Statistical Machine Translation
-tree-based models (cont.)-
Artem Sokolov
Computerlinguistik
Universitat Heidelberg

Sommersemester 2015

material from P. Koehn, S. Riezler, D. Altshuler

Bottom-Up Decoding

m For each span, a stack of (partial) translations is maintained

m Bottom-up: a higher stack is filled, once underlying stacks are
complete

2/ 60

Naive Algorithm

Input: Foreign sentence f = fi,...f;,, with syntax tree
Output: English translation e
1. for all spans [start,end] (bottom up) do
2 for all sequences s of hypotheses and words in span [start,end] do
3 for all rules r do
4 if rule 7 applies to chart sequence s then
5: create new hypothesis ¢
6 add hypothesis ¢ to chart
7 end if
8 end for
9: end for
10: end for
11: return English translation e from best hypothesis in span [0,/¢]

3/ 60

Dynamic Programming

Applying rule creates new hypothesis

NP: a cup of coffee |

) apply rule:

| NP — NP Kaffee ; NP = NP+P coffee

NP+P: a cup of

eine Tasse Kaffee trinken
ART NN NN VVINF

4 /60

Dynamic Programming

Another hypothesis

| NP: a cup of coffee |

| NP: a cup of coffee |

A3

apply rule:
NP — eine Tasse NP ; NP — a cup of NP

NP+P: a cup of

NP: coffee

Tasse Kaffee trinken
ART NN NN VVINF

Both hypotheses are indistiguishable in future search
— can be recombined

5/ 60

Recombinability

Hypotheses have to match in
m span of input words covered
®m output constituent label
m first n—1 output words (not properly scored, since they lack context)
m last n—1 output words (still affect scoring of subsequently added
words, just like in phrase-based decoding)

(n is the order of the n-gram language model)
When merging hypotheses, internal language model contexts are absorbed
S

(minister of Germany met with Condoleezza Rice)
the foreign in Frankfurt

NP VP

(Condoleezza Rice)
met with in Frankfurt

(minister)
the foreign of Germany

pwi(met | of Germany)
pw(with | Germany met)

Decreasing complexity

Search space pruning
B recombination
m stack pruning

Algorithmic techniques
m prefix tree
m Earley’s parsing algorithm

m cube pruning

7/ 60

Stack Pruning

m Number of hypotheses in each chart cell explodes

= need to discard bad hypotheses
e.g., keep n = 100 best only

m Different stacks for different output constituent labels

= keep at least m different (m=2,3,..)

8/ 60

Naive Algorithm: Blow-ups

m Many subspan sequences
for all sequences s of hypotheses and words in span [start,end]
m Many rules
for all rules r
m Checking if a rule applies not trivial
rule r applies to chart sequence s
= Unworkable

9/ 60

Finding Rules

m Easy:

= given a rule

= check if and how it can be applied
m But there are too many rules (millions) to check them all
m Instead:

= given the underlying chart cells and input words
= find which rules apply

10 / 60

Prefix Tree for Rules

NP DET @&—» NN NP: NP1 IN2 NP3
NP . : NP: NP1 of DET2 NPs
NP: NP1 NP: NP1 of IN2 NP3

PP ... : :
des @—» NN NP: NP1 of the NN2
um @——p VP ... NP: NP2 NP+
: : NP: NP1 of NP2

VP ...
DET HNN *—» NP DET1 NN2

das HHaus o—» NP the house

Highlighted Rules
NP — NP; DET3 NN3 | NPj IN3 NNj
NP — NP; | NP
NP — NP; des NNy | NP; of the NNg
NP — NP; des NNy | NP2 NPp
NP — DET; NN2 | DET; NNg

NP — das Haus | the house

11/ 60

CFGs are ubiquitous for describing (syntactic) structure in NLP

parsing algorithms are core of NL analysis systems
recognition vs. parsing:
= recognition - deciding the membership in the language
= parsing - recognition + producing a parse tree for it

m parsing has more time complexity than recognition

B an input may have exponentially many parses

CKY (Cocke - Kasami - Younger)

m one of the earliest recognition and parsing algorithms

m standard CKY can only recognize languages defined by CFGs in
Chomsky Normal Form (CNF).

m based on a dynamic programming

13 / 60

m considers every possible consecutive subsequence of letters and sets
K € T1i, j| if the sequence of letters starting from ¢ to j can be
generated from the non-terminal K

m once it has considered sequences of length 1, it goes on to sequences
of length 2, and so on

m for subsequences of length 2 and greater, it considers every possible
partition of the subsequence into two halves, and checks to see if
there is some production A — BC' such that B matches the 1st half
and C matches the 2nd half. If so, it records A as matching the
whole subsequence

m once completed, the sentence is recognized by the grammar if the
entire string is matched by the start symbol

14 / 60

B any portion of the input string spanning i to j can be split at k, and
structure can then be built using sub-solutions spanning ¢ to k and
sub-solutions spanning k to j

m solution to problem [i, j] can constructed from solution to sub
problem [i, k] and solution to sub problem [k, j]

15 / 60

CKY Algorithm for Deciding CFL

Consider the grammar G given by:
S>¢|AB| XB

T AB | XB

X2 AT

A—2>a

B>b

CKY Algorithm for Deciding CFL

Now look at aaabbb :

S>c|AB|XB

T> AB| XB
X2 AT
A>a
B>b

CKY Algorithm for Deciding CFL

1) Write variables for all length 1 substrings.

S>¢|AB| XB
T AB | XB
XD AT

A=>a
B=>b

CKY Algorithm for Deciding CFL

' 2) Write variables for all length 2 substrings.

S>¢|AB| XB
T> AB | XB
X AT

A=>a
B=>b

CKY Algorithm for Deciding CFL

' 3) Write variables for all length 3 substrings.

S>¢|AB| XB

T> AB | XB = = =
X2 AT

A>a

B>b

CKY Algorithm for Deciding CFL

' 4) Write variables for all length 4 substrings.

S>e|AB| XB

T> AB | XB = =
X2 AT

A—>a

B>b

CKY Algorithm for Deciding CFL

 5) Write variables for all length 5 substrings.

S>¢|AB| XB
T AB | XB
XD AT

A=>a
B->b

CKY Algorithm for Deciding CFL

' 6) Write variables for all length 6 substrings.

S>¢|AB| XB
T> AB | XB
X2 AT
A=>a

B>b

Sisincluded so
aaabbb accepted!

The CKY Algorithm

function CKY (word w, grammar P) returns table
fori € from 1 to LENGTH(w) do

table[i-1,i] < {A|A>w,€P}
for j € from 2 to LENGTH(w) do

fori €< from j-2 down to 0 do

fork <i+1toj—1do
tableli,j] € table[i,jljU {A | A> BCE€ P,
B € table[i,k], C € table[k,j] }

If the start symbol S € table[0,n] then w € L(G)

CKY Algorithm for Deciding CFL

~ The table chart used by the algorithm:

CKY Algorithm for Deciding CFL

1. Variables for length 1 substrings.

CKY Algorithm for Deciding CFL

2. Variables for length 2 substrings.

CKY Algorithm for Deciding CFL

3. Variables for length 3 substrings.

CKY Algorithm for Deciding CFL

4. Variables for length 4 substrings.

CKY Algorithm for Deciding CFL

5. Variables for length 5 substrings.

CKY Algorithm for Deciding CFL

- 6. Variables for aaabbb. ACCEPTED!

CKY Space and Time Complexity

Time complexity:
* Three nested “for” loop each one of O(n) size.

* Lookup for r =|N| pair rules at each step.
Time complexity — O(r2n3) = O(n3)

Space complexity:

¢ Athree dimensions table at size n*n*r or
* A n*n table with lists up to size of r
Space complexity — O(rn2) = O(n?)

Earley Algorithm

m doesnt require the grammar to be in CNF.

= grammar intended to reflect actual structure of language
= conversion to CNF completely destroys the parse structure

m efficiency:
= usually moves left-to-right (prefix trees!)

= faster than O(n?) for many grammars
= uses a parse table as CKY, so can backtrack

16 / 60

Earley Algorithm

m dotted rule

= a partially constructed constituent, w/ the dot indicating what has
been found and what is still predicted
= generated from ordinary grammar rules (no CNF!)

B maintains a set of states, for each position in the input

17 / 60

The Dotted Rules

With dotted rules, an entry in the chart records:
e Which rule has been used in the analysis

* Which part of the rule has already been found (left of the
dot).

e Which part is still predicted to be found and will combine
into a complete parse (right of the dot).

o the start and end position of the material left of the dot.

Example: A 2> X X,...e C... X,

m

Parsing Operations

The Earley algorithm has three main operations:

Predictor: an incomplete entry looks for a symbol to the right
of its dot. if there is no matching symbol in the chart, one is
predicted by adding all matching rules with an initial dot.

Scanner: an incomplete entry looks for a symbol to the right
of the dot. this prediction is compared to the input, and a
complete entry is added to the chart if it matches.

Completer: a complete edge is combined with an incomplete
entry that is looking for it to form another complete entry.

Parsing Operations

¢ Predictor: If state [A — Xy...e (.. X,,.j] € 5, then for every
rule of the form C' — 17...Y),, add to 5; the state
[C'— oY7..Y}. i

¢ Scanner: If state [A —+ Xy...e0a..X,,.j] € 5, and the next
input word is ;.1 = a, then add to 5, ¢ the state
(A= Xq..ae..X,.]|

o Completer: If state [4 — X4.. X, 0. j] € 5; then for every state
in S, ofform [B — Xy...e A..X},.[], add to 5; the state
[B— Xi..Ae. X

The Earley Recognition Algorithm

The Main Algorithm: parsing input w=w,w,...w,
1. Sy={[S> P (0)]}
2. ForO<i<ndo:

Process each item s € S; in order by applying to
it a single applicable operation among:

(a) Predictor (adds new items to S))
(b) Completer (adds new items to S)
(c) Scanner (adds new items to S, ;)
3. IfS,,; = @ Reject the input.
4. Ifi=n and [S>Pe (0)] €S, then Accept the input.

Earley Algorithm Example

Consider the following grammar for arithmetic
expressions:

S—>P (the start rule)
P>P+M

P>M

M->M*T

M->T

T - number

With the input: 2+ 3 * 4

Earley Algorithm Example
Sequence(0) *2+3*4

(1) S—> P (0) # start rule

Earley Algorithm Example
Sequence(0) *2+3*4

(1) S—> P (0) # start rule
2) P> eP+M(0) # predict from (1)
(3) P> eM(0) # predict from (1)

Earley Algorithm Example

Sequence(0) e2+3 *4

(1) S-> ¢ P(0)
(2) P>eP+M(0)
(3) P> eM(0)
(4) M—=>eM*T(0)
(5) M= eT(0)

start rule

predict from (1)
predict from (1)
predict from (3)
predict from (3)

Earley Algorithm Example

Sequence(0) e2+3 *4

(1) S-> ¢ P(0)
(2) P>eP+M(0)
(3) P> eM(0)
(4) M—=>eM*T(0)
(5) M= ¢T(0)
(6) T—> ¢ number (0)

start rule

predict from (1)
predict from (1)
predict from (3)
predict from (3)
predict from (5)

Earley Algorithm Example
Sequence(l) 2e+3*4

(1) T-> number e (0) # scan from S(0)(6)

Earley Algorithm Example
Sequence(l) 2e+3*4

(1) T-> number e (0) # scan from S(0)(6)
(2) M—=>Te(0) # complete from S(0)(5)

Earley Algorithm Example

Sequence(l) 2e+3 *4

(1) T = number ¢ (0)
(2) M—>Te(0)
(3) M=> Me *T(0)
(4) P> M e (0)

scan from S(0)(6)

complete from S(0)(5)
complete from S(0)(4)
complete from S(0)(3)

Earley Algorithm Example

Sequence(l) 2e+3 *4

(1)
(2)
(3)
(4)
(5)
(6)

T = number ¢ (0)
M =T e (0)
M= Me *T(0)
P->Me(0)
P>Pe+M(0)
S->Pe(0)

scan from S(0)(6)

complete from S(0)(5)
complete from S(0)(4)
complete from S(0)(3)
complete from S(0)(2)
complete from S(0)(1)

Earley Algorithm Example
Sequence(2) 2+ 3 *4

(1) P>P+eM(0) # scan from S(1)(5)

Earley Algorithm Example
Sequence(2) 2+ 3 *4

(1) P>P+eM(0) # scan from S(1)(5)
2) M>eM*T(2) # predict from (1)
(3) M=>eT(2) # predict from (1)

Earley Algorithm Example

Sequence(2) 2+ 3 *4

(1) P> P+eM(0)
2) M> eM*T(2)
(3) M= eT(2)

(4) T => e number (2)

scan from S(1)(5)
predict from (1)
predict from (1)
predict from (3)

Earley Algorithm Example
Sequence(3) 2+3e*4

(1) T-> number ¢ (2) #scan from S(2)(4)

Earley Algorithm Example
Sequence(3) 2+3e*4

(1) T-> number ¢ (2) #scan from S(2)(4)
2) M—>Te(2) # complete from S(2)(3)

Earley Algorithm Example

Sequence(3) 2+3 ¢ *4

(1) T = number ¢ (2)
2) M>Te(2)

3) M> Me *T(2)
(4) P>P+Me(0)

scan from S(2)(4)

complete from S(2)(3)
complete from S(2)(2)
complete from S(2)(1)

Earley Algorithm Example

Sequence(3) 2+3 ¢ *4

(1)
(2)
(3)
(4)
(5)
(6)

T = number ¢ (2)
M-=>Te(2)
M-=>Me*T(2)
P>P+Me(0)
P>Pe+M(0)
S->Pe(0)

scan from S(2)(4)

complete from S(2)(3)
complete from S(2)(2)
complete from S(2)(1)
complete from S(0)(2)
complete from S(0)(1)

Earley Algorithm Example
Sequence(4) 2+3* ¢4

(1) M>M*eT(2) # scan from S(3)(3)

Earley Algorithm Example
Sequence(4) 2+3* ¢4

(1) M>M*eT(2) # scan from S(3)(3)
(2) T-> enumber (4) # predict from (1)

Earley Algorithm Example
Sequence(5) 2+3 %4 e

(1) T-> number e (4) # scan from S(4)(2)

Earley Algorithm Example
Sequence(5) 2+3 %4 e

(1) T-> number e (4) # scan from S(4)(2)
2) M>M*Te(2) # complete from S(4)(1)

Earley Algorithm Example

Sequence(5) 2+3*4 e

(1) T = number ¢ (4)
2) M>M*Te(2)
3) M> Me *T(2)
(4) P>P+Me(0)

scan from S(4)(2)

complete from S(4)(1)
complete from S(2)(2)
complete from S(2)(1)

Earley Algorithm Example

Sequence(5) 2+3*4 e

(1)
(2)
(3)
(4)
(5)
(6)

T = number ¢ (4)
M-=>M*Te(2)
M-=>Me*T(2)
P>P+Me(0)

P>Pe+M(0)

S->Pe(0)

scan from S(4)(2)

complete from S(4)(1)
complete from S(2)(2)
complete from S(2)(1)
complete from S(0)(2)
complete from S(0)(1)

Earley Algorithm Example
Sequence(5) 2+3 %4 e

(1) T-> number e (4) # scan from S(4)(2)

2) M>M*Te(2) # complete from S(4)(1)
3) M> Me *T(2) # complete from S(2)(2)
(4 P>P+Me(0) # complete from S(2)(1)
(5) P>Pe+M|(0) # complete from S(0)(2)
(6) S=>Pe(0) # complete from S(0)(1)

The state S>Pe (0) represents a completed parse.

- Finding the parse tree

Seq 0 Seql Seq 2 Seq 3 Seq 4 Seg5
©2+3%4 20+3*%4 | 2+e3%4 | 2+3e%4 2+3%e4 2+3%4e

S>eP(0) T>2e(0) P>P+eM T>3e(2) M>M*eT T->%e(4

(0) ()

P>eP+M MSTe(0) M>eM*T M>Te(2) T>enum(d) M->M*Te
(0) (2) (2)
P>eM(0) M>Me*T M->eT(2) M->Me*T M->Me*T

(0) (2) (2)
M=>eM*T P>Me(0 T>enum P->P+Me PS>P+Me
(0) (2) (0) (0)
M-=>eT(©) P>Pe+M P>Pe+M P>Pe+M

(0) (0) (0)
T>enum S>Ps(0) S>Pe(0) S>Pe(0)

(0)

- Finding the parse tree

Seq 0 Seq1l Seq 2 Seq 3 Seq 4 Seg5
©2+3%4 20+3*%4 | 2+e3%4 | 2+3e%4 2+3%e4 2+3%4e

S>eP(0) T>2e(0) P3P+eM T3 e(2) M3>M*eT T-%e(a)

(0) (2)
P>eP+M M->Te(0) M>eM*T M->Te(2) T>enum@d) M->M*Te
(0) (2) (2)
P>eM(O M>Me*T M->eT(2) M->Me*T M>Me*T
(0) (2) (2)
M=>eM*T P>Me(0) T>enum P>P+Me P>P+Me
(0) (2) (0) (0)
M->eT(0) P>Pe+M P>Pe+M P>Pe+M
(0) (0) (0)
T enum S>Pe(0) S>Pe(0) S>Pe(0)

(0)

- Finding the parse tree

Seq 0 Seq1l Seq 2 Seq 3 Seq 4 Seg5
©2+3%4 20+3*%4 | 2+e3%4 | 2+3e%4 2+3%e4 2+3%4e

S>eP(0) T>2e(0) P3P+eM T3>3e(2) M>M*eT T-%e(4)

(0) (2)
P>eP+M M->Te(0) M->eM*T M>Te(2) T>enum@d) M->M*Te
(0) (2) (2)
P>eM(O M>Me*T M->eT(2) M->Me*T M>Me*T
(0) (2) (2)
M=>eM*T P>Me(0) T>enum P>P+Me P>P+Me
(0) (2) (0) (0)
M->eT(0) P>Pe+M P>Pe+M P>Pe+M
(0) (0) (0)
T enum S>Pe(0) S>Pe(0) S>Pe(0)

(0)

- Finding the parse tree

Seq 0 Seq1l Seq 2 Seq 3 Seq 4 Seg5
©2+3%4 20+3*%4 | 2+e3%4 | 2+3e%4 2+3%e4 2+3%4e

S>eP(0) T>2e(0 P>P+eM T>3e(2) M>M*eT T4 e(4)

(0) ()

PS>eP+M M->Te()) M>eM*T M>Te(2) T>enum(d) M->M*Te
(0) (2) (2)
P>eM(0) M>Me*T M->eT(2) M>Me*T M->Me*T

(0) (2) (2)
M=>eM*T P>Me(0) T>enum P->P+Me P>P+Me
(0) (2) (0) (0)
M-=>eT(©) P>Pe+M P>Pe+M P>Pe+M

(0) (0) (0)
T>enum S>Ps(0) S>Pe(0) S>Pe(0)

(0)

Earley for S

Input: Foreign sentence £ = f;,...f;,, with syntax tree

Output: English translation e

1: for i=0 .. length(£f)-1 do // initialize chart

2: store pointer to initial node in prefix tree in span [1,1]
3: end for

4: for 1=1..1f do // build chart from the bottom up

5: for start=0 .. lfg—1 do // beginning of span

6: end = start+1

7: for midpoint=start .. end-1 do

8: for all dotted rules d in span [start,midpoint] do

9: for all distinct head node nonterminals or input words h covering

span [midpoint+l,end] do

10: if extension d— h exists in prefix tree then
11: dpew = d— h

12: for all complete rules at dpey do

13: apply rules

14: store chart entries in span [start,end]
15: end for

16: if extension exist for dpew then

17: store dpey in span [start,end] // new dotted rule
18: end if

19: end if

20: end for

21: end for

22: end for

23: end for
24: end for
25: return English translation e from best chart entry in span [0, 1f]

Finding Applicable Rules in Prefix Tree

das Haus des Architekten Frank Gehrv

19 / 60

Covering the First Cell

das Haus des Architekten Frank Gehrv

20 / 60

Looking up Rules in the Prefix Tree

r—

das Haus des Architekten Frank Gehry

21/ 60

Taking Note of the Dotted Rule

das Haus des Architekten Frank Gehry

N
N
[=)
o

Checking if Dotted Rule has Translations

.—- DET: the
DET. that
das Haus des Architekten Frank Gehry

23 / 60

Applying the Translation Rules

06— das® oer the
DET. that
das Haus des Architekten Frank Gehry

24 / 60

Looking up Constituent Label in Prefix Tree

i

das Haus des Architekten Frank Gehry

25 / 60

Add to Span’s List of Dotted Rules

JaN—

das Haus des Architekten Frank Gehry

26 / 60

Moving on to the Next Cell

e

das Haus des Architekten Frank Gehry

27 / 60

Looking up Rules in the Prefix Tree

=

das Haus des Architekten Frank Gehry

28 / 60

Taking Note of the Dotted Rule

=

das Haus des Architekten Frank Gehry

29 / 60

Checking if Dotted Rule has Translations

=

NN: house
NP: house
das Haus des Architekten Frank Gehry

30 / 60

Applying the Translation Rules

=

NN: house
NP: house
das Haus des Architekten Frank Gehry

31/ 60

Looking up Constituent Label in Prefix Tree

g

DET: that

das Haus des Architekten Frank Gehry

Add to Span’s List of Dotted Rules

e

DET: that

das Haus des Architekten Frank Gehry

33 / 60

f

DET: that
DET: the

[nP: house

[NP: architect |

re of the Same

['NN: house

[NN: architect |

Haus

Architekten

Frank

==

DET: that
DET: the

[NP: architect |

[Nz architeet |

Haus

Architekten

Covering a Lo

Cannot consume multiple words at once

All rules are extensions of existing dotted rules

Here: only extensions of span over das possible

[NP: architect |

[NN: architect |

['NNP: Frank

['NNP: Gehry

Architekten

Frank

Gehry

Extensions of Span over da

o— 88—\~ NP, Haus?
\-—NN‘ NP, Haus?
Haus ©
NN @
NP ©

DET: that [NP: architect |
DET: the [Nz architect |

Haus des Architekten

Looking up Rules in the Prefix Tree

DET: that i | [Pz house [NP: architect |
[NN:house | [Nz architect] | || [NNP: Frank] |} | [NNP: Gehry |
H 9
H Haus Architekten Frank Gehry

38 / 60

Taking Note of the Dotted Rule

DET: that i | [Pz house [NP: architect |
[NN:house | [Nz architect] | || [NNP: Frank] |} | [NNP: Gehry |
H 9
H Haus Architekten Frank Gehry

39 / 60

Checking if Dotted Rules have Translations

NP: the house
\ NP: the NN
NP: DET house

NP: DET NN

DET: that i | [Pz house [NP: architect |
['NN: house [N architeet |

E Haus Architekten Frank Gehry

NNP: Frank

NNP: Gehry

Applying the Translation Rules

NP: the house
\ NP: the NN
NP: DET house

NP: DET NN

NP: the house

[NP: architect |
[N architeet |

Architekten Frank Gehry

king up Constitu

Np: the house
NP: the NN
NP: DET house

NP: DET NN

DET: that [NP: architect |
DET: the [Nz architect |

Haus des Architekten

Add to Span’s List of

ﬂ Ne: the house
NP: the NN
NP: DET house

NP: DET NN

DET: that [nPrhouse]|} | [INzof | |i | [NParchiteet |
DET: the [(NNThouse | | ! | [BETthe] | | [NN:architect |

Haus des Architekten Frank Gehry

Reflections

m Complexity O(rn?) with sentence length n and size of dotted rule list
,
= may introduce maximum size for spans that do not start at beginning
= may limit size of dotted rule list (very arbitrary)

m Does the list of dotted rules explode?

m Yes, if there are many rules with neighboring target-side
non-terminals

= such rules apply in many places
= rules with words are much more restricted

44 / 60

Difficult Rules

m Some rules may apply in too many ways
m Neighboring input non-terminals

VP — gibt X1 X2 | gives NPy to NPy

]

non-terminals may match many different pairs of spans
especially a problem for hierarchical models (no constituent label
restrictions)

= may be okay for syntax-models

]

m Three neighboring input non-terminals

VP — trifft X1 Xo X3 heute | meets NP today PPy PP3

= will get out of hand even for syntax models

45 / 60

Where are we now?

m We know which rules apply

m We know where they apply (each non-terminal tied to a span)

m But there are still many choices
= many possible translations

= each non-terminal may match multiple hypotheses
— number choices exponential with number of non-terminals

46 / 60

Rules with One Non-Terminal

Found applicable rules PP — des X | ... NP ...
PP — Of NP the architect ... NP]
PP — by NP architect Frank ... NP]
PP —in NP the famous ... NP
PP — 0N to NP Frank Gehry NP

m Non-terminal will be filled any of A underlying matching hypotheses
m Choice of ¢ lexical translations
= Complexity O(ht)

(note: we may not group rules by target constituent label,
so a rule NP — des X | the NP would also be considered here as well)

47 / 60

Rules with Two Non-Terminals

Found applicable rule NP — X; des X3 | NPy ... NPo

| a house NP — NP Of NP the architect NP|
[a building NP — NP by NP architect Frank ... NP|
| the building NP — NP in NP the famous ... NP
| a new house NP — NP ON to NP Frank Gehry NP

m Two non-terminal will be filled any of h underlying matching
hypotheses each

m Choice of ¢ lexical translations
= Complexity O(h?t) — a three-dimensional “cube” of choices

(note: rules may also reorder differently)

48 / 60

Cube Pruning

1.7 by architect ...

15in the ...
2.6 by the ...
3.20f the ...

a house 1.0

a building 1.3
the building 2.2
a new house 2.6

Arrange all the choices in a “cube”

(here: a square, generally a orthotope, also called a hyperrectangle)

49 / 60

Create the First Hypothesis

1.7 by architect ...

1.5in the ...
2.6 by the ...
3.2 0f the

a house 1.0 |2

a building 1.3
the building 2.2
a new house 2.6

m Hypotheses created in cube: (0,0)

50 / 60

Add (" Pop”) Hypothesis to Chart Cell

©

(0]
0 &= H .
s % Q)]
©
25
= =
c P
= 0O O O
noN e o
— — ol

a house 1.0 |21
a building 1.3

the building 2.2
a new house 2.6

m Hypotheses created in cube: €

m Hypotheses in chart cell stack: (0,0)

51 / 60

Create Neighboring Hypotheses

-

(&)

(0]
o &&= 8 o
5o
QO = (0]
£ © £ ¢
= £
C>'>“'_
= 0O O O
oo e o
— = o™

a house 1.0 |21

a building 1.3 |27
the building 2.2
a new house 2.6

i
o

m Hypotheses created in cube: (0,1), (1,0)
m Hypotheses in chart cell stack: (0,0)

Pop Best Hypothesis to Chart Cell

1.7 by architect ...

2.6 by the ...
3.20f the ...

15in the ...

a house 1.0 |21

o

a building 1.3 |27
the building 2.2
a new house 2.6

m Hypotheses created in cube: (0,1)
m Hypotheses in chart cell stack: (0,0), (1,0)

53 / 60

Create Neighboring Hypotheses

1.7 by architect ...

15in the ...
2.6 by the ...

3.20f the ...

a house 1.0 [2.1]25

e

a building 1.3 [2.7]2.4
the building 2.2
a new house 2.6

m Hypotheses created in cube: (0,1), (1,1), (2,0)
m Hypotheses in chart cell stack: (0,0), (1,0)

54 / 60

More of the Same

©
o)
0 &= B o
s % Q)]
)
258
= =
c P
£ 2 a0
o~ 9o o
—~ = &N ™
a house 1.0 [2.1{25(3.1
a building 1.3 |2.72.4[3.0

the building 2.2 3.8

a new house 2.6

m Hypotheses created in cube: (0,1), (1,2), (2,1), (2,0)
m Hypotheses in chart cell stack: (0,0), (1,0), (1,1)

55 / 60

Queue of Cubes

m Several groups of rules will apply to a given span
m Each of them will have a cube
m We can create a queue of cubes

= Always pop off the most promising hypothesis, regardless of cube

m May have separate queues for different target constituent labels

56 / 60

Bottom-Up Chart Decoding Algorithm

1. for all spans (bottom up) do

2 extend dotted rules

3: for all dotted rules do

4 find group of applicable rules

5: create a cube for it

6: create first hypothesis in cube

7 place cube in queue

8: end for

9: for specified number of pops do

10: pop off best hypothesis of any cube in queue
11: add it to the chart cell

12: create its neighbors

13: end for

14: extend dotted rules over constituent labels
15: end for

57 / 60

Two-Stage Decoding

m First stage: decoding without a language model (-LM decoding)

= may be done exhaustively
= optionably prune out low scoring hypotheses

m Second stage: add language model
= |imited to packed chart obtained in first stage

m Note: essentially, we do two-stage decoding for each span at a time

58 / 60

Outside Cost Estimation

m Which spans should be more emphasized in search?
m Initial decoding stage can provide outside cost estimates

NP
Sie will eine Tasse Kaffee trinken
PPER VAFIN ART NN NN VVINF

m Use min/max language model costs to obtain admissible heuristic
(or at least something that will guide search better)

59 / 60

Synchronous context free grammars

Extracting rules from a syntactically parsed parallel corpus
Bottom-up decoding

Chart organization: dynamic programming, stacks, pruning
Prefix tree for rules

Dotted rules

Cube pruning

60 / 60

