Statistical Machine Translation

-discriminative training-

Artem Sokolov

Computerlinguistik Universität Heidelberg Sommersemester 2015

material from P. Koehn, F. Yvon

Tuning stage

- closest to output ⇒ high impact
- sweet spot for ML researchers (can be agnostic of the above engineering details)
- bulk of MT research happens here

- previously all models we used were generative
- would require modeling $p(\mathbf{f})$ or $p(\mathbf{f}, \mathbf{e})$
- we'd like only to discriminate bad translations from the good ones
- assuming given f (conditional)

Tuning task

features

features quality measure of e

- $\phi(\mathbf{f}, \mathbf{e})$
- $\bullet \ \Delta(\mathbf{e}, \mathbf{rf})$
- $\square D = \{\mathbf{e}_i, \mathbf{rf}_i\}$

features quality measure of e tuning corpus

- $\phi(\mathbf{f}, \mathbf{e})$
- $\Delta(\mathbf{e}, \mathbf{rf})$
- $\square D = \{\mathbf{e}_i, \mathbf{rf}_i\}$
- $\bullet \ \mathbf{e}_{\mathbf{f}}^* = \arg \max_{\mathbf{e}} score(\mathbf{f}, \mathbf{e})$

features quality measure of e tuning corpus decision rule

- $\phi(\mathbf{f}, \mathbf{e})$
- $\bullet \ \Delta(\mathbf{e}, \mathbf{rf})$
- $\square D = \{\mathbf{e}_i, \mathbf{rf}_i\}$
- $\mathbf{e}_{\mathbf{f}}^* = \arg \max_{\mathbf{e}} \lambda \cdot \phi(\mathbf{f}, \mathbf{e})$

features quality measure of e tuning corpus decision rule

- $\phi(\mathbf{f}, \mathbf{e})$
- $\bullet \ \Delta(\mathbf{e}, \mathbf{rf})$
- $\square D = \{\mathbf{e}_i, \mathbf{rf}_i\}$
- $\mathbf{e}_{\mathbf{f}}^* = \arg \max_{\mathbf{e}} \lambda \cdot \phi(\mathbf{f}, \mathbf{e})$
- $\blacksquare \mathcal{L}(D, \{\mathbf{e}^*\})$

features quality measure of e tuning corpus decision rule loss

- $\phi(\mathbf{f}, \mathbf{e})$
- $\Delta(\mathbf{e}, \mathbf{rf})$
- $\square D = \{\mathbf{e}_i, \mathbf{rf}_i\}$
- $\mathbf{e}_{\mathbf{f}}^* = \arg \max_{\mathbf{e}} \lambda \cdot \phi(\mathbf{f}, \mathbf{e})$
- $\bullet \mathcal{L}(D, \{\mathbf{e}^*\})$
- **Task**: find λ s.t. loss is minimized

features quality measure of e tuning corpus decision rule loss Ideally, we'd like to optimize the expected loss

$$\sum_{\mathbf{f}} p(\mathbf{f}) \Delta(\mathbf{e}_{\mathbf{f}}^*)$$

 $\ \ \, \mathbf{p}(\mathbf{f}) \ \, \mathrm{unknown}$

Ideally, we'd like to optimize the expected loss

$$\sum_{\mathbf{f}} p(\mathbf{f}) \Delta(\mathbf{e}_{\mathbf{f}}^*)$$

\mathbf{p}(\mathbf{f}) unknown

Assuming $\{\mathbf{f}_i\}$ are faithfully sampled from $p(\mathbf{f})$, optimize instead the *empirical* loss

$$\sum_i \Delta(\mathbf{e}^*_{\mathbf{f}_i})$$

- $\label{eq:def_f_i} \ \ \, \Delta(\mathbf{e}^*_{\mathbf{f}_i}) = \Delta(\arg\max_{\mathbf{e}}\lambda\cdot\phi(\mathbf{f},\mathbf{e}))$
- for the MT measures we know the loss is, at least, non-convex, non-smooth and non-continuous

We are left with:

$\Delta(\{\mathbf{f}_i\}, \{\mathbf{e}^*_{\mathbf{f}_i}\})$

non-convex, non-smooth and non-continuous

We are left with:

$$\Delta({\mathbf{f}_i}, {\mathbf{e}_{\mathbf{f}_i}^*})$$

We are left with:

 $\Delta({\mathbf{f}_i}, {\mathbf{e}_{\mathbf{f}_i}^*})$

- non-convex, non-smooth and non-continuous
- does not split into sentences
- \mathbf{e}^* is an implicit function of the search space, which is a function of w
 - ➡ beam search
 - pruning
- $\blacksquare \Rightarrow iterative training$
 - ➡ updates of \u03c6 during training make the search space no longer correspond to the new weights
 - need to keep the search space up to date with periodic re-decode passes

We are left with:

$\Delta(\{\mathbf{f}_i\}, \{\mathbf{e}^*_{\mathbf{f}_i}\})$

- non-convex, non-smooth and non-continuous
- does not split into sentences
- e^* is an implicit function of the search space, which is a function of w
 - ➡ beam search
 - pruning
- ⇒ iterative training
 - \blacktriangleright updates of λ during training make the search space no longer correspond to the new weights
 - need to keep the search space up to date with periodic re-decode passes

approximations are inevitable

n-best lists

top-n highest scoring hypotheses according to the model score $w\cdot\phi$

lattices or hypergraphs

the underlying representations decoding runs on

- these track all expanded hypotheses created while decoding
- ➡ usually only the top-1 is used
- can be dumped to extract other hypotheses (as model makes errors top-1 is not necessarily the best)

MERT proceeds in series of optimizations along directions \bar{r} :

$$\bar{\lambda} = \bar{\lambda}_0 + \gamma \bar{r}$$

Optimal translation:

$$\tilde{\mathbf{e}}_{\mathbf{f}}(\gamma) = \operatorname*{arg\,max}_{\mathbf{e}\in E} \bar{\lambda} \cdot \bar{h}(\mathbf{e}, \mathbf{f}) = \operatorname*{arg\,max}_{\mathbf{e}\in E} \underbrace{\bar{\lambda}_0 \cdot \bar{h}(\mathbf{e}, \mathbf{f})}_{\text{intercept}} + \gamma \underbrace{\bar{r} \cdot \bar{h}(\mathbf{e}, \mathbf{f})}_{slope}$$

• each translation hypothesis is associated with a line,

• upper envelope: dominating lines when $\bar{\lambda}$ is moved along \bar{r}

- γ -projections of intersections give intervals of constant optimal hypothesis
- optimal γ^* found by merging intervals for $\mathbf{f} \in F$ and scoring each
- update $\bar{\lambda} = \lambda_0 + \gamma^*_{i^*} \bar{r}_{i^*}$, where i^* is the index of the direction yielding the highest BLEU

[Macherey et al, 08]

- true irrespective of the loss function!
- finite number of values γ where the winning hypotheses changes
- \Rightarrow much smaller than all γ !

slow

- bad convergence of the cycle (typicaly O(m) cycles for m-dimensional features)
- highly variable results, very sensible to initial conditions
- weights are difficult to trust
- optimisation landscape is very bumpy
- optimum not guaranteed
- good generalization performance not guaranteed

MERT

Tricks to improve optimization

- larger n-best lists (do not always help)
- restarts from different random λ_0
- restarts from promising points
- random directions (additionaly to axes)
- merges of n-best lists between iterations
- \blacksquare regularization/smoothing: average loss over neighbouring intervals \Rightarrow more stable
- do it on lattices
- radical: change loss and/or optimization strategies
- many other tricks

Semiring

Semiring $\mathbb{K} = \langle K, \oplus, \otimes, \overline{0}, \overline{1} \rangle$:

- $\langle K, \oplus, \bar{0} \rangle$ is a commutative monoid with identity element $\bar{0}$:
 - $a \oplus (b \oplus c) = (a \oplus b) \oplus c$
 - $a \oplus b = b \oplus a$
 - $a \oplus \overline{0} = \overline{0} \oplus a = a$
- $\langle {\cal K}, \otimes, \bar{1} \rangle$ is a monoid with identity element $\bar{1}$
- ullet \otimes distributes over \oplus

•
$$a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$$

• $(b \oplus c) \otimes a = (b \otimes a) \oplus (c \otimes a)$

element 0 annihilates K

•
$$a \otimes \overline{0} = \overline{0} \otimes a = \overline{0}$$
.

Examples

- $\langle \mathbb{R}, +, \times, 0, 1 \rangle$ real semiring
- $\langle S, \Delta, \cap, \emptyset, \cup_i S_i \rangle$ semiring of sets

source **fr**: Vénus est la jumelle infernale de la Terre target **en**: Venus is Earth's hellish twin

- Decomposability of $\bar{h}(\mathbf{e}, \mathbf{f})$ into a sum of *local* features $h_01, h_02...$
- Envelopes are distributed over nodes in the lattice

$$\mathbb{D}=\langle D,\oplus,\otimes,ar{0},ar{1}
angle$$

Host set:

- a line: $d_y + d_s \cdot x$ (hypothesis)
- set of lines d_i : $d = \{d_{i,y} + d_{i,s} \cdot x\}$ (set of hypotheses)
- set of sets d^k of lines: $D = \left\{ \left\{ d_{i,y}^k + d_{i,s}^k \cdot x \right\} \right\}$

Operations \oplus and \otimes :

- for $d^1, d^2 \in D$
- $d^1 \oplus d^2 = \operatorname{env}(d^1 \cup d^2)$
- $d^1 \otimes d^2 = \operatorname{env}(\{(d^1_{i,y} + d^2_{j,y}) + (d^1_{i,s} + d^2_{j,s}) \cdot x | \forall d^1_i \in d^1, d^2_j \in d^2\})$

Unities:

• $\bar{0} = \emptyset$

•
$$\bar{1} = \{0 + 0 \cdot x\}$$

Each arc in the FST carries:

- target word a
- vector $\bar{h}(a, \mathbf{f})$ of local features associated with a
- singleton set containing line d with
 - slope $d_s = (\overline{r} \cdot \overline{h}(a, \mathbf{f}))$
 - y-intercept $d_y = (\bar{\lambda}_0 \cdot \bar{h}(a, \mathbf{f}))$

Weight of a candidate translation path $\mathbf{e} = e_1 \dots e_\ell$:

$$w(\mathbf{e}) = \bigotimes_{i=1}^{\ell} w(e_i) = \{ \bar{\lambda}_0 \cdot \sum_{i=1}^{\ell} \bar{h}(e_i, \mathbf{f}) + (\bar{r} \cdot \sum_{i=1}^{\ell} \bar{h}(e_i, \mathbf{f})) \cdot x \}$$

Upper envelope of all the lines (hypotheses):

$$\operatorname{env}(\bigcup_{\mathbf{e}} w(\mathbf{e})) = \bigoplus_{\mathbf{e}} w(\mathbf{e}) = \bigoplus_{\mathbf{e}} \bigotimes_{i=1}^{\ell(\mathbf{e})} w(e_i).$$

Generic shortest distance algorithms over acyclic graphs calculate this.

- pluggable into FST toolkits
- can be generalized to hypergraphs (SCFG)