Statistical Machine Translation

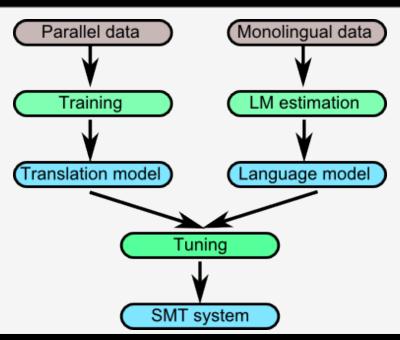
-phrase based smt-

Artem Sokolov

Computerlinguistik Universität Heidelberg Sommersemester 2015

material from P. Koehn

General view on SMT

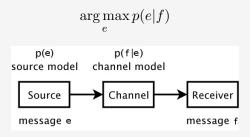


General view on SMT

Every time I fire a linguist, the performance goes up.

Frederic Jelinek, IBM 1988

Noisy Channel Model



Noisy Channel Model

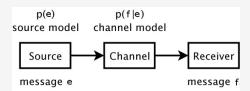
$$\underset{e}{\operatorname{arg\,max}} p(e|f) = \underset{e}{\operatorname{arg\,max}} p(f|e)p(e)$$

$$\underset{\text{source model channel model}}{\operatorname{p(f|e)}}$$

$$\underset{\text{message e}}{\operatorname{channel}} \text{Receiver}$$

Noisy Channel Model

$$\mathop{\arg\max}_{e} p(e|f) = \mathop{\arg\max}_{e} \underbrace{p(f|e)}_{\text{transl. model}} \underbrace{p(e)}_{\text{lang. model}}$$



$$\arg\max_{e} p(e|f) = \arg\max_{e} \underbrace{p(f|e)}_{\text{transl. model}} \underbrace{p(e)}_{\text{lang. model}}$$

$$p(e)$$

$$\text{source model}$$

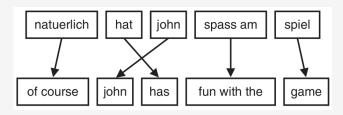
$$\text{Channel}$$

$$\text{Receiver}$$

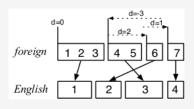
$$\text{message e}$$

SMT was born from automatic speech recognition:

- $lackbox{1}{\bullet} p(e) = \text{language model}$
- p(f|e) = acoustic model
- however, SMT must deal with word reordering!



- input is segmented into phrases (not necessarily linguistically motivated)
- 2 translated one-to-one into phrases in Engish
- possibly reordered
- $2+3 \rightarrow \mbox{would}$ become the translation model from the noisy channel model

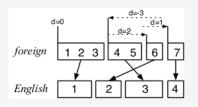


$$d(\mathsf{start}_i - \mathsf{end}_{i-1} - 1)$$

start_i – position of the **first** word of a **foreign** phrase corresponding to the **i**th **English** phrase.

 end_{i-1} – position of the **last** word of a **foreign** phrase corresponding to the **previous English** phrase.

Distortion model



$$d(\mathsf{start}_i - \mathsf{end}_{i-1} - 1)$$

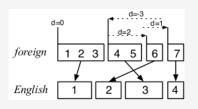
start $_i$ – position of the **first** word of a **foreign** phrase corresponding to the **i**th **English** phrase.

 end_{i-1} – position of the **last** word of a **foreign** phrase corresponding to the **previous English** phrase.

phrase	translates	movement	calculation
2	6	skip over 4–5	
3	4–5	move back over 4–6	

Example (phrase 2):

$$d(\mathsf{start}_i - \mathsf{end}_{i-1} - 1) =$$



$$d(\mathsf{start}_i - \mathsf{end}_{i-1} - 1)$$

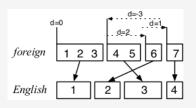
start_i – position of the **first** word of a **foreign** phrase corresponding to the **i**th **English** phrase.

 end_{i-1} – position of the **last** word of a **foreign** phrase corresponding to the **previous English** phrase.

phrase	translates	movement	calculation
2	6	skip over 4–5	
3	4–5	move back over 4–6	

Example (phrase 2):

$$d(\mathsf{start}_i - \mathsf{end}_{i-1} - 1) = d(\mathsf{start}_2 - \mathsf{end}_1 - 1) =$$



$$d(\mathsf{start}_i - \mathsf{end}_{i-1} - 1)$$

start_i – position of the **first** word of a **foreign** phrase corresponding to the **i**th **English** phrase.

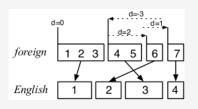
 end_{i-1} – position of the **last** word of a **foreign** phrase corresponding to the **previous English** phrase.

phrase	translates	movement	calculation
2	6	skip over 4–5	6-3-1=2
3	4–5	move back over 4–6	

Example (phrase 2):

$$d(\mathsf{start}_i - \mathsf{end}_{i-1} - 1) = d(\mathsf{start}_2 - \mathsf{end}_1 - 1) = d(6 - 3 - 1) = 2$$

Distortion model



$$d(\mathsf{start}_i - \mathsf{end}_{i-1} - 1)$$

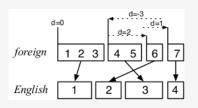
start $_i$ – position of the **first** word of a **foreign** phrase corresponding to the **i**th **English** phrase.

 end_{i-1} – position of the **last** word of a **foreign** phrase corresponding to the **previous English** phrase.

phrase	translates	movement	calculation
2	6	skip over 4–5	6-3-1=2
3	4–5	move back over 4–6	

Example (phrase 3):

$$d(\mathsf{start}_i - \mathsf{end}_{i-1} - 1) =$$



$$d(\mathsf{start}_i - \mathsf{end}_{i-1} - 1)$$

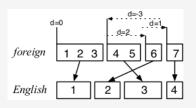
start $_i$ – position of the **first** word of a **foreign** phrase corresponding to the **i**th **English** phrase.

 end_{i-1} – position of the **last** word of a **foreign** phrase corresponding to the **previous English** phrase.

phrase	translates	movement	calculation
2	6	skip over 4–5	6-3-1=2
3	4–5	move back over 4–6	

Example (phrase 3):

$$d(\mathsf{start}_i - \mathsf{end}_{i-1} - 1) = d(\mathsf{start}_3 - \mathsf{end}_2 - 1) =$$



$$d(\mathsf{start}_i - \mathsf{end}_{i-1} - 1)$$

start $_i$ – position of the **first** word of a **foreign** phrase corresponding to the **i**th **English** phrase.

 end_{i-1} – position of the **last** word of a **foreign** phrase corresponding to the **previous English** phrase.

phrase	translates	movement	calculation
2	6	skip over 4–5	6-3-1=2
3	4–5	move back over 4–6	4-6-1=-3

Example (phrase 3):

$$d(\mathsf{start}_i - \mathsf{end}_{i-1} - 1) = d(\mathsf{start}_3 - \mathsf{end}_2 - 1) = d(4 - 6 - 1) = -3$$

Generalizing Noisy Channel Model

$$\begin{split} \arg\max_{e} p(e|f) &= \arg\max_{e} p(f|e) p(e) \\ &\arg\max_{e} \prod_{i}^{I} \phi(\bar{f}_{i}|\bar{e}_{i}) \\ & \cdot d(\mathsf{start}_{i} - \mathsf{end}_{i-1} - 1) \\ & \cdot \prod_{j=1}^{|e|} p_{\mathsf{LM}}(e_{j}|e_{1}, \dots, e_{j-1}) \end{split}$$

Generalizing Noisy Channel Model

$$\begin{split} \arg\max_{e} p(e|f) &= \arg\max_{e} p(f|e)p(e) \\ &\arg\max_{e} \prod_{i}^{I} \phi(\bar{f}_{i}|\bar{e}_{i})^{\lambda\phi} \\ &\cdot d(\mathsf{start}_{i} - \mathsf{end}_{i-1} - 1)^{\lambda d} \\ &\cdot \prod_{i=1}^{|e|} p_{\mathsf{LM}}(e_{j}|e_{1}, \dots, e_{j-1})^{\lambda_{\mathsf{LM}}} \end{split}$$

Generalizing Noisy Channel Model

$$\begin{split} \arg\max_{e} p(e|f) &= \arg\max_{e} p(f|e) p(e) \\ &\arg\max_{e} \prod_{i}^{I} \phi(\bar{f}_{i}|\bar{e}_{i})^{\lambda\phi} \\ & \cdot d(\mathsf{start}_{i} - \mathsf{end}_{i-1} - 1)^{\lambda d} \\ & \cdot \prod_{j=1}^{|e|} p_{\mathsf{LM}}(e_{j}|e_{1}, \dots, e_{j-1})^{\lambda_{\mathsf{LM}}} \\ & p(x) = \exp\sum_{i=1}^{n} \lambda_{i} h_{i}(x) \\ & \lambda_{i} = \mathsf{parameter} \\ & h_{i} = \mathsf{features} \end{split}$$

Log-Linear Model

$$\begin{split} & \arg\max_{e} \ \exp(\lambda_{\phi} \sum_{i}^{I} \log \phi(\bar{f}_{i} | \bar{e}_{i}) \\ & + \lambda_{d} \sum_{i}^{I} \log d(\mathsf{start}_{i} - \mathsf{end}_{i-1} - 1) \\ & + \lambda_{\mathsf{LM}} \sum_{i=1}^{|e|} \log p_{\mathsf{LM}}(e_{j} | e_{1}, \dots, e_{j-1})) \end{split}$$

■ Word count:

$$\mathrm{wc}(e) = \log |e|^{\omega}, \, \substack{\omega < 1 \ \omega > 1}$$
 prefers fewer words

Corrects the bias of the language model towards short translations.

Phrase count:

$$\begin{array}{c} I = \text{number of phrases} \\ \mathsf{pc}(e) = \log |I|^{\rho}, \; \rho < 1 \; \text{prefers fewer phrases, i.e., longer phrase} \\ \rho > 1 \; \text{prefers shorter phrases, i.e., more phrases} \\ \text{Fine-tunes fine or coarse phrase segmentation (trade-off)} \end{array}$$

Choosing more linguistically motivated boundaries was not shown to be especially helpful.

Additional Features

- Multiple language models
- Multiple translation models:
 e.g., src-trg and trg-src translation models
- Bidirectional alignment probabilities

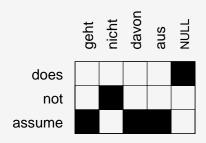
Lexically weighted phrase translation probabilities:

$$lex(\bar{e}|\bar{f},a) = \prod_{i=1}^{|\bar{e}|} \frac{1}{|\{j|(i,j)\in a\}|} \sum_{\forall (i,j)\in a} w(e_i|f_j)$$
 (1)

IBM1-style: $e_i \in \bar{e}$ is generated independently by an aligned $f_j \in \bar{f}$ with the word translation probability $w(e_i|f_j)$ or average if multiple alignment is possible

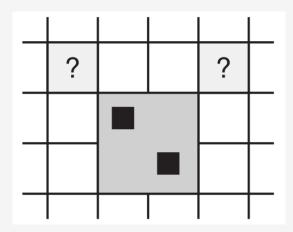
Again, we can use both $lex(\bar{e}|\bar{f})$ and $lex(\bar{f}|\bar{e})$.

Additional Features



$$\begin{split} \textbf{Example:} \ & \operatorname{lex}(\bar{e}|\bar{f},a) = w(\operatorname{does}|\operatorname{NULL}) \\ & \cdot w(\operatorname{not}|\operatorname{nicht}) \\ & \cdot \frac{1}{3}(w(\operatorname{assume}|\operatorname{geht}) + w(\operatorname{assume}|\operatorname{davon}) \\ & + w(\operatorname{assume}|\operatorname{aus})) \end{split}$$

Lexicalized Reodering

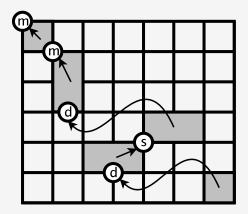


orientation \in {monotone, swap, discontinuous}

Lexicalized Reodering

During phrase extraction from alignment, check:

- \blacksquare if a word alignment point to the top left exists \Rightarrow **monotone** (m)
- \blacksquare elsif a word alignment point to the top right exists \Rightarrow **swap** (s)
- else ⇒ discontinuous (d)



Estimation of lexical reordering probability:

unsmoothed estimate:

$$\hat{p}(\text{orientation}|\bar{e},\bar{f}) = \frac{\text{count}(\text{orientation},\bar{e},f)}{\sum_{o} \text{count}(\text{orientation},\bar{e},\bar{f})}$$

smoothed estimate:

$$\hat{p}(\text{orientation}|\bar{e},\bar{f}) = \frac{\lambda p(\text{orientation}) + \text{count}(\text{orientation},\bar{e},\bar{f})}{\lambda \cdot 1 + \sum_{o} \text{count}(\text{orientation},\bar{e},\bar{f})}$$

$$\text{where } p(\text{orientation}) = \frac{\sum_{\bar{f}} \sum_{\bar{e}} \text{count}(\text{orientation}, \bar{e}, \bar{f})}{\sum_{o} \sum_{\bar{f}} \sum_{\bar{e}} \text{count}(\text{orientation}, \bar{e}, \bar{f})}$$

⇒ linear interpolation with unlexicalized orientation model.