
Statistical Machine Translation

-language models (cont.)-

Artem Sokolov
Computerlinguistik

Universität Heidelberg
Sommersemester 2015

material from P. Koehn, R. Shapire, D. McAllester, Chen & Goodman



General view on SMT
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Why smmothing?

n the simplest way to estimate LM – MLE

n is problematic on sparse data:

á problem with zero counts
á ⇒ zero probabilities for unseen n-grams
á high perplexity on test
á ⇒low performance of the model as a whole
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Laplace Smoothing: Add α

p =
c+ α

n+ αv
, α < 1, α optimized on held-out set
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Deleted Estimate

r∗ =
T 1
r + T 2

r

N1
r +N2

r

Nr – # of n-grams that occur r times
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Good-Turing smoothing

r∗ = (r + 1)
Nr+1

Nr

Nr – # of n-grams that occur r times
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Jelinek-Mercer smoothing: Recursive Interpolation

pIn(wi|wi−n+1, ..., wi−1) = λwi−n+1,...,wi−1 pn(wi|wi−n+1, ..., wi−1)

+ (1− λwi−n+1,...,wi−1) pIn−1(wi|wi−n+2, ..., wi−1)
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Katz Smoothing: Recursive Back-off

pBO
n (wi|wi−n+1, ..., wi−1) =

dn(wi−n+1, ..., wi−1) pn(wi|wi−n+1, ..., wi−1)

if countn(wi−n+1, ..., wi) > k

αn(wi|wi−n+1, ..., wi−1) p
BO
n−1(wi|wi−n+2, ..., wi−1)

otherwise
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Good-Turing derivation

What is the probability of observing w“in the wild”, if we saw it
with some frequency in the corpus?

n p(w)

n sample S of size |S| from p(w)

n c(w) = the number of times w occurs in S

n Sr = {w : c(w) = r}
n Mr =

∑
w∈Sr

p(w)

Mr is a useful quantity:

n If we know it, p(w) for w ∈ Sr is Mr
|Sr|

(total mass divided by total number of distinct elements)
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Example: To see the need for a smoothing, imagine we have sampled a
large S where each n-gram occurs exactly once (quite unlikely event). The
naive way of estimating M1 would be

# of times w occurs in S × # of different words we are ok with

total size of S
=
k × |S1|
|S|

=
1× |S|
|S|

= 1.

However, for any reasonable distribution p(w) the probability M1, given
such an unlikely sample S, should be close to 0 .
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Find the expectation of Mr:

E[Mr] =
∑
w

p(w)P [w ∈ Sr] =
r + 1

|S| − r
E[|Sr+1|]−

r + 1

|S| − r
E[Mr+1]

Almost unbiased estimate of Mr

r + 1

|S| − r
E[|Sr+1|] '

r + 1

|S|
|Sr+1|.

Final formula

r∗ = (r + 1)
|Sr+1|
|Sr|
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Diversity of Predicted Words

”spite” , ”constant”
both occur 993 times in the Europarl

n 9 words follow ”spite”; almost always followed by ”of” (979 times)

n 415 words follow ”constant”; ”and” (42), ”concern” (27), ”pressure”
(26) and singletons (268)

Much more likely to see a new bigram that starts with ”constant” than
with ”spite”.
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Witten-Bell smooting

WB-smoothing is an instance of the recursive interpolation:

pWB(wi|wi−1
i−n+1) = λwi−1

i−n+1
pML(w

i|wi−1
i−n+1)+(1−λwi−1

i−n+1
)pWB(wi|wi−1

i−n+2)

Intuition:

n in back-offs, we back-off to lower-order is higher-order is missing

n interpret (1− λwi−1
i−n+1

) as the probability of recurring to the

lower-order model

n use the number of unique words that follow the history to estimate
this likeliness
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Witten-Bell smooting

n define the number of possible extensions of a history w1, ..., wn−1:

N1+(w1, ..., wn−1, •) = |{wn : c(w1, ..., wn−1, wn) > 0}|

n Define

1− λw1,...,wn−1 =
N1+(w1, ..., wn−1, •)

N1+(w1, ..., wn−1, •) +
∑

wn
c(w1, ..., wn−1, wn)
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Example

1− λspite =
N1+(spite, •)

N1+(spite, •) +
∑

wn
c(spite, wn)

=
9

9 + 993
= 0.00898

1− λconstant =
N1+(constant, •)

N1+(constant, •) +
∑

wn
c(constant, wn)

=
415

415 + 993
= 0.29474
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Absolute discounting

Observation:
Discount value 1− dr in the GT smoothing are often “almost constant”
(for r � 1).

Idea:
Jelinek-Mercer interpolation with λwi−1

i−n+1
p(wi|wi−1

i−n+1) set to

max{c(wi
i−n+1)−D,0}∑

wi
c(wi

i−n+1)
.

Final formula

p̂(wi|wi−1
i−n+1) =

max(c(wi
i−n+1)−D, 0)

c(wi
i−n+1)

+
DN1+(w

i−1
i−n+1•)∑

wi
c(wi

i−n+1)
p̂(wi|wi−1

i−n+2)
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Diversity of Histories

Consider the word ”York” (477 times). As frequent as the words ”foods”,
”indicates” or ”providers”.

In a unigram LM, will have a respectable probability.

However, it almost always directly follows ”New” (473 times).

Problem

n unigram model is used, if the bigram model is inconclusive.

n ”York” is unlikely to be the second word in an unseen bigram

n therefore ”York” should have a low probability.

17 / 26



Kneyser-Ney smooting

Idea:
set the unigram probability to the number of different words that it follows
instead of number of occurrences
Formalize:

c(wi)∑
wi
c(wi)

=
∑
wi−1

p̂(wi−1wi) =
∑
wi−1

p̂(wi|wi−1)p(wi−1)

=
∑
wi−1

p̂(wi|wi−1)
c(wi−1)∑

wi−1
c(wi−1)

.

For absolute discounting we had:

p̂(wi|wi−1
i−n+1) =

max(c(wi
i−n+1)−D, 0)

c(wi
i−n+1)

+
DN1+(w

i−1
i−n+1•)∑

wi
c(wi

i−n+1)
p̂(wi|wi−1

i−n+2)
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Substitute into the constraint:

c(wi) = c(wi)−N1+(•wi)D +Dp̂(wi)N1+(••),

where

N1+(•wi) = |{wi−1 : c(wi−1wi) > 0}|,
N1+(••) = |{(wi−1, wi) : c(wi−1wi) > 0}|.

p̂(wi) =
N1+(•wi)

N1+(••)
.
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Modified Knesey-Ney - BEST

Idea
Use 3 discount factors D1, D2, D3+

D = D(c) = D11[c = 1] +D21[c = 2] +D3+1[c > 2].
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Evaluation

Perplexity for language models trained on the Europarl corpus:

Smoothing method bigram trigram 4-gram
Good-Turing 96.2 62.9 59.9

Witten-Bell 97.1 63.8 60.4

Modified Kneser-Ney 95.4 61.6 58.6

Interpolated Modified Kneser-Ney 94.5 59.3 54.0

21 / 26



Managing the size

n estimation on disk

n effcient structures (trie)

á ‘the very large majority’
á ‘the very large number’
á shared history
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Trie

verythe large
boff:-0.385

majority p:-1.147
number p:-0.275

important
boff:-0.231

and p:-1.430
areas p:-1.728

challenge p:-2.171
debate p:-1.837 

discussion p:-2.145
fact p:-2.128 

international p:-1.866
issue p:-1.157

...

best
boff:-0.302

serious
boff:-0.146

very

very large
boff:-0.106

amount p:-2.510
amounts p:-1.633

and p:-1.449
area p:-2.658

companies p:-1.536
cuts p:-2.225

degree p:-2.933      
extent p:-2.208       

financial p:-2.383   
foreign p:-3.428

...

important
boff:-0.250

best
boff:-0.082

serious
boff:-0.176

4-gram

3-gram backoff

large
boff:-0.470

accept p:-3.791
acceptable p:-3.778
accession p:-3.762
accidents p:-3.806

accountancy p:-3.416
accumulated p:-3.885
accumulation p:-3.895

action p:-3.510
additional p:-3.334

administration p:-3.729
...

2-gram backoff
aa-afns p:-6.154
aachen p:-5.734
aaiun p:-6.154

aalborg p:-6.154
aarhus p:-5.734
aaron p:-6.154

aartsen p:-6.154
ab p:-5.734

abacha p:-5.156
aback p:-5.876

...

1-gram backoff
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Trie

Backoff from 4-gram to 3-gram:

pLM(amount|the very large) =backoff(the very large)

·p3(amount|very large)

= exp(−0.385 +−2.510)

24 / 26



Managing the size

n estimation on disk

n effcient structures (trie)

á ‘the very large majority’
á ‘the very large number’
á shared history

n fewer bits to store numbers (num. indexes/huffman)

n bin probabilities

n reduce vocabulary (dates/numbers)

n filtering irrelevant n-grams
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Filtering
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