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Workflow

Parallel data Monolingual data

Translation model Language model

SMT system

m closest to output = high impact

Tuning stage

m sweet spot for ML researchers
(can be agnostic of the above engineering details)

m bulk of MT research happens here
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Generative vs. discrimina

previously all models we used were generative
would require modeling p(f) or p(f, e)

we'd like only to discriminate bad translations from the good ones

assuming given f (conditional)



m ¢o(f,e) features
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m A(e,rf) quality measure of e
m D= {e;,rf;} tuning corpus
® e; = argmax, score(f, e) decision rule

4/17



m ¢o(f,e) features
m A(e,rf) quality measure of e
m D= {e;,rf;} tuning corpus
m e; = argmax,\- ¢(f, e) decision rule

4/17



m ¢o(f,e) features
m A(e,rf) quality measure of e
m D= {e;,rf;} tuning corpus
m e; = argmax,\- ¢(f, e) decision rule
m L(D,{e*}) loss

4/17



m ¢o(f,e) features
m A(e,rf) quality measure of e
m D= {e;,rf;} tuning corpus
m e; = argmax,\- ¢(f, e) decision rule
m L(D,{e*}) loss
m Task: find X s.t. loss is minimized
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Loss

Ideally, we'd like to optimize the expected loss

S p(F)A(ef)
f

m p(f) unknown



Loss

Ideally, we'd like to optimize the expected loss

S p(F)A(ef)
f

m p(f) unknown

Assuming {f;} are faithfully sampled from p(f), optimize instead the

empirical loss
> Aleq)
i

m Ae;) = A(arg max, A - ¢(f, e))
m for the MT measures we know the loss is, at least, non-convex,
non-smooth and non-continuous
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Loss

But BLEU is also a corpus measure, not sentence-decomposable.

We are left with:

A({fi}, {er})

B non-convex, non-smooth and non-continuous



Loss

But BLEU is also a corpus measure, not sentence-decomposable.
We are left with:

A({fi}, {et})

B non-convex, non-smooth and non-continuous
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Loss

But BLEU is also a corpus measure, not sentence-decomposable.

We are left with:

A({fi}, {eg,})

B non-convex, non-smooth and non-continuous

does not split into sentences
e* is an implicit function of the search space, which is a function of w

= beam search
= pruning
B = iterative training

= updates of A during training make the search space no longer
correspond to the new weights
= need to keep the search space up to date with periodic re-decode passes



Loss

But BLEU is also a corpus measure, not sentence-decomposable.

We are left with:

A({fi}, {eg,})

E non-convex, non-smooth and non-continuous

does not split into sentences

e* is an implicit function of the search space, which is a function of w
= beam search
= pruning

B = iterative training

= updates of A\ during training make the search space no longer
correspond to the new weights
= need to keep the search space up to date with periodic re-decode passes

approximations are inevitable



® n-best lists

top-n highest scoring hypotheses according to the model score w - ¢
m lattices or hypergraphs

the underlying representations decoding runs on

= these track all expanded hypotheses created while decoding

= usually only the top-1 is used

= can be dumped to extract other hypotheses (as model makes errors
top-1 is not necessarily the best)
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Minimum Error Rate Training

{(f.re)} —
— Approximation of E
Configuration: \;

Updated \; Tuning: MERT Features




Minimum Error Rate Training

MERT proceeds in series of optimizations along directions 7:
A= /_\0 + r
Optimal translation:
& (7) = argmax\ - h(e,f) = argmax \o - h(e,f) +~7- h(e,f)
eEE EEE ﬁf_/ H_/
intercept slope

@ each translation hypothesis is associated with a line,
@ upper envelope: dominating lines when X is moved along 7




Minimum Error Rate Training

@ ~y-projections of intersections give intervals of constant optimal
hypothesis
@ optimal v* found by merging intervals for f € F and scoring each
o update X = \g + 75 P,
where i* is the index of the direction yielding the highest BLEU




Minimum Error Rate Trainin

Score

Error
count ey

[Macherey et al, 08]
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Minimum Error Rate Training

Score

Error
count eg

€s €

0 Y
[Macherey et al, 08]
m true irrespective of the loss function!

m finite number of values v where the winning hypotheses changes
B = much smaller than all ~!
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Caveates

slow
m bad convergence of the cycle
(typicaly O(m) cycles for m-dimensional features)
m highly variable results, very sensible to initial conditions
m weights are difficult to trust
m optimisation landscape is very bumpy
E optimum not guaranteed
m good generalization performance not guaranteed
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MERT

Tricks to improve optimization

m larger n-best lists (do not always help)
restarts from different random X\g
restarts from promising points
random directions (additionaly to axes)

merges of n-best lists between iterations

regularization/smoothing: average loss over neighbouring intervals =
more stable

do it on lattices

radical: change loss and/or optimization strategies

B many other tricks



Semiring K = (K, ®, ®,0,1):
e (K,®,0) is a commutative monoid with identity element O:
o ad(bdc)=(a®b)®c

@ b P
@ aCb=DD®
(T
fan)
N

(K,®,1) is a monoid with identity element 1
® distributes over @

o a®(b®dc)=(a®@b)®(a®c)

o (bdvc)®a=(b®a)d(c®a)
element 0 annihilates K

0o a®0=0®a=0.

®

Examples
o (R, +,x,0,1) — real semiring
e (5,A,N,0,U;S;) — semiring of sets
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MERT Lattices

source fr: Vénus est la jumelle infernale de la Terre
target en: Venus is Earth’s hellish twin

la_jumelletwin

VénusVenus N estis
2 7 h3s .
nus_est:Venus NUL 3 N fernale-of_hell
_ N L jumelletwin infernale of_he!
_ ho () b3 - — h 58
— A1 )— b s =
~ “infernale hellish jumelle twin \, de_la_Terreof the Eath _
(+ h_47 N h 78 ~ h 7))
_ (7 8 (o)
/\mtmmlemmmal " jumelletwin \_/
h_46 h_68
~——_ - Ve - _ /
— {6 —
N

o Decomposability of h(e, f) into a sum of local features h_01,h_02...
@ Envelopes are distributed over nodes in the lattice

S
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MERT Semiring

D= (D,®,®,0,1)
Host set:
@ aline: d, + ds - x (hypothesis)
o set of lines dj: d = {d;, + d; s - x} (set of hypotheses)
o set of sets d* of lines: D = {{df, +df, - x}}
Operations & and ®:
o for d',d*> € D
o d' @ d? =env(d' U d?)
o d'®d® =env({(d}, + d?) + (d}, + d?) - x| Vd! € d*,d? € d?})

Unities:
0 0=10
1= {0+0-x}
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MERT Shortest Paths

Each arc in the FST carries:
@ target word a
o vector h(a,f) of local features associated with a
@ singleton set containing line d with
o slope ds = (7 - l_7(a._f))_
o y-intercept d, = (Ao - h(a,f))
Weight of a candidate translation pathe =e; ... e
¢ i i
w(e) = Q) w(e) ={Xo-Y_h(ei,f)+(F->_ h(e;, ) - x}
i=1 i=1 i=1

Upper envelope of all the lines (hypotheses):

{(e)
env(| Jw(e)) = P wle) = P X w(e).
i=1

e e e

Generic shortest distance algorithms over acyclic graphs calculate this.
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m pluggable into FST toolkits
m can be generalized to hypergraphs (SCFG)
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