Statistical Machine Translation

-tree-based models (cont.)-

Artem Sokolov
Computerlinguistik
Universität Heidelberg Sommersemester 2015

Bottom-Up Decoding

- For each span, a stack of (partial) translations is maintained
- Bottom-up: a higher stack is filled, once underlying stacks are complete

Input: Foreign sentence $\mathbf{f}=f_{1}, \ldots f_{l_{f}}$, with syntax tree
Output: English translation e
1: for all spans [start,end] (bottom up) do
2: for all sequences s of hypotheses and words in span [start,end] do
3: \quad for all rules r do
4: \quad if rule r applies to chart sequence s then
5: create new hypothesis c
6: add hypothesis c to chart
7: end if
8: end for
9: end for
10: end for
11: return English translation e from best hypothesis in span $\left[0, l_{f}\right]$

Applying rule creates new hypothesis

Another hypothesis

Both hypotheses are indistiguishable in future search
\rightarrow can be recombined

Hypotheses have to match in

- span of input words covered
- output constituent label
- first $n-1$ output words (not properly scored, since they lack context)

■ last $n-1$ output words (still affect scoring of subsequently added words, just like in phrase-based decoding)
(n is the order of the n-gram language model)
When merging hypotheses, internal language model contexts are absorbed

Search space pruning

- recombination
- stack pruning

Algorithmic techniques

- prefix tree

■ Earley's parsing algorithm

- cube pruning
- Number of hypotheses in each chart cell explodes
\Rightarrow need to discard bad hypotheses
e.g., keep $n=100$ best only
- Different stacks for different output constituent labels
\Rightarrow keep at least m different ($m=2,3, .$.)
- Many subspan sequences for all sequences s of hypotheses and words in span [start,end]
- Many rules

for all rules r

- Checking if a rule applies not trivial rule r applies to chart sequence s
\Rightarrow Unworkable
- Easy:
\Rightarrow given a rule
\Rightarrow check if and how it can be applied
- But there are too many rules (millions) to check them all
- Instead:
\Rightarrow given the underlying chart cells and input words
\Rightarrow find which rules apply

Prefix Tree for Rules

Highlighted Rules

$$
\begin{gathered}
\mathrm{NP} \rightarrow \mathrm{NP}_{1} \mathrm{DET}_{2} \mathrm{NN}_{3} \mid \\
\mathrm{NP} \rightarrow \mathrm{NP}_{1} \mid \\
\mathrm{NP} \mathrm{NN}_{2} \mathrm{NN}_{3} \\
\mathrm{NP} \rightarrow \mathrm{NP}_{1} \text { des } \mathrm{NN}_{2} \mid \\
\mathrm{NP} \rightarrow \mathrm{NP}_{1} \text { des } \mathrm{NN}_{2} \mid \\
\mathrm{NP} \rightarrow \mathrm{NP}_{1} \text { of the } \mathrm{NN}_{2} \\
\mathrm{NP} \rightarrow \mathrm{NET}_{1} \mathrm{NN}_{2} \mid \\
\mathrm{NP} \rightarrow \text { das Haus } \mid \text { the house }
\end{gathered}
$$

- CFGs are ubiquitous for describing (syntactic) structure in NLP
- parsing algorithms are core of NL analysis systems
- recognition vs. parsing:
\Rightarrow recognition - deciding the membership in the language
\Rightarrow parsing - recognition + producing a parse tree for it
- parsing has more time complexity than recognition
- an input may have exponentially many parses
- one of the earliest recognition and parsing algorithms
- standard CKY can only recognize languages defined by CFGs in Chomsky Normal Form (CNF).
- based on a dynamic programming

■ considers every possible consecutive subsequence of letters and sets $K \in T[i, j]$ if the sequence of letters starting from i to j can be generated from the non-terminal K

- once it has considered sequences of length 1 , it goes on to sequences of length 2, and so on
■ for subsequences of length 2 and greater, it considers every possible partition of the subsequence into two halves, and checks to see if there is some production $A \rightarrow B C$ such that B matches the 1 st half and C matches the 2 nd half. If so, it records A as matching the whole subsequence
- once completed, the sentence is recognized by the grammar if the entire string is matched by the start symbol

■ any portion of the input string spanning i to j can be split at k, and structure can then be built using sub-solutions spanning i to k and sub-solutions spanning k to j

- solution to problem $[i, j]$ can constructed from solution to sub problem $[i, k]$ and solution to sub problem $[k, j]$

CKY Algorithm for Deciding CFL

Consider the grammar G given by:
$S \rightarrow \varepsilon|A B| X B$
$T \rightarrow A B \mid X B$
$x \rightarrow A T$
$A \rightarrow a$
$B \rightarrow b$

CKY Algorithm for Deciding CFL

Now look at $a a a b b b$:
$S \rightarrow \varepsilon|A B| X B \quad a$
$T \rightarrow A B \mid X B$

$X \rightarrow A T$
A

CKY Algorithm for Deciding CFL

1) Write variables for all length 1 substrings.

$$
\begin{aligned}
& S \rightarrow \varepsilon|A B| X B \\
& T \rightarrow A B \mid X B \\
& X \rightarrow A T \\
& A \rightarrow a \\
& B \rightarrow b
\end{aligned}
$$

CKY Algorithm for Deciding CFL

2) Write variables for all length 2 substrings.

$$
\begin{aligned}
& S \rightarrow \varepsilon|A B| X B \\
& T \rightarrow A B \mid X B \\
& X \rightarrow A T \\
& A \rightarrow a \\
& B \rightarrow b
\end{aligned}
$$

$\frac{b}{B}$

CKY Algorithm for Deciding CFL

3) Write variables for all length 3 substrings.

$$
\begin{aligned}
& S \rightarrow \varepsilon|A B| X B \\
& T \rightarrow A B \mid X B \\
& X \rightarrow A T \\
& A \rightarrow a \\
& B \rightarrow b
\end{aligned}
$$

$\frac{b}{B}$

b

CKY Algorithm for Deciding CFL

4) Write variables for all length 4 substrings.

$$
\begin{aligned}
& S \rightarrow \varepsilon|A B| X B \\
& T \rightarrow A B \mid X B \\
& X \rightarrow A T \\
& A \rightarrow a \\
& B \rightarrow b
\end{aligned}
$$

CKY Algorithm for Deciding CFL

5) Write variables for all length 5 substrings.
$S \rightarrow \varepsilon|A B| X B$

CKY Algorithm for Deciding CFL

6) Write variables for all length 6 substrings.
$S \rightarrow \varepsilon|A B| X B$

The CKY Algorithm

function CKY (word w, grammar P) returns table for $i \leftarrow$ from 1 to LENGTH (w) do table $[i-1, i] \leftarrow\left\{A \mid A \rightarrow w_{i} \in P\right\}$
for $\mathrm{j} \leftarrow$ from 2 to $\operatorname{LENGTH}(w)$ do for $\mathrm{i} \leftarrow$ from $\mathrm{j}-2$ down to 0 do for $k \leftarrow \mathrm{i}+1$ to $\mathrm{j}-1$ do table $[i, j] \leftarrow$ table $[i, j] \cup\{A \mid A \rightarrow B C \in P$, $B \in$ table $[i, k], C \in \operatorname{table}[k, j]\}$

If the start symbol $S \in$ table[$0, \mathrm{n}]$ then $w \in L(G)$

CKY Algorithm for Deciding CFL

The table chart used by the algorithm:

j	1	2	3	4	5	6
	a	a	a	b	b	b
0						
1						
2						
3						
4						
5						

CKY Algorithm for Deciding CFL

1. Variables for length 1 substrings.

j	1	2	3	4	5	6
i	a	a	a	b	b	b
0	A					
1		A				
2			A			
3				B		
4					B	
5						B

CKY Algorithm for Deciding CFL

2. Variables for length 2 substrings.

i	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5 b b	6 b
0	A	-				
1		A	-			
2			$A-$	S, T		
3				B	-	
4					B	-
5						B

CKY Algorithm for Deciding CFL

3. Variables for length 3 substrings.

j	1	2	3	4	5	6
i	a	a	a	b	b	b
0	A	-	-			
1		A	-	X		
2			A	S, T	-	
3				B	-	-
4					B	-
5						B

CKY Algorithm for Deciding CFL

4. Variables for length 4 substrings.

j	1	2	3	4	5	6
i^{j}	a	a	a	b	b	b
0	A	-	-	-		
1		A	-	X	S, T	
2			A	S, T	-	-
3				B	-	-
4					B	-
5						B

CKY Algorithm for Deciding CFL

5. Variables for length 5 substrings.

j	1	2	3	4	5	6
i	a	a	a	b	b	b
0	A	-	-	-	X	
1		A	-	X	S, T	-
2			A	S, T	-	-
3				B	-	-
4					B	-
5						B

CKY Algorithm for Deciding CFL

6. Variables for $a a a b b b$. ACCEPTED!

$\mathrm{i}^{\text {j }}$	$\begin{aligned} & 1 \\ & a \end{aligned}$	$\begin{aligned} & \overline{2} \\ & a \end{aligned}$	$\begin{aligned} & 3 \\ & a \end{aligned}$			6 b
0	A	-	-	-	-	S,T
1		A^{\prime}	-	-	-S,T	-
2			A	S,T	-	-
3				B	-	-
4					B	-
5						B

CKY Space and Time Complexity

Time complexity:

- Three nested "for" loop each one of O(n) size.
- Lookup for $r=|N|$ pair rules at each step.

Time complexity - $O\left(r^{2} n^{3}\right)=O\left(n^{3}\right)$

Space complexity:

- A three dimensions table at size $n^{*} n^{*} r$ or
- A $n * n$ table with lists up to size of r

Space complexity - $O\left(r^{2}\right)=O\left(n^{2}\right)$

Earley Algorithm

- doesnt require the grammar to be in CNF.
\Rightarrow grammar intended to reflect actual structure of language
\Rightarrow conversion to CNF completely destroys the parse structure
- efficiency:
\Rightarrow usually moves left-to-right (prefix trees!)
\Rightarrow faster than $O\left(n^{3}\right)$ for many grammars
\Rightarrow uses a parse table as CKY, so can backtrack

Earley Algorithm

- dotted rule
\Rightarrow a partially constructed constituent, w/ the dot indicating what has been found and what is still predicted
\Rightarrow generated from ordinary grammar rules (no CNF!)
■ maintains a set of states, for each position in the input

The Dotted Rules

With dotted rules, an entry in the chart records:

- Which rule has been used in the analysis
- Which part of the rule has already been found (left of the dot).
- Which part is still predicted to be found and will combine into a complete parse (right of the dot).
- the start and end position of the material left of the dot.

Example: $\quad \mathrm{A} \rightarrow X_{1} X_{2 \ldots} \bullet C X_{m}$

Parsing Operations

The Earley algorithm has three main operations:
Predictor: an incomplete entry looks for a symbol to the right of its dot. if there is no matching symbol in the chart, one is predicted by adding all matching rules with an initial dot.
Scanner: an incomplete entry looks for a symbol to the right of the dot. this prediction is compared to the input, and a complete entry is added to the chart if it matches.
Completer: a complete edge is combined with an incomplete entry that is looking for it to form another complete entry.

Parsing Operations

- Predictor: If state $\left[A \rightarrow X_{1} \ldots \bullet C \ldots X_{m}, j\right] \in S_{i}$ then for every rule of the form $C \rightarrow Y_{1} \ldots Y_{k}$, add to S_{i} the state $\left[C \rightarrow \bullet Y_{1} \ldots Y_{k}, i\right]$
- Scanner: If state $\left[A \rightarrow X_{1} \ldots \bullet a \ldots X_{m}, j\right] \in S_{i}$ and the next input word is $x_{i+1}=a$, then add to S_{i+1} the state $\left[A \rightarrow X_{1} \ldots a \bullet \ldots X_{m}, j\right]$
- Completer: If state $\left[A \rightarrow X_{1} \ldots X_{m} \bullet j\right] \in S_{i}$ then for every state in S_{j} of form $\left[B \rightarrow X_{1} \ldots \bullet A \ldots X_{k}, l\right]$, add to S_{i} the state $\left[B \rightarrow X_{1} \ldots A \bullet \ldots X_{k}, l\right]$

The Earley Recognition Algorithm

The Main Algorithm: parsing input $w=w_{1} w_{2} \ldots w_{n}$

1. $S_{0}=\{[S \rightarrow \bullet P(0)]\}$
2. For $0 \leq i \leq n d o:$

Process each item $s \in S_{i}$ in order by applying to
it a single applicable operation among:
(a) Predictor (adds new items to S_{i})
(b) Completer (adds new items to S_{i})
(c) Scanner (adds new items to S_{i+1})
3. If $S_{i+1}=\varnothing$ Reject the input.
4. If $i=n$ and $[S \rightarrow P \bullet(0)] \in S_{n}$ then Accept the input.

Earley Algorithm Example

Consider the following grammar for arithmetic expressions:
$S \rightarrow P \quad$ (the start rule)
$P \rightarrow P+M$
$P \rightarrow M$
$M \rightarrow M$ * T
$\mathrm{M} \rightarrow \mathrm{T}$
$\mathrm{T} \rightarrow$ number

With the input: $2+3$ * 4

Earley Algorithm Example

Sequence(0) • $2+3 * 4$
(1) $S \rightarrow \bullet P(0)$
\# start rule

Earley Algorithm Example

Sequence(0) • $2+3 * 4$
(1) $S \rightarrow \bullet P(0)$
(2) $\mathrm{P} \rightarrow \bullet \mathrm{P}+\mathrm{M}(0)$
(3) $\mathrm{P} \rightarrow \bullet \mathrm{M}(0)$
\# start rule
\# predict from (1)
\# predict from (1)

Earley Algorithm Example

Sequence(0) • $2+3 * 4$

(1) $S \rightarrow \bullet P(0)$
(2) $P \rightarrow \bullet P+M(0)$
(3) $\mathrm{P} \rightarrow \bullet \mathrm{M}(0)$
(4) $\mathrm{M} \rightarrow \bullet \mathrm{M}^{*} \mathrm{~T}(0)$
(5) $\mathrm{M} \rightarrow \bullet \mathrm{T}(0)$
\# start rule
\# predict from (1)
\# predict from (1)
\# predict from (3)
\# predict from (3)

Earley Algorithm Example

Sequence(0) • $2+3 * 4$

(1) $S \rightarrow \bullet P(0)$
(2) $P \rightarrow \bullet P+M(0)$
(3) $\mathrm{P} \rightarrow \bullet \mathrm{M}(0)$
(4) $\mathrm{M} \rightarrow \bullet \mathrm{M}^{*} \mathrm{~T}(0)$
(5) $\mathrm{M} \rightarrow \bullet \mathrm{T}(0)$
(6) $\mathrm{T} \rightarrow \bullet$ number (0)
\# start rule
\# predict from (1)
\# predict from (1)
\# predict from (3)
\# predict from (3)
\# predict from (5)

Earley Algorithm Example

Sequence(1) $2 \bullet+3 * 4$
(1) $\mathrm{T} \rightarrow$ number • (0) \# scan from $\mathrm{S}(0)(6)$

Earley Algorithm Example

Sequence(1) $2 \bullet+3 * 4$
(1) $\mathrm{T} \rightarrow$ number • (0) $\quad \#$ scan from $\mathrm{S}(0)(6)$
(2) $\mathrm{M} \rightarrow \mathrm{T} \cdot(0)$
\# complete from $\mathrm{S}(0)(5)$

Earley Algorithm Example

Sequence(1) $2 \bullet+3 * 4$

(1) $\mathrm{T} \rightarrow$ number • (0) \# scan from $\mathrm{S}(0)(6)$
(2) $\mathrm{M} \rightarrow \mathrm{T} \bullet(0)$
(3) $\mathrm{M} \rightarrow \mathrm{M} \bullet * \mathrm{~T}(0)$
(4) $P \rightarrow M \bullet(0)$
\# complete from $\mathrm{S}(0)(4)$
\# complete from $\mathrm{S}(0)(3)$

Earley Algorithm Example

Sequence(1) $2 \bullet+3 * 4$

(1) $\mathrm{T} \rightarrow$ number • (0) \# scan from $\mathrm{S}(0)(6)$
(2) $\mathrm{M} \rightarrow \mathrm{T} \cdot(0)$
(3) $\mathrm{M} \rightarrow \mathrm{M} \bullet * \mathrm{~T}(0)$
(4) $\mathrm{P} \rightarrow \mathrm{M} \bullet$ (0)
(5) $\mathrm{P} \rightarrow \mathrm{P} \bullet+\mathrm{M}(0)$
(6) $S \rightarrow P \bullet(0)$
\# complete from $\mathrm{S}(0)(4)$
\# complete from $\mathrm{S}(0)(3)$
\# complete from $\mathrm{S}(0)(2)$
\# complete from $\mathrm{S}(0)(1)$

Earley Algorithm Example

Sequence(2) $2+\bullet 3 * 4$
(1) $P \rightarrow P+\bullet M(0)$
\# scan from S(1)(5)

Earley Algorithm Example

Sequence(2) $2+\bullet 3 * 4$
(1) $P \rightarrow P+\bullet M(0)$
(2) $M \rightarrow \bullet M$ *T(2)
(3) $\mathrm{M} \rightarrow \bullet \mathrm{T}(2)$
\# scan from S(1)(5)
\# predict from (1)
\# predict from (1)

Earley Algorithm Example

Sequence(2) $2+\bullet 3 * 4$
(1) $P \rightarrow P+\bullet M(0)$
(2) $M \rightarrow \bullet M^{*} T(2)$
(3) $\mathrm{M} \rightarrow \bullet \mathrm{T}(2)$
(4) $\mathrm{T} \rightarrow \bullet$ number (2)
\# scan from S(1)(5)
\# predict from (1)
\# predict from (1)
\# predict from (3)

Earley Algorithm Example

Sequence(3) $2+3 \bullet * 4$
(1) $\mathrm{T} \rightarrow$ number • (2) \# scan from $\mathrm{S}(2)(4)$

Earley Algorithm Example

Sequence(3) $2+3 \bullet * 4$
(1) $\mathrm{T} \rightarrow$ number • (2) \# scan from $\mathrm{S}(2)(4)$
(2) $\mathrm{M} \rightarrow \mathrm{T} \cdot(2)$
\# complete from $\mathrm{S}(2)(3)$

Earley Algorithm Example

Sequence(3) $2+3 \bullet * 4$
(1) $\mathrm{T} \rightarrow$ number • (2) \# scan from $\mathrm{S}(2)(4)$
(2) $\mathrm{M} \rightarrow \mathrm{T} \bullet$ (2)
(3) $\mathrm{M} \rightarrow \mathrm{M} \cdot * \mathrm{~T}$ (2)
(4) $P \rightarrow P+M \bullet(0)$
\# complete from $S(2)(2)$
\# complete from $\mathrm{S}(2)(1)$

Earley Algorithm Example

Sequence(3) $2+3 \bullet * 4$

(1) $\mathrm{T} \rightarrow$ number • (2) \# scan from $\mathrm{S}(2)(4)$
(2) $\mathrm{M} \rightarrow \mathrm{T} \cdot(2)$
(3) $\mathrm{M} \rightarrow \mathrm{M} \bullet * \mathrm{~T}$ (2)
(4) $P \rightarrow P+M \bullet(0)$
(5) $\mathrm{P} \rightarrow \mathrm{P} \bullet+\mathrm{M}(0)$
(6) $S \rightarrow P \bullet(0)$
\# complete from $\mathrm{S}(2)(2)$
\# complete from $S(2)(1)$
\# complete from $S(0)(2)$
\# complete from $\mathrm{S}(0)(1)$

Earley Algorithm Example

Sequence(4) $2+3 * \bullet 4$
(1) $M \rightarrow M^{*} \bullet T(2) \quad$ \# scan from $S(3)(3)$

Earley Algorithm Example

Sequence(4) $2+3$ * • 4

(1) $M \rightarrow M^{*} \bullet T(2) \quad$ \# scan from $S(3)(3)$
(2) $\mathrm{T} \rightarrow \bullet$ number (4) \# predict from (1)

Earley Algorithm Example

Sequence(5) $2+3 * 4$ •
(1) $\mathrm{T} \rightarrow$ number • (4) $\#$ scan from $\mathrm{S}(4)(2)$

Earley Algorithm Example

Sequence(5) $2+3 * 4$ •
(1) $\mathrm{T} \rightarrow$ number • (4) \quad \# scan from $\mathrm{S}(4)(2)$
(2) $\mathrm{M} \rightarrow \mathrm{M}^{*} \mathrm{~T} \bullet(2)$
\# complete from $S(4)(1)$

Earley Algorithm Example

Sequence(5) $2+3$ * 4 •

(1) $\mathrm{T} \rightarrow$ number • (4) \quad \# scan from $\mathrm{S}(4)(2)$
(2) $\mathrm{M} \rightarrow \mathrm{M}^{*} \mathrm{~T} \cdot(2) \quad$ \# complete from $\mathrm{S}(4)(1)$
(3) $\mathrm{M} \rightarrow \mathrm{M} \bullet$ * $\mathrm{T}(2) \quad$ \# complete from $\mathrm{S}(2)(2)$
(4) $P \rightarrow P+M \bullet(0)$
\# complete from $\mathrm{S}(2)(1)$

Earley Algorithm Example

Sequence(5) $2+3 * 4$ •
(1) $\mathrm{T} \rightarrow$ number • (4) $\#$ scan from $\mathrm{S}(4)(2)$
(2) $\mathrm{M} \rightarrow \mathrm{M}^{*} \mathrm{~T} \bullet$ (2)
(3) $\mathrm{M} \rightarrow \mathrm{M} \bullet * \mathrm{~T}$ (2)
(4) $P \rightarrow P+M \bullet(0)$
(5) $\mathrm{P} \rightarrow \mathrm{P} \bullet+\mathrm{M}(0)$
(6) $S \rightarrow P \bullet(0)$
\# complete from $S(4)(1)$
\# complete from $S(2)(2)$
\# complete from $\mathrm{S}(2)(1)$
\# complete from $S(0)(2)$
\# complete from $\mathrm{S}(0)(1)$

Earley Algorithm Example

Sequence(5) $2+3 * 4$ •
(1) $\mathrm{T} \rightarrow$ number • (4)
(2) $\mathrm{M} \rightarrow \mathrm{M}^{*} \mathrm{~T} \bullet$ (2)
(3) $\mathrm{M} \rightarrow \mathrm{M} \cdot * \mathrm{~T}$ (2)
(4) $P \rightarrow P+M \bullet(0)$
(5) $\mathrm{P} \rightarrow \mathrm{P} \bullet+\mathrm{M}(0)$
(6) $S \rightarrow P \cdot(0)$
\# scan from $S(4)(2)$
\# complete from $S(4)(1)$
\# complete from $S(2)(2)$
\# complete from $\mathrm{S}(2)(1)$
\# complete from $\mathrm{S}(0)(2)$
\# complete from $\mathrm{S}(0)(1)$

The state $S \rightarrow P \bullet(0)$ represents a completed parse.

Finding the parse tree

$\begin{gathered} \operatorname{Seg} 0 \\ -2+3 * 4 \end{gathered}$	$\begin{gathered} \underline{\operatorname{Seg} 1} \\ 2 \cdot+3 * 4 \end{gathered}$	$\begin{gathered} \frac{\operatorname{Seq} 2}{2+\bullet 3 * 4} \end{gathered}$	$\begin{gathered} \underline{\operatorname{Seg} 3} \\ 2+3 \bullet * 4 \end{gathered}$	$\begin{gathered} \underline{\operatorname{Seg} 4} \\ 2+3 * \cdot 4 \end{gathered}$	$\begin{gathered} \frac{\operatorname{Seg} 5}{2+3 * 4} \end{gathered}$
$\mathrm{S} \rightarrow \bullet \mathrm{P}(0)$	$\mathrm{T} \rightarrow \mathrm{C}^{\prime}$ • (0)	$P \rightarrow P+\bullet M$ (0)	$\mathrm{T} \rightarrow$ '3' ${ }^{(2)}$	$\mathrm{M} \rightarrow \mathrm{M}^{*} \bullet \mathrm{~T}$ (2)	$\mathrm{T} \rightarrow$ '4' ${ }^{\text {(4) }}$
$P \rightarrow \bullet P+M$ (0)	$\mathrm{M} \rightarrow \mathrm{T} \cdot(0)$	$\mathrm{M} \rightarrow \bullet \mathrm{M} * \mathrm{~T}$ (2)	$\mathrm{M} \rightarrow \mathrm{T} \cdot(2)$	$\mathrm{T} \rightarrow$ • num (4)	$\mathrm{M} \rightarrow \mathrm{M} * \mathrm{~T} \bullet$ (2)
$\mathrm{P} \rightarrow$ •M(0)	$\begin{aligned} & M \rightarrow M \bullet * T \\ & (0) \end{aligned}$	$\mathrm{M} \rightarrow$ •T(2)	$\begin{aligned} & M \rightarrow M \bullet * T \\ & (2) \end{aligned}$		$\begin{aligned} & M \rightarrow M \bullet * T \\ & (2) \end{aligned}$
$\mathrm{M} \rightarrow \bullet \mathrm{M}^{*} \mathrm{~T}$ (0)	$\mathrm{P} \rightarrow \mathrm{M} \cdot(0)$	$\mathrm{T} \rightarrow$ • num (2)	$P \rightarrow P+M \bullet$ (0)		$P \rightarrow P+M \bullet$ (0)
$\mathrm{M} \rightarrow$ •T(0)	$P \rightarrow P \bullet+M$ (0)		$P \rightarrow P \bullet+M$ (0)		$P \rightarrow P \bullet+M$ (0)
$\mathrm{T} \rightarrow$ • num (0)	$S \rightarrow P \cdot(0)$		$S \rightarrow P \cdot(0)$		$S \rightarrow P \cdot(0)$

Finding the parse tree

Seg 0 $-2+3 * 4$	$\begin{gathered} \operatorname{Seg} 1 \\ 2 \bullet+3 * 4 \end{gathered}$	$\begin{gathered} \operatorname{Seg} 2 \\ 2+\bullet 3 * 4 \end{gathered}$	$\begin{gathered} \text { Seg } 3 \\ 2+3 \bullet * 4 \end{gathered}$	$\begin{gathered} \underline{\operatorname{Seg} 4} \\ 2+3 * \cdot 4 \end{gathered}$	Seg 5 $2+3 * 4$
$S \rightarrow \bullet P(0)$	T $\mathrm{C}^{\prime} \mathbf{2}^{\prime} \cdot(0)$	$P \rightarrow P+\bullet M$ (0)	$\mathrm{T} \rightarrow$ '3' ${ }^{\text {(2) }}$	$\begin{aligned} & M \rightarrow M^{*} \cdot T \\ & \text { (2) } \end{aligned}$	$\mathrm{T} \rightarrow$ '4' ${ }^{\text {(} 4 \text {) }}$
$P \rightarrow \bullet P+M$ (0)	$\mathrm{M} \rightarrow \mathrm{T} \bullet(0)$	$\begin{aligned} & \mathrm{M} \rightarrow \bullet \mathrm{M}^{*} \mathrm{~T} \\ & (2) \end{aligned}$	$\mathrm{M} \rightarrow \mathrm{T} \cdot(2)$	$\mathrm{T} \rightarrow$ • num (4)	$\mathbf{M} \rightarrow \mathbf{M} * \mathrm{~T} \bullet$ (2)
$\mathrm{P} \rightarrow$ •M(0)	$\begin{aligned} & \mathrm{M} \rightarrow \mathrm{M} \bullet * \mathrm{~T} \\ & (0) \end{aligned}$	$\mathrm{M} \rightarrow$ - T (2)	$\begin{aligned} & M \rightarrow M \bullet * T \\ & \text { (2) } \end{aligned}$		$\begin{aligned} & M \rightarrow M \bullet * T \\ & (2) \end{aligned}$
$\begin{aligned} & M \rightarrow \bullet M^{*} T \\ & (0) \end{aligned}$	$P \rightarrow M \bullet(0)$	$\mathrm{T} \rightarrow$ • num (2)	$P \rightarrow P+M \bullet$ (0)		$P \rightarrow P+M \bullet$ (0)
$\mathrm{M} \rightarrow$ •T(0)	$\mathrm{P} \rightarrow \mathrm{P} \bullet+\mathrm{M}$ (0)		$P \rightarrow P \bullet+M$ (0)		$P \rightarrow P \bullet+M$ (0)
$\mathrm{T} \rightarrow$ • num (0)	$S \rightarrow P \cdot(0)$		$S \rightarrow P \cdot(0)$		$\mathrm{S} \rightarrow \mathrm{P}$ • (0)

Finding the parse tree

Seg 0 - $2+3$ * 4	$\underline{S e q} 1$ $2 \cdot+3 * 4$	$\begin{gathered} \underline{\operatorname{Seg} 2} \\ 2+\bullet 3 * 4 \end{gathered}$	$\begin{gathered} \text { Seg } 3 \\ 2+3 \bullet * 4 \end{gathered}$	$\begin{gathered} \underline{\operatorname{Seg} 4} \\ 2+3 * \cdot 4 \end{gathered}$	Seg 5 $2+3 * 4$
$S \rightarrow \bullet P(0)$	T C^{\prime} '' • (0)	$P \rightarrow P+\bullet M$ (0)	$\mathrm{T} \rightarrow{ }^{\prime}{ }^{\prime} \cdot(2)$	$\begin{aligned} & M \rightarrow M^{*} \cdot T \\ & \text { (2) } \end{aligned}$	T \rightarrow '4' ${ }^{\text {(}}$ (4)
$P \rightarrow \bullet P+M$ (0)	$\mathrm{M} \rightarrow \mathrm{T} \bullet(0)$	$\begin{aligned} & M \rightarrow \bullet M^{*} T \\ & (2) \end{aligned}$	$\mathrm{M} \rightarrow \mathrm{T} \cdot(2)$	$\mathrm{T} \rightarrow$ • num (4)	$\mathrm{M} \rightarrow \mathrm{M} * \mathrm{~T} \bullet$ (2)
$\mathrm{P} \rightarrow$ •M(0)	$\begin{aligned} & M \rightarrow M \bullet * T \\ & (0) \end{aligned}$	$\mathrm{M} \rightarrow$ - T (2)	$\mathrm{M} \rightarrow \mathrm{M} \bullet * \mathrm{~T}$ (2)		$\mathrm{M} \rightarrow \mathrm{M} \bullet * \mathrm{~T}$ (2)
$\begin{aligned} & M \rightarrow \bullet M^{*} T \\ & (0) \end{aligned}$	$P \rightarrow M \bullet(0)$	$\mathrm{T} \rightarrow$ • num (2)	$P \rightarrow P+M \bullet$ (0)		$P \rightarrow P+M \bullet$ (0)
$\mathrm{M} \rightarrow$ •T(0)	$P \rightarrow P \bullet+M$ (0)		$\mathrm{P} \rightarrow \mathrm{P} \bullet+\mathrm{M}$ (0)		$\mathrm{P} \rightarrow \mathrm{P} \bullet+\mathrm{M}$ (0)
$\mathrm{T} \rightarrow$ • num (0)	$S \rightarrow P \cdot(0)$		$S \rightarrow P \cdot(0)$		S \rightarrow P • (0)

Finding the parse tree

Seg 0 - $2+3$ * 4	$\begin{gathered} \operatorname{Seg} 1 \\ 2 \bullet+3 * 4 \end{gathered}$	$\begin{gathered} \operatorname{Seg} 2 \\ 2+\bullet 3 * 4 \end{gathered}$	$\begin{gathered} \text { Seg } 3 \\ 2+3 \bullet * 4 \end{gathered}$	$\begin{gathered} \operatorname{Seg} 4 \\ 2+3 * \cdot 4 \end{gathered}$	$\underline{S e g} 5$ $2+3 * 4$
$S \rightarrow \bullet P(0)$	T ${ }^{\prime} \mathbf{2 '}^{\prime} \cdot(0)$	$P \rightarrow P+\bullet M$ (0)	T ${ }^{\prime}$ '3' $\cdot(2)$	$\begin{aligned} & M \rightarrow M^{*} \cdot T \\ & \text { (2) } \end{aligned}$	T \rightarrow '4' ${ }^{\text {(}}$ (4)
$P \rightarrow \bullet P+M$ (0)	$\mathrm{M} \rightarrow \mathrm{T} \bullet$ (0)	$\begin{aligned} & M \rightarrow \bullet M^{*} T \\ & (2) \end{aligned}$	$\mathrm{M} \rightarrow \mathrm{T} \cdot(2)$	$\mathrm{T} \rightarrow$ • num (4)	$\mathrm{M} \rightarrow \mathrm{M} * \mathrm{~T} \bullet$ (2)
$\mathrm{P} \rightarrow$ •M(0)	$\begin{aligned} & M \rightarrow M \bullet * T \\ & (0) \end{aligned}$	$\mathrm{M} \rightarrow$ - T (2)	$\begin{aligned} & M \rightarrow M \bullet * T \\ & (2) \end{aligned}$		$\mathrm{M} \rightarrow \mathrm{M} \bullet * \mathrm{~T}$ (2)
$\begin{aligned} & M \rightarrow \bullet M^{*} T \\ & (0) \end{aligned}$	$P \rightarrow M \bullet(0)$	$\mathrm{T} \rightarrow$ • num (2)	$\begin{aligned} & P \rightarrow P+M \bullet \\ & (0) \end{aligned}$		$P \rightarrow P+M \bullet$ (0)
$\mathrm{M} \rightarrow$ •T(0)	$P \rightarrow P \bullet+M$ (0)		$P \rightarrow P \bullet+M$ (0)		$\mathrm{P} \rightarrow \mathrm{P} \bullet+\mathrm{M}$ (0)
$\mathrm{T} \rightarrow$ • num (0)	$S \rightarrow P \cdot(0)$		$S \rightarrow P \cdot(0)$		S \rightarrow P • (0)

```
Input: Foreign sentence f = fl,...f.flf
Output: English translation e
```

```
    for i=0 .. length(f)-1 do // initialize chart
```

 for i=0 .. length(f)-1 do // initialize chart
 store pointer to initial node in prefix tree in span [i,i]
 store pointer to initial node in prefix tree in span [i,i]
 end for
 end for
 for l=1..lf do // build chart from the bottom up
 for l=1..lf do // build chart from the bottom up
 for start=0 .. lf}-1 do // beginning of spa
 for start=0 .. lf}-1 do // beginning of spa
 end = start+l
 end = start+l
 for midpoint=start .. end-1 do
 for midpoint=start .. end-1 do
 for all dotted rules d in span [start,midpoint] do
 for all dotted rules d in span [start,midpoint] do
 for all distinct head node nonterminals or input words h covering
 for all distinct head node nonterminals or input words h covering
 span [midpoint+1,end] do
 span [midpoint+1,end] do
 if extension d}->h\mathrm{ exists in prefix tree then
 if extension d}->h\mathrm{ exists in prefix tree then
 dnew }=d->
 dnew }=d->
 for all complete rules at dnew do
 for all complete rules at dnew do
 apply rules
 apply rules
 store chart entries in span [start,end]
 store chart entries in span [start,end]
 end for
 end for
 if extension exist for dnew then
 if extension exist for dnew then
 store dnew in span [start,end] // new dotted rule
 store dnew in span [start,end] // new dotted rule
 end if
 end if
 end if
 end if
 end for
 end for
 end for
 end for
 end for
 end for
 end for
 end for
 end for
 end for
 return English translation e from best chart entry in span [0, 1f]
    ```
    return English translation e from best chart entry in span [0, 1f]
```


Covering the First Cell

Looking up Rules in the Prefix Tree

des

Frank
Gehry

Haus

Frank
Gehry

Checking if Dotted Rule has Translations

Haus

Gehry

Applying the Translation Rules

des
Architekten
Frank

Gehry

Looking up Constituent Label in Prefix Tree

Add to Span's List of Dotted Rules

Looking up Rules in the Prefix Tree

Checking if Dotted Rule has Translations

Applying the Translation Rules

Looking up Constituent Label in Prefix Tree

Add to Span's List of Dotted Rules

More of the Same

Moving on to the Next Cell

Covering a Longer Span

Cannot consume multiple words at once
All rules are extensions of existing dotted rules
Here: only extensions of span over das possible

Extensions of Span over das

Looking up Rules in the Prefix Tree

Checking if Dotted Rules have Translations

Applying the Translation Rules

Looking up Constituent Label in Prefix Tree

Add to Span's List of Dotted Rules

Reflections

- Complexity $O\left(r n^{3}\right)$ with sentence length n and size of dotted rule list r
\Rightarrow may introduce maximum size for spans that do not start at beginning
\Rightarrow may limit size of dotted rule list (very arbitrary)
- Does the list of dotted rules explode?
- Yes, if there are many rules with neighboring target-side non-terminals
\Rightarrow such rules apply in many places
\Rightarrow rules with words are much more restricted
- Some rules may apply in too many ways
- Neighboring input non-terminals

$$
\mathrm{VP} \rightarrow \text { gibt } \mathrm{x}_{1} \mathrm{x}_{2} \mid \text { gives } \mathrm{NP}_{2} \text { to } \mathrm{NP}_{1}
$$

\Rightarrow non-terminals may match many different pairs of spans
\Rightarrow especially a problem for hierarchical models (no constituent label restrictions)
\Rightarrow may be okay for syntax-models

- Three neighboring input non-terminals

```
VP}->\mathrm{ trifft }\mp@subsup{\textrm{X}}{1}{}\mp@subsup{\textrm{X}}{2}{}\mp@subsup{\textrm{X}}{3}{}\mathrm{ heute | meets NP
```

\Rightarrow will get out of hand even for syntax models

- We know which rules apply
- We know where they apply (each non-terminal tied to a span)
- But there are still many choices
\Rightarrow many possible translations
\Rightarrow each non-terminal may match multiple hypotheses
\rightarrow number choices exponential with number of non-terminals

Found applicable rules PP \rightarrow des $\mathrm{X} \mid \ldots$ NP \ldots

- Non-terminal will be filled any of h underlying matching hypotheses
- Choice of t lexical translations
\Rightarrow Complexity $O(h t)$
(note: we may not group rules by target constituent label, so a rule NP \rightarrow des $\mathrm{X} \mid$ the NP would also be considered here as well)

Found applicable rule NP $\rightarrow \mathrm{X}_{1}$ des $\mathrm{X}_{2} \mid \mathrm{NP}_{1} \ldots \mathrm{NP}_{2}$

- Two non-terminal will be filled any of h underlying matching hypotheses each
- Choice of t lexical translations
\Rightarrow Complexity $O\left(h^{2} t\right)$ - a three-dimensional "cube" of choices
(note: rules may also reorder differently)

Arrange all the choices in a "cube"
(here: a square, generally a orthotope, also called a hyperrectangle)

Create the First Hypothesis

- Hypotheses created in cube: $(0,0)$

Add ("Pop") Hypothesis to Chart Cell

■ Hypotheses created in cube: ϵ

- Hypotheses in chart cell stack: $(0,0)$

Create Neighboring Hypotheses

- Hypotheses created in cube: $(0,1),(1,0)$
- Hypotheses in chart cell stack: $(0,0)$

- Hypotheses created in cube: $(0,1)$
- Hypotheses in chart cell stack: $(0,0),(1,0)$

Create Neighboring Hypotheses

- Hypotheses created in cube: $(0,1),(1,1),(2,0)$
- Hypotheses in chart cell stack: $(0,0),(1,0)$

- Hypotheses created in cube: $(0,1),(1,2),(2,1),(2,0)$
- Hypotheses in chart cell stack: $(0,0),(1,0),(1,1)$
- Several groups of rules will apply to a given span
- Each of them will have a cube
- We can create a queue of cubes
\Rightarrow Always pop off the most promising hypothesis, regardless of cube
- May have separate queues for different target constituent labels

Bottom-Up Chart Decoding Algorithm

: for all spans (bottom up) do
2: extend dotted rules
3: for all dotted rules do
4: \quad find group of applicable rules
5: create a cube for it
6: create first hypothesis in cube
7: place cube in queue
8: end for
9: for specified number of pops do
10: pop off best hypothesis of any cube in queue
11: add it to the chart cell
12: create its neighbors
13: end for
14: extend dotted rules over constituent labels
15: end for

- First stage: decoding without a language model (-LM decoding)
\Rightarrow may be done exhaustively
\Rightarrow optionably prune out low scoring hypotheses
- Second stage: add language model
\Rightarrow limited to packed chart obtained in first stage
- Note: essentially, we do two-stage decoding for each span at a time

Outside Cost Estimation

■ Which spans should be more emphasized in search?

- Initial decoding stage can provide outside cost estimates

- Use min/max language model costs to obtain admissible heuristic (or at least something that will guide search better)
- Synchronous context free grammars

■ Extracting rules from a syntactically parsed parallel corpus

- Bottom-up decoding
- Chart organization: dynamic programming, stacks, pruning
- Prefix tree for rules
- Dotted rules
- Cube pruning

