Statistical Machine Translation

-language models (cont.)-

Artem Sokolov
Computerlinguistik
Universität Heidelberg
Sommersemester 2015

General view on SMT

- the simplest way to estimate LM - MLE
- is problematic on sparse data:
\Rightarrow problem with zero counts
$\Rightarrow \Rightarrow$ zero probabilities for unseen n-grams
\Rightarrow high perplexity on test
$\Rightarrow \Rightarrow$ low performance of the model as a whole

$$
p=\frac{c+\alpha}{n+\alpha v}, \quad \alpha<1, \alpha \text { optimized on held-out set }
$$

Deleted Estimate

$$
r^{*}=\frac{T_{r}^{1}+T_{r}^{2}}{N_{r}^{1}+N_{r}^{2}}
$$

$N_{r}-\#$ of n-grams that occur r times

Good-Turing smoothing

$$
r^{*}=(r+1) \frac{N_{r+1}}{N_{r}}
$$

$N_{r}-\#$ of n-grams that occur r times

$$
\begin{aligned}
p_{n}^{I}\left(w_{i} \mid w_{i-n+1}, \ldots, w_{i-1}\right) & =\lambda_{w_{i-n+1}, \ldots, w_{i-1}} p_{n}\left(w_{i} \mid w_{i-n+1}, \ldots, w_{i-1}\right) \\
& +\left(1-\lambda_{w_{i-n+1}, \ldots, w_{i-1}}\right) p_{n-1}^{I}\left(w_{i} \mid w_{i-n+2}, \ldots, w_{i-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& p_{n}^{B O}\left(w_{i} \mid w_{i-n+1}, \ldots, w_{i-1}\right)= \\
& \quad\left\{\begin{array}{c}
d_{n}\left(w_{i-n+1}, \ldots, w_{i-1}\right) p_{n}\left(w_{i} \mid w_{i-n+1}, \ldots, w_{i-1}\right) \\
\text { if } \operatorname{count}_{n}\left(w_{i-n+1}, \ldots, w_{i}\right)>k \\
\alpha_{n}\left(w_{i} \mid w_{i-n+1}, \ldots, w_{i-1}\right) p_{n-1}^{B O}\left(w_{i} \mid w_{i-n+2}, \ldots, w_{i-1}\right) \\
\text { otherwise }
\end{array}\right.
\end{aligned}
$$

Good-Turing derivation

What is the probability of observing w "in the wild", if we saw it with some frequency in the corpus?

- $p(w)$
- sample S of size $|S|$ from $p(w)$
- $c(w)=$ the number of times w occurs in S

■ $S_{r}=\{w: c(w)=r\}$

- $M_{r}=\sum_{w \in S_{r}} p(w)$
M_{r} is a useful quantity:
- If we know it, $p(w)$ for $w \in S_{r}$ is $\frac{M_{r}}{\left|S_{r}\right|}$
(total mass divided by total number of distinct elements)

Example: To see the need for a smoothing, imagine we have sampled a large S where each n-gram occurs exactly once (quite unlikely event). The naive way of estimating M_{1} would be

$$
\frac{\text { \# of times } w \text { occurs in } S \times \text { \# of different words we are ok with }}{\text { total size of } S}=\frac{k \times\left|S_{1}\right|}{|S|}=\frac{1 \times|S|}{|S|}=1 .
$$

However, for any reasonable distribution $p(w)$ the probability M_{1}, given such an unlikely sample S, should be close to 0 .

Find the expectation of M_{r} :

$$
\mathbb{E}\left[M_{r}\right]=\sum_{w} p(w) P\left[w \in S_{r}\right]=\frac{r+1}{|S|-r} \mathbb{E}\left[\left|S_{r+1}\right|\right]-\frac{r+1}{|S|-r} \mathbb{E}\left[M_{r+1}\right]
$$

Almost unbiased estimate of M_{r}

$$
\frac{r+1}{|S|-r} \mathbb{E}\left[\left|S_{r+1}\right|\right] \simeq \frac{r+1}{|S|}\left|S_{r+1}\right| .
$$

Final formula

$$
r^{*}=(r+1) \frac{\left|S_{r+1}\right|}{\left|S_{r}\right|}
$$

"spite" , "constant"
 both occur 993 times in the Europarl

- 9 words follow " spite"; almost always followed by "of" (979 times)

■ 415 words follow "constant"; "and" (42), "concern" (27), "pressure" (26) and singletons (268)

Much more likely to see a new bigram that starts with "constant" than with "spite".

WB-smoothing is an instance of the recursive interpolation:
$p_{W B}\left(w_{i} \mid w_{i-n+1}^{i-1}\right)=\lambda_{w_{i-n+1}^{i-1}} p_{M L}\left(w^{i} \mid w_{i-n+1}^{i-1}\right)+\left(1-\lambda_{w_{i-n+1}^{i-1}}\right) p_{W B}\left(w_{i} \mid w_{i-n+2}^{i-1}\right)$
Intuition:
■ in back-offs, we back-off to lower-order is higher-order is missing

- interpret $\left(1-\lambda_{w_{i-n+1}^{i-1}}\right)$ as the probability of recurring to the lower-order model
- use the number of unique words that follow the history to estimate this likeliness
- define the number of possible extensions of a history w_{1}, \ldots, w_{n-1} :

$$
N_{1+}\left(w_{1}, \ldots, w_{n-1}, \bullet\right)=\left|\left\{w_{n}: c\left(w_{1}, \ldots, w_{n-1}, w_{n}\right)>0\right\}\right|
$$

- Define

$$
1-\lambda_{w_{1}, \ldots, w_{n-1}}=\frac{N_{1+}\left(w_{1}, \ldots, w_{n-1}, \bullet\right)}{N_{1+}\left(w_{1}, \ldots, w_{n-1}, \bullet\right)+\sum_{w_{n}} c\left(w_{1}, \ldots, w_{n-1}, w_{n}\right)}
$$

$$
\begin{aligned}
1-\lambda_{\text {spite }} & =\frac{N_{1+}(\text { spite }, \bullet)}{N_{1+}(\text { spite }, \bullet)+\sum_{w_{n}} c\left(\text { spite }, w_{n}\right)} \\
& =\frac{9}{9+993}=0.00898 \\
1-\lambda_{\text {constant }} & =\frac{N_{1+}(\text { constant }, \bullet)}{N_{1+}(\text { constant }, \bullet)+\sum_{w_{n}} c\left(\text { constant }, w_{n}\right)} \\
& =\frac{415}{415+993}=0.29474
\end{aligned}
$$

Absolute discounting

Observation:

Discount value $1-d_{r}$ in the GT smoothing are often "almost constant" (for $r \gg 1$).

Idea:

Jelinek-Mercer interpolation with $\lambda_{w_{i-n+1}^{i-1}} p\left(w_{i} \mid w_{i-n+1}^{i-1}\right)$ set to
$\frac{\max \left\{c\left(w_{i-n+1}^{i}\right)-D, 0\right\}}{\sum_{w_{i}} c\left(w_{i-n+1}^{i}\right)}$.

Final formula

$\hat{p}\left(w_{i} \mid w_{i-n+1}^{i-1}\right)=\frac{\max \left(c\left(w_{i-n+1}^{i}\right)-D, 0\right)}{c\left(w_{i-n+1}^{i}\right)}+\frac{D N_{1+}\left(w_{i-n+1}^{i-1} \bullet\right)}{\sum_{w_{i}} c\left(w_{i-n+1}^{i}\right)} \hat{p}\left(w_{i} \mid w_{i-n+2}^{i-1}\right)$

Consider the word "York" (477 times). As frequent as the words "foods", "indicates" or "providers".

In a unigram LM, will have a respectable probability.

However, it almost always directly follows "New" (473 times).

Problem

- unigram model is used, if the bigram model is inconclusive.

■ "York" is unlikely to be the second word in an unseen bigram
■ therefore "York" should have a low probability.

Kneyser-Ney smooting

Idea:

set the unigram probability to the number of different words that it follows instead of number of occurrences
Formalize:

$$
\begin{aligned}
\frac{c\left(w_{i}\right)}{\sum_{w_{i}} c\left(w_{i}\right)} & =\sum_{w_{i-1}} \hat{p}\left(w_{i-1} w_{i}\right)=\sum_{w_{i-1}} \hat{p}\left(w_{i} \mid w_{i-1}\right) p\left(w_{i-1}\right) \\
& =\sum_{w_{i-1}} \hat{p}\left(w_{i} \mid w_{i-1}\right) \frac{c\left(w_{i-1}\right)}{\sum_{w_{i-1}} c\left(w_{i-1}\right)}
\end{aligned}
$$

For absolute discounting we had:
$\hat{p}\left(w_{i} \mid w_{i-n+1}^{i-1}\right)=\frac{\max \left(c\left(w_{i-n+1}^{i}\right)-D, 0\right)}{c\left(w_{i-n+1}^{i}\right)}+\frac{D N_{1+}\left(w_{i-n+1}^{i-1} \bullet\right)}{\sum_{w_{i}} c\left(w_{i-n+1}^{i}\right)} \hat{p}\left(w_{i} \mid w_{i-n+2}^{i-1}\right)$

Substitute into the constraint:

$$
c\left(w_{i}\right)=c\left(w_{i}\right)-N_{1+}\left(\bullet w_{i}\right) D+D \hat{p}\left(w_{i}\right) N_{1+}(\bullet \bullet),
$$

where

$$
\begin{aligned}
N_{1+}\left(\bullet w_{i}\right) & =\left|\left\{w_{i-1}: c\left(w_{i-1} w_{i}\right)>0\right\}\right| \\
N_{1+}(\bullet \bullet) & =\left|\left\{\left(w_{i-1}, w_{i}\right): c\left(w_{i-1} w_{i}\right)>0\right\}\right|
\end{aligned}
$$

$$
\hat{p}\left(w_{i}\right)=\frac{N_{1+}\left(\bullet w_{i}\right)}{N_{1+}(\bullet \bullet)} .
$$

Modified Knesey-Ney - BEST

Idea
Use 3 discount factors D_{1}, D_{2}, D_{3+}

$$
D=D(c)=D_{1} \mathbf{1}[c=1]+D_{2} \mathbf{1}[c=2]+D_{3+} \mathbf{1}[c>2] .
$$

Perplexity for language models trained on the Europarl corpus:

Smoothing method	bigram	trigram	4-gram
Good-Turing	96.2	62.9	59.9
Witten-Bell	97.1	63.8	60.4
Modified Kneser-Ney	95.4	61.6	58.6
Interpolated Modified Kneser-Ney	94.5	59.3	54.0

Managing the size

- estimation on disk
- effcient structures (trie)
\Rightarrow 'the very large majority'
\Rightarrow 'the very large number'
\Rightarrow shared history

3-gram backoff

[^0]Backoff from 4-gram to 3-gram:

$$
\begin{aligned}
p_{\mathrm{LM}}(\text { amount } \mid \text { the very large })= & \text { backoff(the very large }) \\
& \cdot p_{3}(\text { amount } \mid \text { very large }) \\
& =\exp (-0.385+-2.510)
\end{aligned}
$$

Managing the size

- estimation on disk
- effcient structures (trie)
\Rightarrow 'the very large majority'
\Rightarrow 'the very large number'
\Rightarrow shared history
- fewer bits to store numbers (num. indexes/huffman)
- bin probabilities
- reduce vocabulary (dates/numbers)
- filtering irrelevant n-grams

[^0]: amount p:-2.510
 amounts $p:-1.633$
 and $p:-1.449$
 area $p:-2.658$
 companies p:-1.536
 cuts p:-2.225
 degree $p:-2.933$
 extent p:-2.208
 financial p:-2.383
 foreign $p:-3.428$

