. dice rolling

2. tossing two coins

A bit of practice

28



Properties of probabilities

P(E)>0,YECS
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Properties of probabilities

P(E)>0,YECS
P(S) =1
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Properties of probabilities

P(E)>0,VECS
P(S)=1
ECFcCS— P(E)<P(F)
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Properties of probabilities

P(E)>0,YECS
P(S)=1
ECFcS— P(E)<P(F)
ENF=0— P(EUF)=P(E)+ P(F)
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Properties of probabilities

P(E)>0,YECS
P(S)=1
ECFcS— P(E)<P(F)
ENF=0— P(EUF)=P(E)+ P(F)

P(E) =1- P(E)
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Properties of probabilities

P(E)>0,YECS
P(S)=1
ECFcS— P(E)<P(F)
ENF=0— P(EUF)=P(E)+ P(F)
P(E)=1- P(E)

Proofs?

224



Examples of probabilities in language models

e the sample space
e the events

e distributions
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Expected value

Discrete:

Continuous:

26/



Common discrete distributions

Uniform(n) : |S| = n, n is finite

27



Common discrete distributions

Uniform(n) : |S| = n, n is finite
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Common discrete distributions

Uniform(n) : |S| = n, n is finite

Bernoulli(p) : p€[0,1]; X €0,1:

PX=1)=pP(X=0)=1-p
Binomial(p,n) : p€[0,1; X €0,1,....,n;n €N

POx =) = (7)o o)

20



Common discrete distributions

Uniform(n) : |S| = n, n is finite

Bernoulli(p) : p€[0,1]; X €0,1:
P(X=1)=p;P(X=0)=1—p
Binomial(p,n) : p€[0,1; X €0,1,....,n;n €N
n _
P(X = x) = < >,,X(1 ~ p)n)
X
Multinomial(p1, ..., pi X1, ..., Xk; 1) = > ;X =n



Common continuous distributions

X

P(X < x) —/ p(y)dy

—0o0
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Common continuous distributions

X

P(X < x) —/ p(y)dy

—0o0

Uniform(a,b) : a,b € R,a < b, X € [a, b]

Vi)



Common continuous distributions

P(X < x) —/_X p(y)dy

Uniform(a,b) : a,b € R,a < b, X € [a, b]
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Common continuous distributions

X

P(X < x) —/ p(y)dy

—0o0

Uniform(a,b) : a,b € R,a < b, X € [a, b]

p(x) = bi p
Beta(a, 8) : o, 8 € Ryy, X €]0,1]
plxia ) = [ 1 =%

Dirichlet(«v) : generalization of Beta(«, j3)



Common continuous distributions

X

P(X < x) —/ p(y)dy

—0o0

Uniform(a,b) : a,be R,a < b, X € [a, b]

1
p(X) - b—a
Beta(a, 8) : o, 8 € Ryy, X €]0,1]
Mo+ 8) o B—1
p(x;a,B) = —/———=x 1—x
U508 = ayray 1)
Dirichlet(«r) : generalization of Beta(«, j3)
Normal(u,02) : p€R,0c € Ry, X €R
1 (p)®
p(x) = e

A5



est
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Two random variables
thought they were discrete
but | heard them continuously.

Test

A7



Next week sneak preview

A8



Next week sneak preview

Bayes' law and conjugate distributions
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