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Bottom-Up Decoding

m For each span, a stack of (partial) translations is maintained

m Bottom-up: a higher stack is filled, once underlying stacks are
complete
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Naive Algorithm

Input: Foreign sentence f = fi,...f;,, with syntax tree
Output: English translation e
1. for all spans [start,end] (bottom up) do
2 for all sequences s of hypotheses and words in span [start,end] do
3 for all rules r do
4 if rule 7 applies to chart sequence s then
5: create new hypothesis ¢
6 add hypothesis ¢ to chart
7 end if
8 end for
9: end for
10: end for
11: return English translation e from best hypothesis in span [0,/¢]
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Dynamic Programming

Applying rule creates new hypothesis

NP: a cup of coffee |

) apply rule:

| NP — NP Kaffee ; NP = NP+P coffee

NP+P: a cup of

eine Tasse Kaffee trinken
ART NN NN VVINF
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Dynamic Programming

Another hypothesis

| NP: a cup of coffee |

| NP: a cup of coffee |

A3

apply rule:
NP — eine Tasse NP ; NP — a cup of NP

NP+P: a cup of

NP: coffee

Tasse Kaffee trinken
ART NN NN VVINF

Both hypotheses are indistiguishable in future search
— can be recombined
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Recombinability

Hypotheses have to match in
m span of input words covered
®m output constituent label
m first n—1 output words (not properly scored, since they lack context)
m last n—1 output words (still affect scoring of subsequently added
words, just like in phrase-based decoding)

(n is the order of the n-gram language model)
When merging hypotheses, internal language model contexts are absorbed
S

(minister of Germany met with Condoleezza Rice)
the foreign ... ... in Frankfurt

NP VP

(Condoleezza Rice)
met with ... ... in Frankfurt

(minister)
the foreign ... ... of Germany

pwi(met | of Germany)
pw(with | Germany met)



Decreasing complexity

Search space pruning
B recombination
m stack pruning

Algorithmic techniques
m prefix tree
m Earley’s parsing algorithm

m cube pruning
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Stack Pruning

m Number of hypotheses in each chart cell explodes

= need to discard bad hypotheses
e.g., keep n = 100 best only

m Different stacks for different output constituent labels

= keep at least m different (m=2,3,..)
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Naive Algorithm: Blow-ups

m Many subspan sequences
for all sequences s of hypotheses and words in span [start,end]
m Many rules
for all rules r
m Checking if a rule applies not trivial
rule r applies to chart sequence s
= Unworkable
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Finding Rules

m Easy:

= given a rule

= check if and how it can be applied
m But there are too many rules (millions) to check them all
m Instead:

= given the underlying chart cells and input words
= find which rules apply
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Prefix Tree for Rules

NP DET @&—» NN NP: NP1 IN2 NP3
NP . : NP: NP1 of DET2 NPs
NP: NP1 NP: NP1 of IN2 NP3

PP ... : :
des @—» NN NP: NP1 of the NN2
um @——p VP ... NP: NP2 NP+
: : NP: NP1 of NP2

VP ...
DET HNN *—» NP DET1 NN2

das HHaus o—» NP the house

Highlighted Rules
NP — NP; DET3 NN3 | NPj IN3 NNj
NP — NP; | NP
NP — NP; des NNy | NP; of the NNg
NP — NP; des NNy | NP2 NPp
NP — DET; NN2 | DET; NNg

NP — das Haus | the house
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CFGs are ubiquitous for describing (syntactic) structure in NLP

parsing algorithms are core of NL analysis systems
recognition vs. parsing:
= recognition - deciding the membership in the language
= parsing - recognition + producing a parse tree for it

m parsing has more time complexity than recognition

B an input may have exponentially many parses



CKY (Cocke - Kasami - Younger)

m one of the earliest recognition and parsing algorithms

m standard CKY can only recognize languages defined by CFGs in
Chomsky Normal Form (CNF).

m based on a dynamic programming
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m considers every possible consecutive subsequence of letters and sets
K € T1i, j| if the sequence of letters starting from ¢ to j can be
generated from the non-terminal K

m once it has considered sequences of length 1, it goes on to sequences
of length 2, and so on

m for subsequences of length 2 and greater, it considers every possible
partition of the subsequence into two halves, and checks to see if
there is some production A — BC' such that B matches the 1st half
and C matches the 2nd half. If so, it records A as matching the
whole subsequence

m once completed, the sentence is recognized by the grammar if the
entire string is matched by the start symbol
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B any portion of the input string spanning i to j can be split at k, and
structure can then be built using sub-solutions spanning ¢ to k and
sub-solutions spanning k to j

m solution to problem [i, j] can constructed from solution to sub
problem [i, k] and solution to sub problem [k, j]
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CKY Algorithm for Deciding CFL

Consider the grammar G given by:
S>¢|AB| XB

T AB | XB

X2 AT

A—2>a

B>b



CKY Algorithm for Deciding CFL

Now look at aaabbb :

S>c|AB|XB . . . . . .

T> AB| XB
X2 AT
A>a
B>b



CKY Algorithm for Deciding CFL

1) Write variables for all length 1 substrings.

S>¢|AB| XB
T AB | XB
XD AT

A=>a
B=>b



CKY Algorithm for Deciding CFL

' 2) Write variables for all length 2 substrings.

S>¢|AB| XB
T> AB | XB
X AT

A=>a
B=>b



CKY Algorithm for Deciding CFL

' 3) Write variables for all length 3 substrings.

S>¢|AB| XB

T> AB | XB = = =
X2 AT

A>a

B>b



CKY Algorithm for Deciding CFL

' 4) Write variables for all length 4 substrings.

S>e|AB| XB

T> AB | XB = =
X2 AT

A—>a

B>b



CKY Algorithm for Deciding CFL

 5) Write variables for all length 5 substrings.

S>¢|AB| XB
T AB | XB
XD AT

A=>a
B->b




CKY Algorithm for Deciding CFL

' 6) Write variables for all length 6 substrings.

S>¢|AB| XB
T> AB | XB
X2 AT
A=>a

B>b

Sisincluded so
aaabbb accepted!




The CKY Algorithm

function CKY (word w, grammar P) returns table
fori € from 1 to LENGTH(w) do

table[i-1,i] < {A|A>w,€P}
for j € from 2 to LENGTH(w) do

fori €< from j-2 down to 0 do

fork <i+1toj—1do
tableli,j] € table[i,jljU {A | A> BCE€ P,
B € table[i,k], C € table[k,j] }

If the start symbol S € table[0,n] then w € L(G)



CKY Algorithm for Deciding CFL

~ The table chart used by the algorithm:




CKY Algorithm for Deciding CFL

1. Variables for length 1 substrings.




CKY Algorithm for Deciding CFL

2. Variables for length 2 substrings.




CKY Algorithm for Deciding CFL

3. Variables for length 3 substrings.




CKY Algorithm for Deciding CFL

4. Variables for length 4 substrings.




CKY Algorithm for Deciding CFL

5. Variables for length 5 substrings.




CKY Algorithm for Deciding CFL

- 6. Variables for aaabbb. ACCEPTED!




CKY Space and Time Complexity

Time complexity:
* Three nested “for” loop each one of O(n) size.

* Lookup for r =|N| pair rules at each step.
Time complexity — O(r2n3) = O(n3)

Space complexity:

¢ Athree dimensions table at size n*n*r  or
* A n*n table with lists up to size of r
Space complexity — O(rn2) = O(n?)



Earley Algorithm

m doesnt require the grammar to be in CNF.

= grammar intended to reflect actual structure of language
= conversion to CNF completely destroys the parse structure

m efficiency:
= usually moves left-to-right (prefix trees!)

= faster than O(n?) for many grammars
= uses a parse table as CKY, so can backtrack
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Earley Algorithm

m dotted rule

= a partially constructed constituent, w/ the dot indicating what has
been found and what is still predicted
= generated from ordinary grammar rules (no CNF!)

B maintains a set of states, for each position in the input
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The Dotted Rules

With dotted rules, an entry in the chart records:
e Which rule has been used in the analysis

* Which part of the rule has already been found (left of the
dot).

e Which part is still predicted to be found and will combine
into a complete parse (right of the dot).

o the start and end position of the material left of the dot.

Example: A 2> X X,...e C... X,

m



Parsing Operations

The Earley algorithm has three main operations:

Predictor: an incomplete entry looks for a symbol to the right
of its dot. if there is no matching symbol in the chart, one is
predicted by adding all matching rules with an initial dot.

Scanner: an incomplete entry looks for a symbol to the right
of the dot. this prediction is compared to the input, and a
complete entry is added to the chart if it matches.

Completer: a complete edge is combined with an incomplete
entry that is looking for it to form another complete entry.



Parsing Operations

¢ Predictor: If state [A — Xy...e (.. X,,.j] € 5, then for every
rule of the form C' — 17...Y),, add to 5; the state
[C'— oY7..Y}. i

¢ Scanner: If state [A —+ Xy...e0a..X,,.j] € 5, and the next
input word is ;.1 = a, then add to 5, ¢ the state
(A= Xq..ae..X,. ]|

o Completer: If state [4 — X4.. X, 0. j] € 5; then for every state
in S, ofform [B — Xy...e A..X},.[], add to 5; the state
[B— Xi..Ae. X



The Earley Recognition Algorithm

The Main Algorithm: parsing input w=w,w,...w,
1. Sy={[S> P (0)]}
2. ForO<i<ndo:

Process each item s € S; in order by applying to
it a single applicable operation among:

(a) Predictor (adds new items to S))
(b) Completer (adds new items to S)
(c) Scanner (adds new items to S, ;)
3. IfS,,; = @ Reject the input.
4. Ifi=n and [S>Pe (0)] €S, then Accept the input.



Earley Algorithm Example

Consider the following grammar for arithmetic
expressions:

S—>P (the start rule)
P>P+M

P>M

M->M*T

M->T

T - number

With the input: 2+ 3 * 4



Earley Algorithm Example
Sequence(0) *2+3*4

(1) S—> P (0) # start rule



Earley Algorithm Example
Sequence(0) *2+3*4

(1) S—> P (0) # start rule
2) P> eP+M(0) # predict from (1)
(3) P> eM(0) # predict from (1)



Earley Algorithm Example

Sequence(0) e2+3 *4

(1) S-> ¢ P(0)
(2) P>eP+M(0)
(3) P> eM(0)
(4) M—=>eM*T(0)
(5) M= eT(0)

# start rule

# predict from (1)
# predict from (1)
# predict from (3)
# predict from (3)



Earley Algorithm Example

Sequence(0) e2+3 *4

(1) S-> ¢ P(0)
(2) P>eP+M(0)
(3) P> eM(0)
(4) M—=>eM*T(0)
(5) M= ¢T(0)
(6) T—> ¢ number (0)

# start rule

# predict from (1)
# predict from (1)
# predict from (3)
# predict from (3)
# predict from (5)



Earley Algorithm Example
Sequence(l) 2e+3*4

(1) T-> number e (0) # scan from S(0)(6)



Earley Algorithm Example
Sequence(l) 2e+3*4

(1) T-> number e (0) # scan from S(0)(6)
(2) M—=>Te(0) # complete from S(0)(5)



Earley Algorithm Example

Sequence(l) 2e+3 *4

(1) T = number ¢ (0)
(2) M—>Te(0)
(3) M=> Me *T(0)
(4) P> M e (0)

# scan from S(0)(6)

# complete from S(0)(5)
# complete from S(0)(4)
# complete from S(0)(3)



Earley Algorithm Example

Sequence(l) 2e+3 *4

(1)
(2)
(3)
(4)
(5)
(6)

T = number ¢ (0)
M =T e (0)
M= Me *T(0)
P->Me(0)
P>Pe+M(0)
S->Pe(0)

# scan from S(0)(6)

# complete from S(0)(5)
# complete from S(0)(4)
# complete from S(0)(3)
# complete from S(0)(2)
# complete from S(0)(1)



Earley Algorithm Example
Sequence(2) 2+ 3 *4

(1) P>P+eM(0) # scan from S(1)(5)



Earley Algorithm Example
Sequence(2) 2+ 3 *4

(1) P>P+eM(0) # scan from S(1)(5)
2) M>eM*T(2) # predict from (1)
(3) M=>eT(2) # predict from (1)



Earley Algorithm Example

Sequence(2) 2+ 3 *4

(1) P> P+eM(0)
2) M> eM*T(2)
(3) M= eT(2)

(4) T => e number (2)

# scan from S(1)(5)
# predict from (1)
# predict from (1)
# predict from (3)



Earley Algorithm Example
Sequence(3) 2+3e*4

(1) T-> number ¢ (2) #scan from S(2)(4)



Earley Algorithm Example
Sequence(3) 2+3e*4

(1) T-> number ¢ (2) #scan from S(2)(4)
2) M—>Te(2) # complete from S(2)(3)



Earley Algorithm Example

Sequence(3) 2+3 ¢ *4

(1) T = number ¢ (2)
2) M>Te(2)

3) M> Me *T(2)
(4) P>P+Me(0)

# scan from S(2)(4)

# complete from S(2)(3)
# complete from S(2)(2)
# complete from S(2)(1)



Earley Algorithm Example

Sequence(3) 2+3 ¢ *4

(1)
(2)
(3)
(4)
(5)
(6)

T = number ¢ (2)
M-=>Te(2)
M-=>Me*T(2)
P>P+Me(0)
P>Pe+M(0)
S->Pe(0)

# scan from S(2)(4)

# complete from S(2)(3)
# complete from S(2)(2)
# complete from S(2)(1)
# complete from S(0)(2)
# complete from S(0)(1)



Earley Algorithm Example
Sequence(4) 2+3* ¢4

(1) M>M*eT(2) # scan from S(3)(3)



Earley Algorithm Example
Sequence(4) 2+3* ¢4

(1) M>M*eT(2) # scan from S(3)(3)
(2) T-> enumber (4) # predict from (1)



Earley Algorithm Example
Sequence(5) 2+3 %4 e

(1) T-> number e (4) # scan from S(4)(2)



Earley Algorithm Example
Sequence(5) 2+3 %4 e

(1) T-> number e (4) # scan from S(4)(2)
2) M>M*Te(2) # complete from S(4)(1)



Earley Algorithm Example

Sequence(5) 2+3*4 e

(1) T = number ¢ (4)
2) M>M*Te(2)
3) M> Me *T(2)
(4) P>P+Me(0)

# scan from S(4)(2)

# complete from S(4)(1)
# complete from S(2)(2)
# complete from S(2)(1)



Earley Algorithm Example

Sequence(5) 2+3*4 e

(1)
(2)
(3)
(4)
(5)
(6)

T = number ¢ (4)
M-=>M*Te(2)
M-=>Me*T(2)
P>P+Me(0)

P>Pe+M(0)

S->Pe(0)

# scan from S(4)(2)

# complete from S(4)(1)
# complete from S(2)(2)
# complete from S(2)(1)
# complete from S(0)(2)
# complete from S(0)(1)



Earley Algorithm Example
Sequence(5) 2+3 %4 e

(1) T-> number e (4) # scan from S(4)(2)

2) M>M*Te(2) # complete from S(4)(1)
3) M> Me *T(2) # complete from S(2)(2)
(4 P>P+Me(0) # complete from S(2)(1)
(5) P>Pe+M|(0) # complete from S(0)(2)
(6) S=>Pe(0) # complete from S(0)(1)

The state S>Pe (0) represents a completed parse.



- Finding the parse tree

Seq 0 Seql Seq 2 Seq 3 Seq 4 Seg5
©2+3%4 20+3*%4 | 2+e3%4 | 2+3e%4 2+3%e4 2+3%4e

S>eP(0) T>2e(0) P>P+eM T>3e(2) M>M*eT T->%e(4

(0) ()

P>eP+M MSTe(0) M>eM*T M>Te(2) T>enum(d) M->M*Te
(0) (2) (2)
P>eM(0) M>Me*T M->eT(2) M->Me*T M->Me*T

(0) (2) (2)
M=>eM*T P>Me(0 T>enum P->P+Me PS>P+Me
(0) (2) (0) (0)
M-=>eT(©) P>Pe+M P>Pe+M P>Pe+M

(0) (0) (0)
T>enum  S>Ps(0) S>Pe(0) S>Pe(0)

(0)



- Finding the parse tree

Seq 0 Seq1l Seq 2 Seq 3 Seq 4 Seg5
©2+3%4 20+3*%4 | 2+e3%4 | 2+3e%4 2+3%e4 2+3%4e

S>eP(0) T>2e(0) P3P+eM T3 e(2) M3>M*eT T-%e(a)

(0) (2)
P>eP+M M->Te(0) M>eM*T M->Te(2) T>enum@d) M->M*Te
(0) (2) (2)
P>eM(O M>Me*T M->eT(2) M->Me*T M>Me*T
(0) (2) (2)
M=>eM*T P>Me(0) T>enum P>P+Me P>P+Me
(0) (2) (0) (0)
M->eT(0) P>Pe+M P>Pe+M P>Pe+M
(0) (0) (0)
T enum S>Pe(0) S>Pe(0) S>Pe(0)

(0)



- Finding the parse tree

Seq 0 Seq1l Seq 2 Seq 3 Seq 4 Seg5
©2+3%4 20+3*%4 | 2+e3%4 | 2+3e%4 2+3%e4 2+3%4e

S>eP(0) T>2e(0) P3P+eM T3>3e(2) M>M*eT T-%e(4)

(0) (2)
P>eP+M M->Te(0) M->eM*T M>Te(2) T>enum@d) M->M*Te
(0) (2) (2)
P>eM(O M>Me*T M->eT(2) M->Me*T M>Me*T
(0) (2) (2)
M=>eM*T P>Me(0) T>enum P>P+Me P>P+Me
(0) (2) (0) (0)
M->eT(0) P>Pe+M P>Pe+M P>Pe+M
(0) (0) (0)
T enum S>Pe(0) S>Pe(0) S>Pe(0)

(0)



- Finding the parse tree

Seq 0 Seq1l Seq 2 Seq 3 Seq 4 Seg5
©2+3%4 20+3*%4 | 2+e3%4 | 2+3e%4 2+3%e4 2+3%4e

S>eP(0) T>2e(0 P>P+eM T>3e(2) M>M*eT T4 e(4)

(0) ()

PS>eP+M M->Te()) M>eM*T M>Te(2) T>enum(d) M->M*Te
(0) (2) (2)
P>eM(0) M>Me*T M->eT(2) M>Me*T M->Me*T

(0) (2) (2)
M=>eM*T P>Me(0) T>enum P->P+Me P>P+Me
(0) (2) (0) (0)
M-=>eT(©) P>Pe+M P>Pe+M P>Pe+M

(0) (0) (0)
T>enum  S>Ps(0) S>Pe(0) S>Pe(0)

(0)



Earley for S

Input: Foreign sentence £ = f;,...f;,, with syntax tree

Output: English translation e

1: for i=0 .. length(£f)-1 do // initialize chart

2: store pointer to initial node in prefix tree in span [1,1]
3: end for

4: for 1=1..1f do // build chart from the bottom up

5: for start=0 .. lfg—1 do // beginning of span

6: end = start+1

7: for midpoint=start .. end-1 do

8: for all dotted rules d in span [start,midpoint] do

9: for all distinct head node nonterminals or input words h covering

span [midpoint+l,end] do

10: if extension d— h exists in prefix tree then
11: dpew = d— h

12: for all complete rules at dpey do

13: apply rules

14: store chart entries in span [start,end]
15: end for

16: if extension exist for dpew then

17: store dpey in span [start,end] // new dotted rule
18: end if

19: end if

20: end for

21: end for

22: end for

23: end for
24: end for
25: return English translation e from best chart entry in span [0, 1f]



Finding Applicable Rules in Prefix Tree

das Haus des Architekten Frank Gehrv
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Covering the First Cell

das Haus des Architekten Frank Gehrv
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Looking up Rules in the Prefix Tree

r—

das Haus des Architekten Frank Gehry
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Taking Note of the Dotted Rule

das Haus des Architekten Frank Gehry

N
N
[=)
o



Checking if Dotted Rule has Translations

.—- DET: the
DET. that
das Haus des Architekten Frank Gehry
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Applying the Translation Rules

06— das® oer the
DET. that
das Haus des Architekten Frank Gehry
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Looking up Constituent Label in Prefix Tree

i

das Haus des Architekten Frank Gehry
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Add to Span’s List of Dotted Rules

JaN—

das Haus des Architekten Frank Gehry
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Moving on to the Next Cell

e

das Haus des Architekten Frank Gehry
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Looking up Rules in the Prefix Tree

=

das Haus des Architekten Frank Gehry
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Taking Note of the Dotted Rule

=

das Haus des Architekten Frank Gehry
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Checking if Dotted Rule has Translations

=

NN: house
NP: house
das Haus des Architekten Frank Gehry

30 / 60



Applying the Translation Rules

=

NN: house
NP: house
das Haus des Architekten Frank Gehry
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Looking up Constituent Label in Prefix Tree

g

DET: that

das Haus des Architekten Frank Gehry




Add to Span’s List of Dotted Rules

e

DET: that

das Haus des Architekten Frank Gehry
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f

DET: that
DET: the

[nP: house

[NP: architect |

re of the Same

['NN: house

[NN: architect |

Haus

Architekten

Frank




==

DET: that
DET: the

[NP: architect |

[Nz architeet |

Haus

Architekten




Covering a Lo

Cannot consume multiple words at once

All rules are extensions of existing dotted rules

Here: only extensions of span over das possible

[NP: architect |

[NN: architect |

['NNP: Frank

['NNP: Gehry

Architekten

Frank

Gehry




Extensions of Span over da

o— 88—\~ NP, Haus?
\-—NN‘ NP, Haus?
Haus ©
NN @
NP ©

DET: that [NP: architect |
DET: the [Nz architect |

Haus des Architekten




Looking up Rules in the Prefix Tree

DET: that i | [Pz house [NP: architect |
[NN:house | [Nz architect ] | || [NNP: Frank ] |} | [NNP: Gehry |
H 9
H Haus Architekten Frank Gehry
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Taking Note of the Dotted Rule

DET: that i | [Pz house [NP: architect |
[NN:house | [Nz architect ] | || [NNP: Frank ] |} | [NNP: Gehry |
H 9
H Haus Architekten Frank Gehry
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Checking if Dotted Rules have Translations

NP: the house
\ NP: the NN
NP: DET house

NP: DET NN

DET: that i | [Pz house [NP: architect |
['NN: house [N architeet |

E Haus Architekten Frank Gehry

NNP: Frank

NNP: Gehry




Applying the Translation Rules

NP: the house
\ NP: the NN
NP: DET house

NP: DET NN

NP: the house

[NP: architect |
[N architeet |

Architekten Frank Gehry




king up Constitu

Np: the house
NP: the NN
NP: DET house

NP: DET NN

DET: that [NP: architect |
DET: the [Nz architect |

Haus des Architekten




Add to Span’s List of

ﬂ Ne: the house
NP: the NN
NP: DET house

NP: DET NN

DET: that [nPrhouse ]|} | [INzof | |i | [NParchiteet |
DET: the [(NNThouse | | ! | [BETthe ] | | [NN:architect |

Haus des Architekten Frank Gehry




Reflections

m Complexity O(rn?) with sentence length n and size of dotted rule list
,
= may introduce maximum size for spans that do not start at beginning
= may limit size of dotted rule list (very arbitrary)

m Does the list of dotted rules explode?

m Yes, if there are many rules with neighboring target-side
non-terminals

= such rules apply in many places
= rules with words are much more restricted
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Difficult Rules

m Some rules may apply in too many ways
m Neighboring input non-terminals

VP — gibt X1 X2 | gives NPy to NPy

]

non-terminals may match many different pairs of spans
especially a problem for hierarchical models (no constituent label
restrictions)

= may be okay for syntax-models

]

m Three neighboring input non-terminals

VP — trifft X1 Xo X3 heute | meets NP today PPy PP3

= will get out of hand even for syntax models
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Where are we now?

m We know which rules apply

m We know where they apply (each non-terminal tied to a span)

m But there are still many choices
= many possible translations

= each non-terminal may match multiple hypotheses
— number choices exponential with number of non-terminals
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Rules with One Non-Terminal

Found applicable rules PP — des X | ... NP ...
PP — Of NP the architect ... NP]
PP — by NP architect Frank ... NP]
PP —in NP the famous ... NP
PP — 0N to NP Frank Gehry NP

m Non-terminal will be filled any of A underlying matching hypotheses
m Choice of ¢ lexical translations
= Complexity O(ht)

(note: we may not group rules by target constituent label,
so a rule NP — des X | the NP would also be considered here as well)
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Rules with Two Non-Terminals

Found applicable rule NP — X; des X3 | NPy ... NPo

| a house NP — NP Of NP the architect NP|
[ a building NP — NP by NP architect Frank ... NP|
| the building NP — NP in NP the famous ... NP
| a new house NP — NP ON to NP Frank Gehry NP

m Two non-terminal will be filled any of h underlying matching
hypotheses each

m Choice of ¢ lexical translations
= Complexity O(h?t) — a three-dimensional “cube” of choices

(note: rules may also reorder differently)
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Cube Pruning

1.7 by architect ...

15in the ...
2.6 by the ...
3.20f the ...

a house 1.0

a building 1.3
the building 2.2
a new house 2.6

Arrange all the choices in a “cube”

(here: a square, generally a orthotope, also called a hyperrectangle)
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Create the First Hypothesis

1.7 by architect ...

1.5in the ...
2.6 by the ...
3.2 0f the

a house 1.0 |2

a building 1.3
the building 2.2
a new house 2.6

m Hypotheses created in cube: (0,0)
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Add (" Pop”) Hypothesis to Chart Cell

©

(0]
0 &= H .
s % Q) ]
©
25
= =
c P
= 0O O O
noN e o
— — ol

a house 1.0 |21
a building 1.3

the building 2.2
a new house 2.6

m Hypotheses created in cube: €

m Hypotheses in chart cell stack: (0,0)
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Create Neighboring Hypotheses
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a house 1.0 |21

a building 1.3 |27
the building 2.2
a new house 2.6

i
o

m Hypotheses created in cube: (0,1), (1,0)
m Hypotheses in chart cell stack: (0,0)



Pop Best Hypothesis to Chart Cell

1.7 by architect ...

2.6 by the ...
3.20f the ...

15in the ...

a house 1.0 |21

o

a building 1.3 |27
the building 2.2
a new house 2.6

m Hypotheses created in cube: (0,1)
m Hypotheses in chart cell stack: (0,0), (1,0)
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Create Neighboring Hypotheses

1.7 by architect ...

15in the ...
2.6 by the ...

3.20f the ...

a house 1.0 [2.1]25

e

a building 1.3 [2.7]2.4
the building 2.2
a new house 2.6

m Hypotheses created in cube: (0,1), (1,1), (2,0)
m Hypotheses in chart cell stack: (0,0), (1,0)
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More of the Same

©
o)
0 &= B o
s % Q) ]
)
258
= =
c P
£ 2 a0
o~ 9o o
—~ = &N ™
a house 1.0 [2.1{25(3.1
a building 1.3 |2.72.4[3.0

the building 2.2 3.8

a new house 2.6

m Hypotheses created in cube: (0,1), (1,2), (2,1), (2,0)
m Hypotheses in chart cell stack: (0,0), (1,0), (1,1)
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Queue of Cubes

m Several groups of rules will apply to a given span
m Each of them will have a cube
m We can create a queue of cubes

= Always pop off the most promising hypothesis, regardless of cube

m May have separate queues for different target constituent labels
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Bottom-Up Chart Decoding Algorithm

1. for all spans (bottom up) do

2 extend dotted rules

3:  for all dotted rules do

4 find group of applicable rules

5: create a cube for it

6: create first hypothesis in cube

7 place cube in queue

8: end for

9:  for specified number of pops do

10: pop off best hypothesis of any cube in queue
11: add it to the chart cell

12: create its neighbors

13:  end for

14:  extend dotted rules over constituent labels
15: end for
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Two-Stage Decoding

m First stage: decoding without a language model (-LM decoding)

= may be done exhaustively
= optionably prune out low scoring hypotheses

m Second stage: add language model
= |imited to packed chart obtained in first stage

m Note: essentially, we do two-stage decoding for each span at a time
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Outside Cost Estimation

m Which spans should be more emphasized in search?
m Initial decoding stage can provide outside cost estimates

NP
Sie will eine Tasse Kaffee trinken
PPER VAFIN ART NN NN VVINF

m Use min/max language model costs to obtain admissible heuristic
(or at least something that will guide search better)
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Synchronous context free grammars

Extracting rules from a syntactically parsed parallel corpus
Bottom-up decoding

Chart organization: dynamic programming, stacks, pruning
Prefix tree for rules

Dotted rules

Cube pruning
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