Programmieren ||

Generics

Alexander Fraser

fraser@cl.uni-heidelberg.de

(Based on material from Jedi, Jeff Meister and T. Bogel)

June 11, 2014

1/66

Recap
m Sorting

m Sorting Collections
m Sorted Collections
m Summary - Collections

Generics

Wildcards

2 /66

Recap
m Sorting

m Sorting Collections
m Sorted Collections
m Summary - Collections

3/66

Recap
m Sorting

Generics

Wildcards

4 /66

Traversing collections

A) Traversing collections with for-each

for (Object o : collection)
System.out.println(o);

B) Using Iterators
m lterators allow traversing trough collections

m Each collection provides an iterator with the .iterator() method

public interface Iterator<g> {
boolean hasNext();
E next();
void remove(); //optional

m Iterator.remove(): modify the collection during iteration

5/ 66

lterator example: filtering a list

static void filter(Collection<?> c¢) {
for (Iterator<?> it = c.iterator(); 1it.hasNext();)
if (!cond(it.next()))
it.remove();

m Works for any Collection

6/ 66

Recap

m Sorting Collections

Generics

Wildcards

7/66

Sorting Collections

Simple case
m Collections.sort(l) (where 1 is a List, for instance)

m Natural ordering of elements (works for all standard Java data types
out of the box)

m In order to sort a Collection, its elements need to implement
Comparable

m Overview of classes implementing Comparable:
http://docs.oracle.com/javase/tutorial/collections/
interfaces/order.html

8 /66

Writing Comparable types (classes)

Comparable interface

public interface Comparable<T> {

3

public int compareTo(T o0);

In order to sort collections with your own classes, you have to
implement Comparable!

compareTo method

Compares the object with another object (o)

returns negative int, if o is less than the object for which the
method is called

returns 0, if both objects are equal

returns positive int, if o is greater

9/66

m Default ordering: natural order
m Different behavior: you need a Comparator
m Class that compares two elements of the same type

public interface Comparator<T> {
int compare(T o1, T 02);

)

10/ 66

Example: Person Comparator

m Normally, sorting persons by their name first is ok
m One scenario: we want to sort them by birthyear for a company

anniversary

import java.util.Comparator;

public class YearFirstPersonComp implements Comparator<Person>

{

public int compare(Person arg0, Person argl) {
// sort persons by their birthyear
return (arg0.getBirthYear () - argl.getBirthYear());

Sorting a list of Persons

Collections.sort(personList, new YearFirstPersonComp());
11 /66

Recap

m Sorted Collections

Generics

Wildcards

12 / 66

Sorted collections |

SortedSet interface
m head/tailSet(E e) returns sub-sets of elements less/greater than e

m subSet(E from, E to) returns a sub-set with values between from
and to

first/last() retrieves first/last element
Concrete implementation: TreeSet
All elements in a sorted set need to implement Comparable

Optional comparator can be specified to adjust ordering strategy

Constructors:

m TreeSet()
m TreeSet(Comparator comp)
m ...

13 / 66

Sorted collections I

SortedMap interface
m Keys are ordered

m Concrete implementation: TreeMap

m Methods similar to SortedSet

m firstkey()
m subMap(K from, K to)
m ...

14 / 66

Recap

m Summary - Collections
Generics

Wildcards

15 / 66

Collections

Collection framework contains multiple classes to conveniently store
collections of objects

Ordered (insertion-order) collections with duplicates: List (e.g.
ArraylList, LinkedList)

Sets of elements without duplicates and no ordering: Set (e.g.
HashSet)

Sets of elements without duplicates and ordering: SortedSet (e.g.
TreeSet)

Mapping from keys to values: Map (e.g. HashMap, TreeMap)

16 / 66

Generics

17 / 66

Source

Most of the Generics section slides are from the Java Education and
Development Initiative (Jedi)
https://jedi.java.net/

18 / 66

Wildcards

19 / 66

Source

The first few slides on Generics, and the Wildcards section (later) are from
Jeff Meister
http://cseweb.ucsd.edu/~jmeister/

20 / 66

Java 1.4: Life Before Generics

Java code used to look like this:

List 1istOfFruits = new ArraylList();

listOfFruits.add(new Fruit(“Apple”));

Fruit apple = (Fruit) listOfFruits.remove(9);
listOfFruits.add(new Vegetable(“Carrot”)); // Whoops!

Fruit orange = (Fruit) listOfFruits.remove(®); // Run-time error

Problem: Compiler doesn’t know listOfFruits
should only contain fruits

A Silly Solution

We could make our own fruit-only list class:

class FruitList {
void add(Fruit element) { .. }
Fruit remove(int index) { .. }

But what about when we want a vegetable-only

list later? Copy-paste? Lots of bloated,
unmaintainable code?

Java 1.5: Now We're Talking

Now, Java code looks like this:

List<Fruit> listOfFruits = new ArraylList<Fruit>();
listOfFruits.add(new Fruit(“Apple”));

Fruit apple = listOfFruits.remove(0);

listOfFruits.add(new Vegetable(“Carrot”)); // Compile-time error

Hooray! Compiler now knows listOfFruits
contains only Fruits

* So remove() must return a Fruit
* And add() cannot take a Vegetable

13 An Introduction to
Generics

&
a,"v
J I Introduction to Programming 2

Topics
Why Generics?

Declaring a Generic Class
- "Primitive" Limitation

Constrained Generics

Declaring a Generic Method

Introduction to Programming 2

Generics

* |ncluded in Java’s latest release

* Problem with typecasting:
- Downcasting is a potential hotspot for ClassCastException
- Makes our codes wordier
- Less readable
- Destroys benefits of a strongly typed language

- Example: ArrayList object
String myString = (String) myArrayList.get (0);

&
B
I Introduction to Programming 2

Generics

* Why generics?
- Solve problem with typecasting

* Benefits:
- Allow a single class to work with a wide variety of types
- Natural way of eliminating the need for casting
- Preserves benefits of type checking
- Example: ArrayList object

//myArrayList is a generic object

String myString = myArrayList.get (0);

Introduction to Programming 2

Generics

e Caution:
Integer data = myArrayList.get (0);

- Removal of downcasting doesn’t mean that you could assign
anything to the return value of the get method and do away with

typecasting altogether

- Assigning anything else besides a String to the output of the get
method will cause a compile time type mismatch

found: java.lang.String

requlired: jJava.lang.Integer

&
B
I Introduction to Programming 2

Generics

//Code fragment
ArrayList<String> genArrList =
new ArrayList<String>();
genArrList.add ("A generic string");
String myString = genArrList.get (0);
//int myInt = genArrList.get ();

JoptionPane.showMessageDialog(this, myString);

Introduction to Programming 2

Declaring a Generic Class

 Forthe previous code fragment to work, we should have
defined a generic version of the ArrayList class

* Java’s newest version already provides users with generic
versions of all Java Collection classes

ke
@"'\-r
I Introduction to Programming 2

Declaring a Generic Class

1 class BasicGeneric<A> {

2 private A dataj;

3 public BasicGeneric (A data) {
4 this.data = data;

5 }

6 public A getData () {

7 return data;

8 }
9 }

10 //continued. ..

&
a,"v
J I Introduction to Programming 2

Declaring a Generic Class

11 public class GenSample {

12 public String method (String input) {

13 String datal = input;

14 BasicGeneric<String> basicGeneric = new

15 BasicGeneric<String> (datal);
16 String data?2 = basicGeneric.getDatal();

17 return data?z;

18 }

19 //continued...

Introduction to Programming 2

Declaring a Generic Class

20 public Integer method(int 1nput) {

21 Integer datal = new Integer (input);

22 BasicGeneric <Integer> basicGeneric = new

23 BasicGeneric <Integer> (datal);
24 Integer data2 = basicGeneric.getDatal();

25 return data?z;

26 }

27 //continued. ..

Introduction to Programming 2

Declaring a Generic Class

20 public static void main(String args|[]) {

21 GenSample sample = new GenSample () ;

22 System.out.println(sample.method (

23 "Some generic data"));
24 System.out.println (sample.method (1234));

25 }

26 }

k
a,"v
J I Introduction to Programming 2

Declaring a Generic Class

* Declaration of the BasicGeneric class:
class BasicGeneric<A>
- Contains type parameter: <aA>
- Indicates that the class declared is a generic class
- Class does not work with any specific reference type

e Declaration of field:
private A data;

— The field data is of generic type, depending on the data type that the
BasicGeneric object was designed to work with

ke
@"'\-r
I Introduction to Programming 2

Declaring a Generic Class

* Declaring an instance of the class
- Must specify the reference type to work with
- Examples:

BasicGeneric<String> basicGeneric = new
BasicGeneric<String> (datal);

» Class works with variables of type String

BasicGeneric<Integer> basicGeneric = new
BasicGeneric<Integer> (datal);

» Class works with variables of type Integer

&
B
I Introduction to Programming 2

Declaring a Generic Class

* Declaration of the getData method:
public A getData () {

return data;

}
- Returns a value of type A, a generic type

- The method will have a runtime data type

- After you declare an object of type BasicGeneric, A is bound to a
specific data type

&
B
I Introduction to Programming 2

Declaring a Generic Class

* |nstances of the BasicGeneric class

BasicGeneric<String> basicGeneric = new

BasicGeneric<String> (datal);
String dataZ = basicGeneric.getData();
- basicGeneric is bound to String type

- No need to typecast
BasicGeneric<Integer> basicGeneric = new

BasicGeneric<Integer> (datal);
Integer data2 = basicGeneric.getData();
- basicGeneric is bound to Integer type
- No need to typecast

&
B
I Introduction to Programming 2

Generics:
" | | | " | | |
Primitive" Limitation
* Java generic types are restricted to reference types and
won’t work with primitive data types

- Example:
BasicGeneric<int> basicGeneric = new
BasicGeneric<int> (datal) ;
e Solution:

- Wrap primitive types first
- (Can use wrapper types as arguments to a generic type

ke
@"'\-r
I Introduction to Programming 2

Constrained Generics

* Preceding example:

- Type parameters of class BasicGeneric can be of any reference
data type

* May want to restrict the potential type instantiations of a
generic class

- Can limit the set of possible type arguments to subtypes of a given
type bound

&
B
I Introduction to Programming 2

Constrained Generics

* Limiting type instantiations of a class
- Use the extends keyword in type parameter
class ClassName <ParameterName extends ParentClass>

- Example: generic ScrollPane class

» Template for an ordinary Container decorated with scrolling functionality
» Runtime type of an instance of this class will often be a subclass of Container
» The static or general type is Container

Introduction to Programming 2

Constrained Generics

1 class ScrollPane<MyPane extends Container> {

3}

4 class TestScrollPane {

5 public static void main(String args[]) {

6 ScrollPane<Panel> scrollPanel =

7 new ScrollPane<Panel> () ;
8 // The next statement is illegal

9 ScrollPane<Button> scrollPane2 =

10 new ScrollPane<Button> () ;

Introduction to Programming 2

Constrained Generics

» (ives added static type checking

- Guarantee that every instantiation of the generic type adheres to
assigned bounds

- (Can safely call any methods found in the object’s static type

* No explicit bound on the parameter
- Default bound is Object

- An instance can’t invoke methods that don’t appear in the Object
class

ke
@"'\-r
I Introduction to Programming 2

Declaring a Generic Method

e Java also allows us to declare a generic method

e Generic Method
- Polymorphic methods

- Methods parameterized by type

 Why generic method?

- Type dependencies between the arguments and return value are
naturally generic

- But the generic nature change from method call to method call
rather than class-level type information

ke
-
I Introduction to Programming 2

Declaring a Generic Method

1 class Utilities {
2 /* T implicitly extends Object */
public static <T> ArrayList<T> make (T first) {

W

4 return new ArrayList<T>(first);

Introduction to Programming 2

Declaring a Generic Method

* Java also uses a type-inference mechanism

- Automatically infers the types of polymorphic methods based on the
types of arguments

- Lessens wordiness and complexity of a method invocation

* To construct a new instance of ArrayList<Integer>, we would
simply have the following statement:

Utilities.make (Integer (0));

ke
-
I Introduction to Programming 2

Summary

* Why Generics?

* Declaring a Generic Class

class ClassName<TypeParameter> {

- "Primitive" Limitation

&
I Introduction to Programming 2

Summary

e Constrained Generics

class ClassName<ParameterName extends ParentClass>

* Declaring a Generic Method

- Example:
public static <T> ArrayList<T> make (T first) {

return new ArrayList<T> (first);

&
a,"v
I Introduction to Programming 2

Subtyping

Since Apple is a subtype of Object, is List<Apple>
a subtype of List<Object>?

List<Apple> apples = new ArraylList<Apple>();
List<Object> objs = apples; // Does this compile?

Seems harmless, but no! If that worked, we
could put Oranges in our List<Apple> like so:

objs.add(new Orange()); // OK because objs is a List<Object>
Apple a = apples.remove(@); // Would assign Orange to Apple!

An Aside: Subtyping and Java Arrays

* Java arrays actually have the subtyping
problem just described (they are covariant)

* The following obviously wrong code compiles,
only to fail at run-time:

Apple[] apples = new Apple[3];
Object[] objs = apples; // The compiler permits this!
objs[@] = new Orange(); // ArrayStoreException

* Avoid mixing arrays and generics (trust me)

Wildcard Types

So, what is List<Apple> a subtype of?

The supertype of all kinds of lists is List<?>,
the List of unknown

The ? is a wildcard that matches anything

We can’t add things (except null) to a List<?>,
since we don’t know what the List is really of

But we can retrieve things and treat them as
Objects, since we know they are at |least that

Bounded Wildcards

* Wildcard types can have upper and lower
bounds

* A List<? extends Fruit> is a List of items that
have unknown type but are all at least Fruits

— So it can contain Fruits and Apples but not Peas

* A List<? super Fruit> is a List of items that
have unknown type but are all at most Fruits

— So it can contain Fruits and Objects but not Apples

Bounded Wildcards Example

class WholesaleVendor<T> {
void buy(int howMany, List<? super T> fillMeUp) { .. }
void sell(List<? extends T> emptyMe) { .. }

}

WholesaleVendor<Fruit> vendor = new WholesaleVendor<Fruit>();
List<Food> stock = ..;
List<Apple> overstockApples = ..;

// I can buy Food from the Fruit vendor:
vendor.buy (100, stock);

// I can sell my Apples to the Fruit vendor:
vendor.sell(overstockApples);

Josh Bloch’s Bounded Wildcards Rule

e Use <? extends T> when parameterized
instance is a T producer (for reading/input)

e Use <? super T> when parameterized instance
is a T consumer (for writing/output)

How Generics are Implemented

* Rather than change every JVM between Java 1.4
and 1.5, they chose to use erasure

* After the compiler does its type checking, it
discards the generics; the JVM never sees them!

* |t works something like this:

— Type information between angle brackets is thrown
out, e.g., List<String> = List

— Uses of type variables are replaced by their upper
bound (usually Object)

— Casts are inserted to preserve type-correctness

Pros and Cons of Erasure

* Good: Backward compatibility is maintained,
so you can still use legacy non-generic libraries

* Bad: You can’t find out what type a generic
class is using at run-time:

class Example<T> {
void method(Object item) {
if (item instanceof T) { .. } // Compiler error!
T anotherItem = new T(); // Compiler error!
T[] itemArray = new T[10]; // Compiler error!

Using Legacy Code in Generic Code

e Say | have some generic code dealing with Fruits,
but | want to call this legacy library function:

Smoothie makeSmoothie(String name, List fruits);

* | can pass in my generic List<Fruit> for the fruits
parameter, which has the raw type List. But why?
That seems unsafe... makeSmoothie() could stick
a Vegetable in the list, and that would taste
nasty!

Raw Types and Generic Types

List doesn’t mean List<Object>, because then we
couldn’t pass in a List<Fruit> (subtyping,
remember?)

List doesn’t mean List<?> either, because then we
couldn’t assign a List to a List<Fruit> (which is a
legal operation)

We need both of these to work for generic code
to interoperate with legacy code

Raw types basically work like wildcard types, just
not checked as stringently

— These operations generate an unchecked warning

The Problem with Legacy Code

e “Calling legacy code from generic code is
inherently dangerous; once you mix generic
code with non-generic legacy code, all the
safety guarantees that the generic type system
usually provides are void. However, you are
still better off than you were without using
generics at all. At least you know the code on
your end is consistent.” — Gilad Bracha, Java
Generics Developer

My Advice on Generics

* Don’t try to think about generic code
abstractly; make an example instantiation in
your head and run through scenarios using it

* Generics are a valuable tool to ensure type
safety, so use them! Let the compiler help you

* However, generics also complicate syntax, and
they can generate some nasty errors that are a
pain to understand and debug

An Analogy: Functions

* Problem: | want to perform the same
computation on many different input values
without writing the computation over and over.

e Solution: Write a function! Use a variable to
represent the input value, and write your code to
perform the computation on this variable in a
way that does not depend on its value. Now you
can call the function many times, passing in
different values for the variable. Easy stuff.

Generics Provide Another Abstraction

* Problem: | want to use the same class (or method) with
objects of many different types without writing the
class over and over or sacrificing type safety.

e Solution: Generify the class! Use a variable T to
represent the input type, and write your code to
operate on objects of type T in a way that does not
depend on the actual value of T. Now you can
instantiate the class many times, passing in different
types for T.

e See? It’s not so bad. Generics just allow you to abstract
over types instead of values.

Exercises |

Will the following class compile?

public final class Algorithm {
public static T max(T x, T y) {
return x > y 7 x : Vy;

¥

63 /66

Exercises ||

Will the following method compile?

public static void print(List<? extends Number> 1list) {
for (Number n : list)
System.out.print(n + " ");
System.out.println () ;

64 / 66

Exercise

Source: Washington University, CS 341
m J.M. defines an interface Appendable with an append method

m He defines two classes, MyString and MyList, which both implement
Appendable

m He wants to allow a MyString to be appended to a MyString, and a
MyList to a MyList

m But not a MyString to a MyList or vice-versa.

m Here is his definition of Appendable:

interface Appendable {

Appendable append (Appendable a);
}

What is wrong with this definition? What is a correct one?

65 / 66

% Java Tutorials on Generics
http://docs. oracle. com/ javase/ tutorial/ java/ generics/

@ Sierra, K. & Bates, B.
Head First Java. (Chapter 16)
O'Reilly Media, 2005.

® Ullenboom, Ch.

Java ist auch eine Insel. (Chapter 9)
Galileo Computing, 2012.

66 / 66

