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Workflow

Tuning stage

n closest to output ⇒ high impact

n sweet spot for ML researchers
(can be agnostic of the above engineering details)

n bulk of MT research happens here
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Generative vs. discriminative

n previously all models we used were generative

n would require modeling p(f) or p(f , e)

n we’d like only to discriminate bad translations from the good ones

n assuming given f (conditional)
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Tuning task

n φ(f , e) features

n ∆(e, rf) quality measure of e

n D = {ei, rf i} tuning corpus

n decision rule

n L(D, {e∗}) loss

n Task: find λ s.t. loss is minimized

4 / 17



Tuning task

n φ(f , e) features

n ∆(e, rf) quality measure of e

n D = {ei, rf i} tuning corpus

n decision rule

n L(D, {e∗}) loss

n Task: find λ s.t. loss is minimized

4 / 17



Tuning task

n φ(f , e) features

n ∆(e, rf) quality measure of e

n D = {ei, rf i} tuning corpus

n decision rule

n L(D, {e∗}) loss

n Task: find λ s.t. loss is minimized

4 / 17



Tuning task

n φ(f , e) features

n ∆(e, rf) quality measure of e

n D = {ei, rf i} tuning corpus

n e∗f = arg maxe score(f , e) decision rule

n L(D, {e∗}) loss

n Task: find λ s.t. loss is minimized

4 / 17



Tuning task

n φ(f , e) features

n ∆(e, rf) quality measure of e

n D = {ei, rf i} tuning corpus

n e∗f = arg maxe λ · φ(f , e) decision rule

n L(D, {e∗}) loss

n Task: find λ s.t. loss is minimized

4 / 17



Tuning task

n φ(f , e) features

n ∆(e, rf) quality measure of e

n D = {ei, rf i} tuning corpus

n e∗f = arg maxe λ · φ(f , e) decision rule

n L(D, {e∗}) loss

n Task: find λ s.t. loss is minimized

4 / 17



Tuning task

n φ(f , e) features

n ∆(e, rf) quality measure of e

n D = {ei, rf i} tuning corpus

n e∗f = arg maxe λ · φ(f , e) decision rule

n L(D, {e∗}) loss

n Task: find λ s.t. loss is minimized

4 / 17



Loss

Ideally, we’d like to optimize the expected loss∑
f

p(f)∆(e∗f )

n p(f) unknown

Assuming {fi} are faithfully sampled from p(f), optimize instead the
empirical loss ∑

i

∆(e∗fi)

n ∆(e∗fi) = ∆(arg maxe λ · φ(f , e))

n for the MT measures we know the loss is, at least, non-convex,
non-smooth and non-continuous
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Loss

But BLEU is also a corpus measure, not sentence-decomposable.

We are left with:
∆({fi}, {e∗fi})

n non-convex, non-smooth and non-continuous
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n does not split into sentences

n e∗ is an implicit function of the search space, which is a function of w

á beam search
á pruning

n ⇒ iterative training

á updates of λ during training make the search space no longer
correspond to the new weights

á need to keep the search space up to date with periodic re-decode passes
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n ⇒ iterative training

á updates of λ during training make the search space no longer
correspond to the new weights

á need to keep the search space up to date with periodic re-decode passes

approximations are inevitable
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Search space

n n-best lists
top-n highest scoring hypotheses according to the model score w · φ

n lattices or hypergraphs
the underlying representations decoding runs on

á these track all expanded hypotheses created while decoding
á usually only the top-1 is used
á can be dumped to extract other hypotheses (as model makes errors

top-1 is not necessarily the best)
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Minimum Error Rate Training

8 / 17



Minimum Error Rate Training

9 / 17



Minimum Error Rate Training

9 / 17



Minimum Error Rate Training

[Macherey et al, 08]
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Minimum Error Rate Training

[Macherey et al, 08]

n true irrespective of the loss function!
n finite number of values γ where the winning hypotheses changes
n ⇒ much smaller than all γ!
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Caveates

n slow

n bad convergence of the cycle
(typicaly O(m) cycles for m-dimensional features)

n highly variable results, very sensible to initial conditions

n weights are difficult to trust

n optimisation landscape is very bumpy

n optimum not guaranteed

n good generalization performance not guaranteed
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MERT

Tricks to improve optimization

n larger n-best lists (do not always help)

n restarts from different random λ0

n restarts from promising points

n random directions (additionaly to axes)

n merges of n-best lists between iterations

n regularization/smoothing: average loss over neighbouring intervals ⇒
more stable

n do it on lattices

n radical: change loss and/or optimization strategies

n many other tricks
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Semiring
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MERT on Lattices
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MERT Semiring
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MERT Shortest Paths
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n pluggable into FST toolkits

n can be generalized to hypergraphs (SCFG)
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