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General view on SMT

( Paralleldata ) (Monolingual data )
( Training ) ( LM estimation )
(Translation model ) (Language model )
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(  Tuning )

Y

( SMT system )




m the simplest way to estimate LM — MLE

m is problematic on sparse data:
= problem with zero counts
= = zero probabilities for unseen n-grams
= high perplexity on test
= =|ow performance of the model as a whole
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Laplace Smoothing: Add «

c+ o
n+ov’

p= a < 1, optimized on held-out set
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Deleted Estimate

. L +T?
PSS
Nl + N?

N, — # of n-grams that occur r times



Good-Turing smoothing

Nr+l

T

r = (r+1)

N, — # of n-grams that occur r times



Jelinek-Mercer smoothing: Recursive Interpolation

p{z(wi‘wi—n—i-l?-"?wi— ) )\ Wi—pt1 ey Wi—1 Pn wz‘w7—n+1;"-awi—1)

( wv',—n+1,---,w1:—1) pn—l (wi|wi—n+27 <ely wi—l)



Katz Smoothing: Recursive Back-off

PBO (wi|wi—ni1, oy wi—1) =

A (Wimnt1y ooy Wie1) Pr(Wi|Wipt1, -y Wi—1)

if county, (Wi—pt1, .y w;) >k

an(wi|wi—n+1a ) wi—l) pf91(wi|wz’—n+2, e wi—l)

otherwise
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Good-Turing derivation

What is the probability of observing w “in the wild”, if we saw it
with some frequency in the corpus?

p(w)

sample S of size |S| from p(w)

Sy =A{w : c(w) =71}

]
]
® c(w) = the number of times w occurs in S
]
= M, = Y, pw)

M, is a useful quantity:
m If we know it, p(w) for w € S, is

\S ]
(total mass divided by total number of distinct elements)
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Example: To see the need for a smoothing, imagine we have sampled a
large S where each n-gram occurs exactly once (quite unlikely event). The
naive way of estimating My would be

# of times w occurs in S X # of different words we are ok with kf X |Sl ‘ 1 X |S|

= = = 1.
total size of S ‘S’ |S|

However, for any reasonable distribution p(w) the probability M, given
such an unlikely sample S, should be close to 0 .



Find the expectation of M,

r+1
WEHSTHH -

E[M,] =Y pw)PweS,] =
Almost unbiased estimate of M,

r+1 r+1
S| — rEHSrHH = W\Swﬂ-

Final formula
|Sr+1|

|Sr ]

Pt = (r+1)

S| -

r+1
T,E[Mv‘+1]
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Diversity of Predicted Words

" spite” , ” constant”
both occur 993 times in the Europarl

m 9 words follow "spite”; almost always followed by "of” (979 times)
m 415 words follow "constant”; "and” (42), "concern” (27), " pressure”
(26) and singletons (268)

Much more likely to see a new bigram that starts with " constant” than
with "spite” .



Witten-Bell smooting

WB-smoothing is an instance of the recursive interpolation:

pwa(wilw/ =), ) = )\wzj;llﬂp]\u(wi ’wf;llﬂ)*'(l—)\ngﬂ )pw B (Wil W=} )

Intuition:
m in back-offs, we back-off to lower-order is higher-order is missing
m interpret (1 — )\wﬁiiﬂ) as the probability of recurring to the
lower-order model

m use the number of unique words that follow the history to estimate
this likeliness



Witten-Bell smooting

m define the number of possible extensions of a history wq, ..., w,_1:
N1+(w1a ooy Wn—1, .) = ‘{wn : C(wla e wnflvwn) > 0}’
m Define

N1+(wla ooy Wn—1, .)

L= Agwneg =
W1y Wi 1 N1+(w1,~-~,wn717.)+2wn (Wi, ey W1, W)
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N1 (spite, o)

1= e =
P Ny (spite, o) + Y-, c(spite, wy,)
9
= = 0.00898
9+ 993

Nj4(constant, e)
Ny (constant,e) + > c(constant, wy,)
415

= —— =0.29474
415 + 993

1-— )\constant =
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Absolute discounting

Observation:
Discount value 1 — d,. in the GT smoothing are often “almost constant”
(for r > 1).

Idea:
Jelinek-Mercer interpolation with X -1 p(wi|w§:}L+1) set to
i—n+1
max{c(w!_,  ,)—D,0}
Zwi C(w§7n+l) i

Final formula

maX(C(wf—nH) - D,0) DN1+(wZ::rlz+1')

} —S (wilwi )
C(wg—n-i-l) Zwi C(wg—n—i-l) TR




Diversity of Histories

Consider the word "York” (477 times). As frequent as the words "foods”,
"indicates” or " providers”.

In a unigram LM, will have a respectable probability.
However, it almost always directly follows "New"” (473 times).

Problem
B unigram model is used, if the bigram model is inconclusive.
m "York” is unlikely to be the second word in an unseen bigram

m therefore "York” should have a low probability.



Kneyser-Ney smooting

Idea:

set the unigram probability to the number of different words that it follows
instead of number of occurrences

Formalize:

& = > plwimrwi) = Y plwi|wi—1)p(wi-1)

Wi—1 Wi—1

- Z wz‘wz 1 Z (wl 1)

Wi 1 Wi—1 C(wl 1)
For absolute discounting we had:

maX<C(wg—n+1) - D7 O) DN1+( z n+1 )

Blwilw; 5 4,) = ; : Blwilw; 4 0)
LI i—n+1 c(wéfnJrl) Zwi C(wzl'fnJrl) i —n+2




Substitute into the constraint:
c(w;) = c(w;) — N1t (ow;) D + Dp(w;) N1+ (ee),
where
N1t (owi) = {wi—1 : e(wi—1w;) > 0},

Nii(o0) = |[{(wi—1,w;) : c(wi—1w;) > 0}].

plw;) = ]X;;((..lz) :



Modified Knesey-Ney - BEST

Idea
Use 3 discount factors Dy, Do, D3

D = D(c) = D11{c = 1] + Dsl[c = 2] + D3 1[c > 2].



Evaluation

Perplexity for language models trained on the Europarl corpus:

Smoothing method bigram | trigram | 4-gram
Good-Turing 96.2 62.9 59.9
Witten-Bell 97.1 63.8 60.4
Modified Kneser-Ney 95.4 61.6 58.6
Interpolated Modified Kneser-Ney 94.5 59.3 54.0




Managing the size

m estimation on disk

m effcient structures (trie)
= ‘the very large majority’
= ‘the very large number’
= shared history

N
N
N
=



4-gram

very I_»

e |
NS

large
boff:-0.385

important
boff:-0.231

best
boff:-0.302

N\

T
_>
_>

serious
boff:-0.146

majority p:-1.147

number p:-0.275
and p:-1.430
areas p:-1.728
challenge p:-2.171
debate p:-1.837
discussion p:-2.145
factp:-2.128
international p:-1.866

issue p:-1.157

3-gram backoff

very

large
boff:-0.106

important
boff:-0.250

best
boff:-0.082

serious
boff:-0.176

amount p:-2.510
amounts p:-1.633
and p:-1.449
areap:-2.658
companies p:-1.536
cuts p:-2.225
degree p:-2.933
extent p:-2.208
financial p:-2.383
foreign p:-3.428




Backoff from 4-gram to 3-gram:

pLm(amount|the very large) =backoff(the very large)
-p3(amount|very large)
=exp(—0.385 + —2.510)



Managing the size

m estimation on disk

m effcient structures (trie)
= ‘the very large majority’
= ‘the very large number’
= shared history

fewer bits to store numbers (num. indexes/huffman)
bin probabilities

reduce vocabulary (dates/numbers)

filtering irrelevant n-grams
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