Statistical Machine Translation

-tree-based models (cont.)-

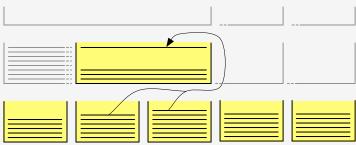
Artem Sokolov

Computerlinguistik Universität Heidelberg Sommersemester 2015

material from P. Koehn, S. Riezler, D. Altshuler

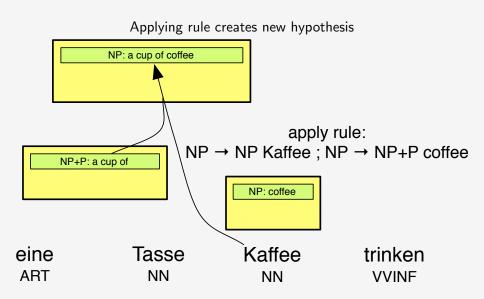
Bottom-Up Decoding

- For each span, a stack of (partial) translations is maintained
- Bottom-up: a higher stack is filled, once underlying stacks are complete

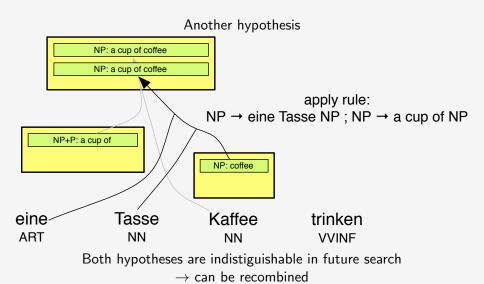


```
Input: Foreign sentence \mathbf{f} = f_1, ... f_{l_f}, with syntax tree
Output: English translation e
 1: for all spans [start,end] (bottom up) do
      for all sequences s of hypotheses and words in span [start,end] do
 2:
         for all rules r do
 3:
 4:
           if rule r applies to chart sequence s then
 5:
              create new hypothesis c
 6:
              add hypothesis c to chart
           end if
 7:
         end for
 8:
      end for
 9:
10: end for
11: return English translation e from best hypothesis in span [0,l_f]
```

Dynamic Programming



Dynamic Programming

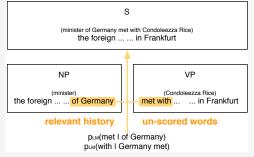


Hypotheses have to match in

- span of input words covered
- output constituent label
- first n-1 output words (not properly scored, since they lack context)
- last n-1 output words (still affect scoring of subsequently added words, just like in phrase-based decoding)

(n is the order of the n-gram language model)

When merging hypotheses, internal language model contexts are absorbed



Decreasing complexity

Search space pruning

- recombination
- stack pruning

Algorithmic techniques

- prefix tree
- Earley's parsing algorithm
- cube pruning

Stack Pruning

- Number of hypotheses in each chart cell explodes
- \Rightarrow need to discard bad hypotheses e.g., keep n=100 best only
- Different stacks for different output constituent labels
- \Rightarrow keep at least m different (m=2,3,..)

Naive Algorithm: Blow-ups

- Many subspan sequences
 - for all sequences s of hypotheses and words in span [start,end]
- Many rules

for all rules r

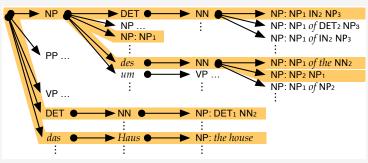
- Checking if a rule applies not trivial
 - rule r applies to chart sequence s

⇒ Unworkable

Finding Rules

- Easy:
 - → given a rule
 - check if and how it can be applied
- But there are too many rules (millions) to check them all
- Instead:
 - → given the underlying chart cells and input words
 - find which rules apply

Prefix Tree for Rules



Highlighted Rules

$$\begin{array}{c|ccccc} \mathrm{NP} \to \mathrm{NP_1} \ \mathrm{DET_2} \ \mathrm{NN_3} & | \ \mathrm{NP_1} \ \mathrm{IN_2} \ \mathrm{NN_3} \\ & \mathrm{NP} \to \mathrm{NP_1} & | \ \mathrm{NP_1} \\ \mathrm{NP} \to \mathrm{NP_1} \ \mathrm{des} \ \mathrm{NN_2} & | \ \mathrm{NP_1} \ \mathrm{of} \ \mathrm{the} \ \mathrm{NN_2} \\ \mathrm{NP} \to \mathrm{NP_1} \ \mathrm{des} \ \mathrm{NN_2} & | \ \mathrm{NP_2} \ \mathrm{NP_1} \\ \mathrm{NP} \to \mathrm{DET_1} \ \mathrm{NN_2} & | \ \mathrm{DET_1} \ \mathrm{NN_2} \\ \mathrm{NP} \to \mathrm{das} \ \mathrm{Haus} & | \ \mathrm{the} \ \mathrm{house} \end{array}$$

- CFGs are ubiquitous for describing (syntactic) structure in NLP
- parsing algorithms are core of NL analysis systems
- recognition vs. parsing:
 - recognition deciding the membership in the language
 - ⇒ parsing recognition + producing a parse tree for it
- parsing has more time complexity than recognition
- an input may have exponentially many parses

CKY (Cocke - Kasami - Younger)

- one of the earliest recognition and parsing algorithms
- standard CKY can only recognize languages defined by CFGs in Chomsky Normal Form (CNF).
- based on a dynamic programming

- considers every possible consecutive subsequence of letters and sets $K \in T[i,j]$ if the sequence of letters starting from i to j can be generated from the non-terminal K
- once it has considered sequences of length 1, it goes on to sequences of length 2, and so on
- for subsequences of length 2 and greater, it considers every possible partition of the subsequence into two halves, and checks to see if there is some production $A \to BC$ such that B matches the 1st half and C matches the 2nd half. If so, it records A as matching the whole subsequence
- once completed, the sentence is recognized by the grammar if the entire string is matched by the start symbol

- any portion of the input string spanning i to j can be split at k, and structure can then be built using sub-solutions spanning i to k and sub-solutions spanning k to j
- solution to problem [i,j] can constructed from solution to sub problem [i,k] and solution to sub problem [k,j]

Consider the grammar G given by:

$$S \rightarrow \varepsilon \mid AB \mid XB$$

$$T \rightarrow AB \mid XB$$

$$X \rightarrow AT$$

$$A \rightarrow a$$

$$B \rightarrow b$$

a b

Now look at aaabbb:

$$S \rightarrow \varepsilon \mid AB \mid XB$$

 $T \rightarrow AB \mid XB$
 $X \rightarrow AT$
 $A \rightarrow a$
 $B \rightarrow b$

1) Write variables for all length 1 substrings.

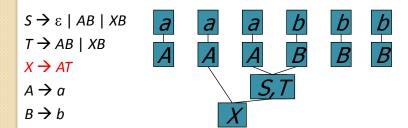
$$S \rightarrow \varepsilon \mid AB \mid XB$$

 $T \rightarrow AB \mid XB$
 $X \rightarrow AT$
 $A \rightarrow a$
 $B \rightarrow b$

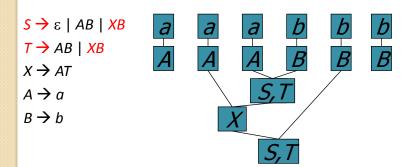
2) Write variables for all length 2 substrings.

 $B \rightarrow b$

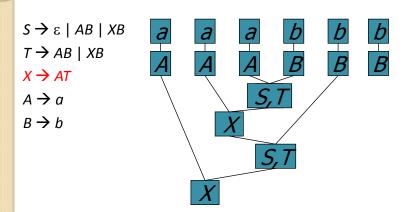
3) Write variables for all length 3 substrings.



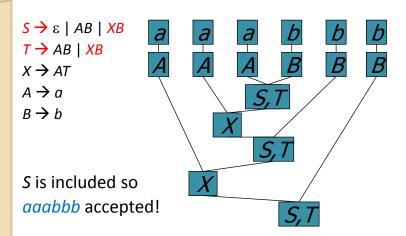
4) Write variables for all length 4 substrings.



5) Write variables for all length 5 substrings.



6) Write variables for all length 6 substrings.



The CKY Algorithm

function CKY (word w, grammar P) returns table

```
for i \leftarrow from 1 to LENGTH(w) do 

table[i-1, i] \leftarrow \{A \mid A \rightarrow w_i \in P \}

for j \leftarrow from 2 to LENGTH(w) do 

for i \leftarrow from j-2 down to 0 do 

for k \leftarrow i+1 to j-1 do 

table[i,j] \leftarrow table[i,j] \cup \{A \mid A \rightarrow BC \in P,

B \in table[i,k], C \in table[k,j] \}
```

If the start symbol $S \in \text{table}[0,n]$ then $w \in L(G)$

The table chart used by the algorithm:

j	1	2	3	4	5	6
i	a	a	<u>a</u>	b	b	b
0						
1						
2						
3						
4						
5						

1. Variables for length 1 substrings.

j	1	2	3	4	5	6
i	©	<u>a</u>	a	b	b	b
0	\boldsymbol{A}					
1		A				
2			A			
3				В		
4					В	
5						В

2. Variables for length 2 substrings.

j	1	2	3	4	5	6
i	o	a	™	b	b	b
0	\boldsymbol{A}	-				
1		A	-			
2			A -	-S,T		
3				В	-	
4					В	-
5						В

3. Variables for length 3 substrings.

j	1	2	3	4	5	6
i	a	<u>a</u>	a	b	b	b
0	\boldsymbol{A}	-	-			
1			-	$-\chi$		
2			A $-$	-S,T	-	
3				В	-	-
4					В	-
5						В

4. Variables for length 4 substrings.

j	1	2	3	4	5	6
i	o	a	a	b	b	b
0	\boldsymbol{A}	-	-	-		
1			-	$-\chi$	-S,T	
2			A -	-S,T	-	-
3				B	-	-
4					$\stackrel{\rightarrow}{B}$	-
5						В

5. Variables for length 5 substrings.

j	1	2	3	4	5	6
i	a	a	a	b	b	b
0	A	_	_	_	<u> </u>	
1		A —	-	$-\chi$ $-$	-S, T	-
2			A $-$	-S,T	-	-
3				$\stackrel{\ }{B}$	-	-
4					B	-
5						В

6. Variables for aaabbb. ACCEPTED!

j	1	2	3	4	5	6
i	a	a	a	b	b	b
0	A	-	-	-	<u> </u>	-S,T
1			-	$-\chi$ $-$	-S,T	-
2			A $-$	-S,T	-	-
3				В	-	-
4					B	-
5						В

CKY Space and Time Complexity

Time complexity:

- Three nested "for" loop each one of O(n) size.
- Lookup for r = |N| pair rules at each step.

Time complexity – $O(r^2n^3) = O(n^3)$

Space complexity:

- A three dimensions table at size n*n*r
- A n*n table with lists up to size of r

Space complexity – $O(rn^2) = O(n^2)$

Earley Algorithm

- doesnt require the grammar to be in CNF.
 - grammar intended to reflect actual structure of language
 - conversion to CNF completely destroys the parse structure
- efficiency:
 - usually moves left-to-right (prefix trees!)
 - \rightarrow faster than $O(n^3)$ for many grammars
 - uses a parse table as CKY, so can backtrack

Earley Algorithm

- dotted rule
 - → a partially constructed constituent, w/ the dot indicating what has been found and what is still predicted
 - generated from ordinary grammar rules (no CNF!)
- maintains a **set of states**, for each position in the input

The Dotted Rules

With dotted rules, an entry in the chart records:

- Which rule has been used in the analysis
- Which part of the rule has already been found (left of the dot).
- Which part is still predicted to be found and will combine into a complete parse (right of the dot).
- the start and end position of the material left of the dot.

Example: A
$$\rightarrow X_1 X_2 \dots \bullet C \dots X_m$$

Parsing Operations

The Earley algorithm has three main operations:

<u>Predictor:</u> an incomplete entry looks for a symbol to the right of its dot. if there is no matching symbol in the chart, one is predicted by adding all matching rules with an initial dot.

Scanner: an incomplete entry looks for a symbol to the right of the dot. this prediction is compared to the input, and a complete entry is added to the chart if it matches.

<u>Completer:</u> a <u>complete</u> edge is combined with an incomplete entry that is looking for it to form another complete entry.

Parsing Operations

- Predictor: If state $[A \to X_1... \bullet C...X_m, j] \in S_i$ then for every rule of the form $C \to Y_1...Y_k$, add to S_i the state $[C \to \bullet Y_1...Y_k, i]$
- Scanner: If state [A → X₁... a...X_m, j] ∈ S_i and the next input word is x_{i+1} = a, then add to S_{i+1} the state [A → X₁...a ...X_m, j]
- Completer: If state $[A \to X_1...X_m \bullet, j] \in S_i$ then for every state in S_j of form $[B \to X_1...\bullet A...X_k, l]$, add to S_i the state $[B \to X_1...A \bullet ...X_k, l]$

The Earley Recognition Algorithm

The Main Algorithm: parsing input $w=w_1w_2...w_n$

- 1. $S_0 = \{ [S \rightarrow \bullet P(0)] \}$
- 2. For $0 \le i \le n$ do:

Process each item $s \in S_i$ in order by applying to it a *single* applicable operation among:

- (a) Predictor (adds new items to S_i)
- (b) Completer (adds new items to S_i)
- (c) Scanner (adds new items to S_{i+1})
- 3. If $S_{i+1} = \emptyset$ Reject the input.
- 4. If i = n and $[S \rightarrow P \bullet (0)] \in S_n$ then Accept the input.

Consider the following grammar for arithmetic expressions:

$$S \rightarrow P$$
 (the start rule)
 $P \rightarrow P + M$
 $P \rightarrow M$
 $M \rightarrow M * T$
 $M \rightarrow T$
 $T \rightarrow number$

With the input: 2 + 3 * 4

Sequence(0) \bullet 2 + 3 * 4

(1) $S \rightarrow P(0)$

start rule

 $\underline{\text{Sequence}(0)} \bullet 2 + 3 * 4$

- (1) $S \rightarrow P (0)$
- $(2) P \rightarrow \bullet P + M (0)$
- (3) $P \rightarrow \bullet M (0)$

start rule

predict from (1)

predict from (1)

 $\underline{\mathsf{Sequence}(0)} \bullet 2 + 3 * 4$

- (1) $S \rightarrow P (0)$
- (2) $P \rightarrow P + M(0)$
- (3) $P \rightarrow \bullet M (0)$
- (4) $M \rightarrow \bullet M * T (0)$
- (5) $M \rightarrow \bullet T(0)$

- # start rule
- # predict from (1)
- # predict from (1)
- # predict from (3)
- # predict from (3)

 $\underline{\mathsf{Sequence}(0)} \bullet 2 + 3 * 4$

```
(1) S \rightarrow P (0) # start rule
(2) P \rightarrow P + M (0) # predict from (1)
```

(3)
$$P \rightarrow \bullet M$$
 (0) # predict from (1)

(4)
$$M \rightarrow \bullet M * T (0)$$
 # predict from (3)

(5)
$$M \rightarrow \bullet T$$
 (0) # predict from (3)

(6)
$$T \rightarrow \bullet$$
 number (0) # predict from (5)

Sequence(1) $2 \cdot + 3 \cdot 4$

(1) $T \rightarrow \text{number} \bullet (0)$ # scan from S(0)(6)

Sequence(1) $2 \cdot + 3 \cdot 4$

```
(1) T \rightarrow \text{number} \bullet (0) # scan from S(0)(6)
```

```
(2) M \rightarrow T \bullet (0) # complete from S(0)(5)
```

Sequence(1) $2 \cdot + 3 \cdot 4$

```
(1) T \rightarrow \text{number} \bullet (0)
```

- (2) $M \rightarrow T \bullet (0)$
- (3) $M \rightarrow M \bullet * T (0)$
- (4) $P \rightarrow M \bullet (0)$

scan from S(0)(6)

complete from S(0)(5)

complete from S(0)(4)

complete from S(0)(3)

Sequence(1) $2 \cdot + 3 \cdot 4$

- (1) $T \rightarrow \text{number} \bullet (0)$
- (2) $M \rightarrow T \bullet (0)$
- (3) $M \rightarrow M \bullet * T (0)$
- (4) $P \rightarrow M \cdot (0)$
- (5) $P \rightarrow P \cdot + M(0)$
- (6) $S \rightarrow P \bullet (0)$

- # scan from S(0)(6)
- # complete from S(0)(5)
- # complete from S(0)(4)
- # complete from S(0)(3)
- # complete from S(0)(2)
- # complete from S(0)(1)

<u>Sequence(2)</u> 2 + • 3 * 4

(1) $P \rightarrow P + \bullet M$ (0) # scan from S(1)(5)

<u>Sequence(2)</u> 2 + • 3 * 4

- $(1) P \rightarrow P + \bullet M (0)$
- $(2) M \rightarrow \bullet M * T (2)$
- (3) $M \rightarrow \bullet T(2)$

- # scan from S(1)(5)
- # predict from (1)
- # predict from (1)

<u>Sequence(2)</u> 2 + • 3 * 4

```
(1) P \rightarrow P + \bullet M (0) # scan from S(1)(5)
```

(2)
$$M \rightarrow \bullet M * T (2)$$
 # predict from (1)

(3)
$$M \rightarrow \bullet T(2)$$
 # predict from (1)

(4)
$$T \rightarrow \bullet$$
 number (2) # predict from (3)

Sequence(3) $2 + 3 \cdot * 4$

(1) $T \rightarrow \text{number} \bullet (2)$ # scan from S(2)(4)

Sequence(3) $2 + 3 \cdot * 4$

```
(1) T \rightarrow \text{number} \bullet (2) # scan from S(2)(4)
```

```
(2) M \rightarrow T \bullet (2) # complete from S(2)(3)
```

Sequence(3) $2 + 3 \bullet * 4$

```
(1) T \rightarrow \text{number} \bullet (2)
```

- (2) $M \rightarrow T \bullet (2)$
- (3) $M \rightarrow M \bullet * T (2)$
- (4) $P \rightarrow P + M \cdot (0)$

- # scan from S(2)(4)
- # complete from S(2)(3)
- # complete from S(2)(2)
- # complete from S(2)(1)

Sequence(3) $2 + 3 \bullet * 4$

```
(1) T \rightarrow \text{number} \bullet (2)
```

(2)
$$M \rightarrow T \bullet (2)$$

(3)
$$M \rightarrow M \bullet * T (2)$$

(4)
$$P \rightarrow P + M \bullet (0)$$

(5)
$$P \rightarrow P \cdot + M(0)$$

(6)
$$S \rightarrow P \bullet (0)$$

$$\#$$
 scan from $S(2)(4)$

complete from
$$S(0)(1)$$

Sequence(4) $2 + 3 * \bullet 4$

(1) $M \rightarrow M^* \bullet T$ (2) # scan from S(3)(3)

Sequence(4) $2 + 3 * \bullet 4$

```
(1) M \rightarrow M * \bullet T (2) # scan from S(3)(3)
```

(2) $T \rightarrow \bullet$ number (4) # predict from (1)

<u>Sequence(5)</u> 2 + 3 * 4 •

(1) $T \rightarrow \text{number} \bullet (4)$ # scan from S(4)(2)

<u>Sequence(5)</u> 2 + 3 * 4 •

```
(1) T \rightarrow \text{number} \bullet (4) # scan from S(4)(2)
```

```
(2) M \rightarrow M * T \bullet (2) # complete from S(4)(1)
```

<u>Sequence(5)</u> 2 + 3 * 4 •

```
(1) T \rightarrow \text{number} \bullet (4)
```

- (2) $M \rightarrow M * T \bullet (2)$
- (3) $M \rightarrow M \bullet * T (2)$
- (4) $P \rightarrow P + M \bullet (0)$

- # scan from S(4)(2)
- # complete from S(4)(1)
- # complete from S(2)(2)
- # complete from S(2)(1)

<u>Sequence(5)</u> 2 + 3 * 4 •

```
(1) T \rightarrow \text{number} \bullet (4)
```

(2)
$$M \rightarrow M * T \bullet (2)$$

(3)
$$M \rightarrow M \bullet * T (2)$$

(4)
$$P \rightarrow P + M \cdot (0)$$

(5)
$$P \rightarrow P \cdot + M(0)$$

(6)
$$S \rightarrow P \bullet (0)$$

$$\#$$
 scan from $S(4)(2)$

complete from
$$S(2)(1)$$

<u>Sequence(5)</u> 2 + 3 * 4 •

```
(1) T \rightarrow \text{number} \bullet (4) # scan from S(4)(2)

(2) M \rightarrow M * T \bullet (2) # complete from S(4)(1)

(3) M \rightarrow M \bullet * T (2) # complete from S(2)(2)

(4) P \rightarrow P + M \bullet (0) # complete from S(2)(1)

(5) P \rightarrow P \bullet + M (0) # complete from S(0)(2)

(6) S \rightarrow P \bullet (0) # complete from S(0)(1)
```

The state $S \rightarrow P \bullet$ (0) represents a completed parse.

<u>Seq 0</u>	<u>Seq 1</u>	<u>Seq 2</u>	<u>Seq 3</u>	<u>Seq 4</u>	<u>Seq 5</u>
• 2 + 3 * 4	2 • + 3 * 4	2+•3*4	2+3•*4	2+3*•4	2+3*4•
$S \rightarrow \bullet P (0)$	T → '2' • (0)	$P \rightarrow P + \bullet M$ (0)	T → '3' • (2)	$M \rightarrow M * \bullet T$ (2)	T → '4' • (4)
$P \rightarrow \bullet P + M$ (0)	$M \rightarrow T \bullet (0)$	$M \rightarrow \bullet M * T$ (2)	$M \rightarrow T \bullet (2)$	T → • num (4)	$M \rightarrow M * T \bullet$ (2)
P → • M (0)	$M \rightarrow M \bullet * T$ (0)	$M \rightarrow \bullet T(2)$	$M \rightarrow M \bullet * T$ (2)		$M \rightarrow M \bullet * T$ (2)
$M \rightarrow \bullet M * T$ (0)	$P \rightarrow M \cdot (0)$	T → • num (2)	$P \rightarrow P + M \bullet$ (0)		$P \rightarrow P + M \bullet$ (0)
$M \rightarrow \bullet T(0)$	$P \rightarrow P \bullet + M$ (0)		$P \rightarrow P \bullet + M$ (0)		$P \rightarrow P \bullet + M$ (0)
$T \rightarrow \bullet \text{ num}$ (0)	$S \rightarrow P \bullet (0)$		$S \rightarrow P \bullet (0)$		$S \rightarrow P \bullet (0)$

<u>Seq</u>	<u>0</u>	<u>Seq 1</u>	<u>Seq 2</u>	<u>Seq 3</u>	<u>Seq 4</u>	<u>Seq 5</u>
• 2 + 3	* 4	2 • + 3 * 4	2+•3*4	2+3•*4	2+3*•4	2+3*4•
$S \rightarrow \bullet P$ (0)	T → '2' • (0)	$P \rightarrow P + \bullet M$ (0)	T → '3' • (2)	$M \rightarrow M * \bullet T$ (2)	T → '4' • (4)
$P \rightarrow \bullet P + (0)$	· M	$M \rightarrow T \bullet (0)$	$M \rightarrow \bullet M * T$ (2)	$M \rightarrow T \bullet (2)$	T → • num (4)	M → M * T • (2)
$P \rightarrow \bullet M$	(0)	$M \rightarrow M \bullet * T$ (0)	$M \rightarrow \bullet T(2)$	$M \rightarrow M \bullet * T$ (2)		$M \rightarrow M \bullet * T$ (2)
$M \rightarrow \bullet N$ (0)	I * T	$P \rightarrow M \bullet (0)$	T → • num (2)	$P \rightarrow P + M \bullet$ (0)		$P \rightarrow P + M \bullet$ (0)
$M \rightarrow \bullet T$	(0)	$P \rightarrow P \bullet + M$ (0)		$P \rightarrow P \bullet + M$ (0)		$P \rightarrow P \bullet + M$ (0)
T → • nu (0)	m	$S \rightarrow P \bullet (0)$		$S \rightarrow P \bullet (0)$		$S \rightarrow P \bullet (0)$

<u>Seq 0</u>	<u>Seq 1</u>	<u>Seq 2</u>	<u>Seq 3</u>	<u>Seq 4</u>	<u>Seq 5</u>
• 2 + 3 * 4	2 • + 3 * 4	2+•3*4	2+3•*4	2+3*•4	2+3*4•
$S \rightarrow \bullet P(0)$	T → '2' • (0)	$P \rightarrow P + \bullet M$ (0)	T → '3' • (2)	$M \rightarrow M * \bullet T$ (2)	T → '4' • (4)
$P \rightarrow \bullet P + M$ (0)	$M \rightarrow T \bullet (0)$	$M \rightarrow \bullet M * T$ (2)	M → T • (2)	T → • num (4)	M → M * T • (2)
P → • M (0)	$M \rightarrow M \bullet * T$ (0)	$M \rightarrow \bullet T(2)$	$M \rightarrow M \bullet * T$ (2)		$M \rightarrow M \bullet * T$ (2)
$M \rightarrow \bullet M * T$ (0)	$P \rightarrow M \cdot (0)$	T → • num (2)	$P \rightarrow P + M \bullet$ (0)		$P \rightarrow P + M \bullet$ (0)
$M \rightarrow \bullet T (0)$	$P \rightarrow P \bullet + M$ (0)		$P \rightarrow P \bullet + M$ (0)		$P \rightarrow P \bullet + M$ (0)
$T \rightarrow \bullet \text{ num}$ (0)	$S \rightarrow P \bullet (0)$		$S \rightarrow P \bullet (0)$		$S \Rightarrow P \bullet (0)$

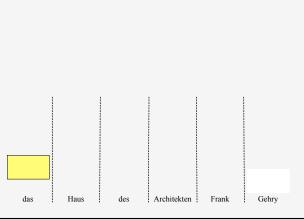
<u>Seq 0</u>	<u>Seq 1</u>	<u>Seq 2</u>	<u>Seq 3</u>	<u>Seq 4</u>	<u>Seq 5</u>
• 2 + 3 * 4	2 • + 3 * 4	2+•3*4	2+3•*4	2+3*•4	2+3*4•
$S \rightarrow \bullet P(0)$	T → '2' • (0)	$P \rightarrow P + \bullet M$ (0)	T → '3' • (2)	$M \rightarrow M * \bullet T$ (2)	T → '4' • (4)
$P \rightarrow \bullet P + M$ (0)	M → T • (0)	$M \rightarrow \bullet M * T$ (2)	M → T • (2)	T → • num (4)	M → M * T • (2)
P → • M (0)	$M \rightarrow M \bullet * T$ (0)	$M \rightarrow \bullet T(2)$	$M \rightarrow M \bullet * T$ (2)		$M \rightarrow M \bullet * T$ (2)
$M \rightarrow \bullet M * T$ (0)	P → M • (0)	T → • num (2)	$P \rightarrow P + M \bullet$ (0)		P → P + M • (0)
$M \rightarrow \bullet T(0)$	$P \rightarrow P \bullet + M$ (0)		$P \rightarrow P \bullet + M$ (0)		$P \rightarrow P \bullet + M$ (0)
$T \rightarrow \bullet \text{ num}$ (0)	$S \rightarrow P \bullet (0)$		$S \rightarrow P \bullet (0)$		S → P • (0)

```
Input: Foreign sentence \mathbf{f} = f_1, \dots f_{l_F}, with syntax tree
 Output: English translation e
 1: for i=0 .. length(f)-1 do // initialize chart
      store pointer to initial node in prefix tree in span [i,i]
 3: end for
 4: for l=1..lf do // build chart from the bottom up
 5: for start=0 .. l_f - l do // beginning of span
 6.
       end = start + 1
 7:
       for midpoint=start .. end-1 do
 8:
         for all dotted rules d in span [start, midpoint] do
 9:
           for all distinct head node nonterminals or input words h covering
           span [midpoint+1,end] do
10:
             if extension d \rightarrow h exists in prefix tree then
11:
               d_{\text{new}} = d \rightarrow h
12:
                for all complete rules at dnew do
13:
                 apply rules
14:
                 store chart entries in span [start,end]
15.
               end for
16:
             if extension exist for d_{new} then
                store d_{new} in span [start,end] // new dotted rule
17:
18:
               end if
            end if
19:
20:
          end for
21:
    end for
22: end for
23: end for
24: end for
25: return English translation e from best chart entry in span [0, 1_f]
```

Finding Applicable Rules in Prefix Tree

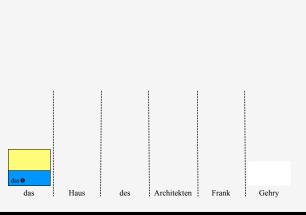
Covering the First Cell

Looking up Rules in the Prefix Tree



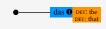
das 0

Taking Note of the Dotted Rule



das 🕕

Checking if Dotted Rule has Translations

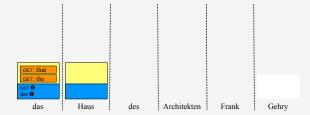


Applying the Translation Rules

Looking up Constituent Label in Prefix Tree

Add to Span's List of Dotted Rules

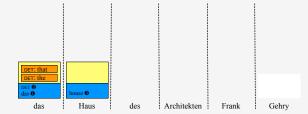
Moving on to the Next Cell



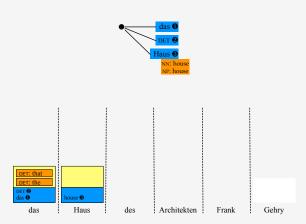
Looking up Rules in the Prefix Tree



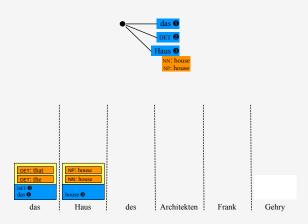
Taking Note of the Dotted Rule



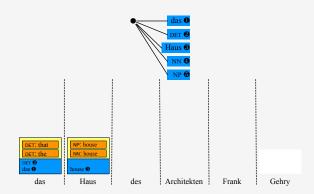
Checking if Dotted Rule has Translations



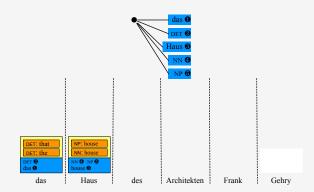
Applying the Translation Rules



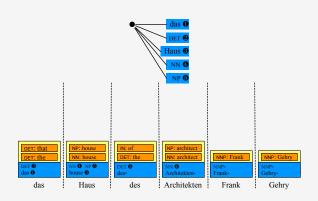
Looking up Constituent Label in Prefix Tree



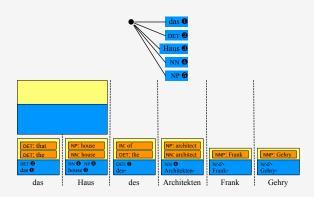
Add to Span's List of Dotted Rules



More of the Same

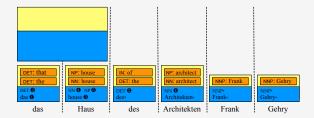


Moving on to the Next Cell

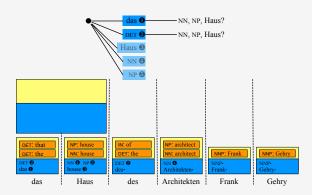


Covering a Longer Span

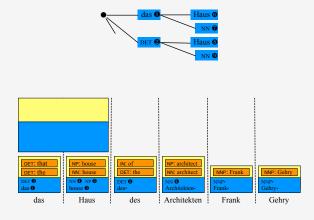
Cannot consume multiple words at once
All rules are extensions of existing dotted rules
Here: only extensions of span over *das* possible



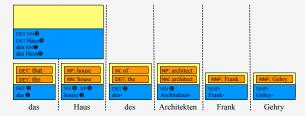
Extensions of Span over das



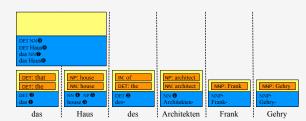
Looking up Rules in the Prefix Tree



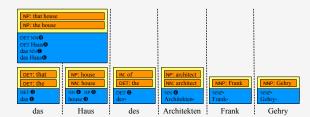
Taking Note of the Dotted Rule



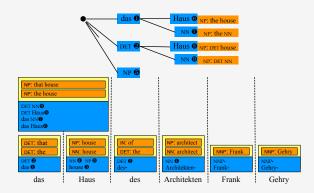
Checking if Dotted Rules have Translations



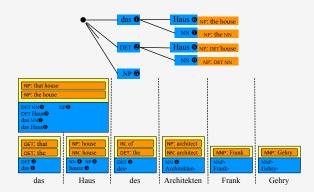
Applying the Translation Rules



Looking up Constituent Label in Prefix Tree



Add to Span's List of Dotted Rules



- \blacksquare Complexity $O(rn^3)$ with sentence length n and size of dotted rule list r
 - may introduce maximum size for spans that do not start at beginning
 - may limit size of dotted rule list (very arbitrary)

Does the list of dotted rules explode?

- Yes, if there are many rules with neighboring target-side non-terminals
 - ⇒ such rules apply in many places
 - rules with words are much more restricted

- Some rules may apply in too many ways
- Neighboring input non-terminals

$$ext{VP} o ext{gibt} ext{ X}_1 ext{ X}_2 ext{ } ext{ } ext{gives} ext{ NP}_2 ext{ to } ext{NP}_1$$

- non-terminals may match many different pairs of spans
- especially a problem for hierarchical models (no constituent label restrictions)
- may be okay for syntax-models
- Three neighboring input non-terminals

$$VP \rightarrow \textit{trifft} \ X_1 \ X_2 \ X_3 \ \textit{heute} \mid \textit{meets} \ NP_1 \ \textit{today} \ PP_2 \ PP_3$$

→ will get out of hand even for syntax models

Where are we now?

- We know which rules apply
- We know where they apply (each non-terminal tied to a span)
- But there are still many choices
 - many possible translations
 - ➡ each non-terminal may match multiple hypotheses
 - → number choices exponential with number of non-terminals

Rules with One Non-Terminal

Found applicable rules PP ightarrow des X | ... NP ...

- \blacksquare Non-terminal will be filled any of h underlying matching hypotheses
- Choice of t lexical translations
- \Rightarrow Complexity O(ht)

(note: we may not group rules by target constituent label, so a rule NP \to des X | the NP would also be considered here as well)

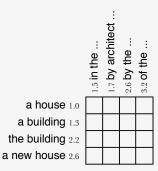
Rules with Two Non-Terminals

Found applicable rule NP ightarrow X₁ des X₂ | NP₁ ... NP₂

- Two non-terminal will be filled any of h underlying matching hypotheses each
- Choice of t lexical translations
- \Rightarrow Complexity $O(h^2t)$ a three-dimensional "cube" of choices

(note: rules may also reorder differently)

Cube Pruning



Arrange all the choices in a "cube"

(here: a square, generally a orthotope, also called a hyperrectangle)

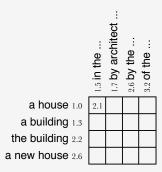
Create the First Hypothesis

a house 1.0
a building 1.3
the building 2.2
a new house 2.6

a new house 2.6

■ Hypotheses created in cube: (0,0)

Add ("Pop") Hypothesis to Chart Cell

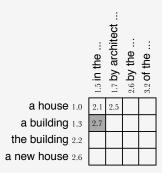


- \blacksquare Hypotheses created in cube: ϵ
- Hypotheses in chart cell stack: (0,0)

Create Neighboring Hypotheses

- Hypotheses created in cube: (0,1), (1,0)
- Hypotheses in chart cell stack: (0,0)

Pop Best Hypothesis to Chart Cell



- Hypotheses created in cube: (0,1)
- Hypotheses in chart cell stack: (0,0), (1,0)

Create Neighboring Hypotheses

```
a house 1.0 2.1 2.5 3.1 a building 1.3 the building 2.2 a new house 2.6
```

- Hypotheses created in cube: (0,1), (1,1), (2,0)
- Hypotheses in chart cell stack: (0,0), (1,0)

More of the Same

```
a house 1.0 2.1 2.5 3.1 a building 1.3 2.7 2.4 3.0 the building 2.2 a new house 2.6 a simple state of the building 2.2 a new house 2.6 a simple state of the building 2.2 a new house 2.6 a simple state of the building 2.2 a new house 2.6 a simple state of the building 2.2 a new house 2.6 a simple state of the building 2.2 a simple
```

- Hypotheses created in cube: (0,1), (1,2), (2,1), (2,0)
- Hypotheses in chart cell stack: (0,0), (1,0), (1,1)

Queue of Cubes

- Several groups of rules will apply to a given span
- Each of them will have a cube
- We can create a queue of cubes
- ⇒ Always pop off the most promising hypothesis, regardless of cube

May have separate queues for different target constituent labels

Bottom-Up Chart Decoding Algorithm

```
1: for all spans (bottom up) do
      extend dotted rules
 2:
      for all dotted rules do
 3:
        find group of applicable rules
4:
 5:
        create a cube for it.
        create first hypothesis in cube
6:
         place cube in queue
7:
      end for
 8.
      for specified number of pops do
9.
         pop off best hypothesis of any cube in queue
10:
        add it to the chart cell
11:
12:
        create its neighbors
      end for
13:
      extend dotted rules over constituent labels
14:
15: end for
```

Two-Stage Decoding

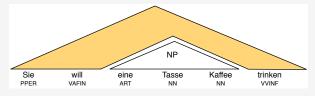
- First stage: decoding without a language model (-LM decoding)
 - may be done exhaustively
 - optionably prune out low scoring hypotheses

- Second stage: add language model
 - limited to packed chart obtained in first stage

Note: essentially, we do two-stage decoding for each span at a time

Outside Cost Estimation

- Which spans should be more emphasized in search?
- Initial decoding stage can provide outside cost estimates



 Use min/max language model costs to obtain admissible heuristic (or at least something that will guide search better)

Summary

- Synchronous context free grammars
- Extracting rules from a syntactically parsed parallel corpus
- Bottom-up decoding
- Chart organization: dynamic programming, stacks, pruning
- Prefix tree for rules
- Dotted rules
- Cube pruning