Statistical Machine Translation

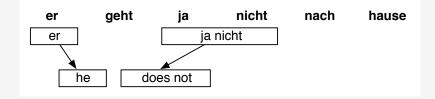
-decoding-

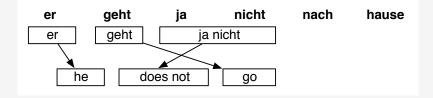
Artem Sokolov

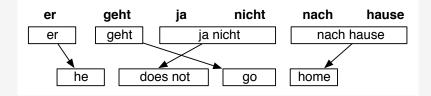
Computerlinguistik Universität Heidelberg Sommersemester 2015

material from P. Koehn

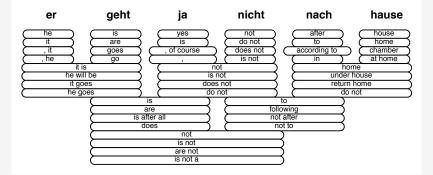
$$e_{\mathsf{best}} = \arg\max_{e} p(e|f) = \arg\max_{e} w \cdot \phi(e, f)$$

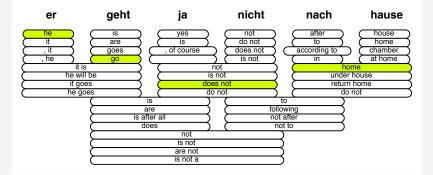

$$e_{\mathsf{best}} = \arg\max_{e} p(e|f) = \arg\max_{e} w \cdot \phi(e, f)$$


$$e_{\mathsf{best}} = \arg \max_{e} \prod_{i=1}^{I} (\phi(\bar{f}_i | \bar{e}_i) d(\mathsf{start}_i - \mathsf{end}_{i-1} - 1))$$
$$\prod_{j=1}^{|e|} p_{\mathsf{LM}}(e_j | e_1, \dots, e_{j-1})$$


'Almost Human' Decoding

er	geht	ia	nicht	nach	hause
er	gent	ja	mem	nach	nause



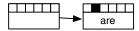


Decoding by Hypothesis Expansion

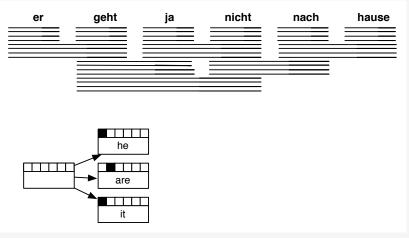
Decoding by Hypothesis Expansion

Consult phrase translation table for all possible input phrases, precompute **translation options** as all applicable phrase translations:

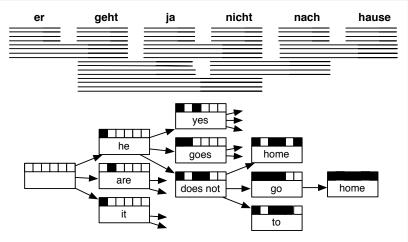
er	geht	ja	nicht	nach	hause

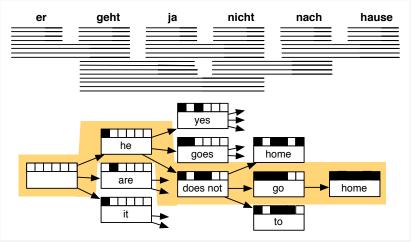

Initial hypothesis: No input phrase covered, no output produced:

er	geht	ja	nicht	nach	hause


Г			

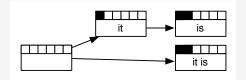
Hypothesis expansion: Pick translation option, create new hypothesis by constructing partial translation, mark off input:


er	geht	ja	nicht	nach	hause


Create hypotheses for all other translation options:

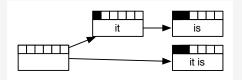
Create hypotheses from already created partial hypotheses:

Find best path by backtracking from highest scoring complete hypothesis:

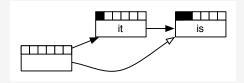

sentence length

 $O(\sum_{i=1}^{i} |\text{translation options}|^i) = O(|\text{translation options}|^{\text{sentence length}})$

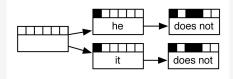
- machine translation decoding is NP-complete
- reduction of search space:
 - recombination (risk-free)
 - ➡ pruning (risky)

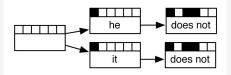

case 1:

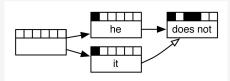
- the same number of foreign words translated,
- the same English words in output:

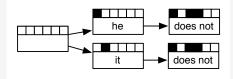


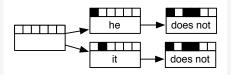
case 1:

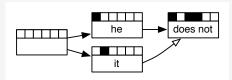

- the same number of foreign words translated,
- the same English words in output:


 \Rightarrow Drop the hypothesis with the worse score:


- the same number of foreign words translated,
- the same last two words in output (assuming trigram lm),
- the same last foreign word translated:


- the same number of foreign words translated,
- the same last two words in output (assuming trigram lm),
- the same last foreign word translated:


 \Rightarrow Drop the hypothesis with the worse score:


- the same number of foreign words translated,
- the same last two words in output (assuming trigram lm),
- the same last foreign word translated:

- the same number of foreign words translated,
- the same last two words in output (assuming trigram lm),
- the same last foreign word translated:

 \Rightarrow Drop the hypothesis with the worse score:

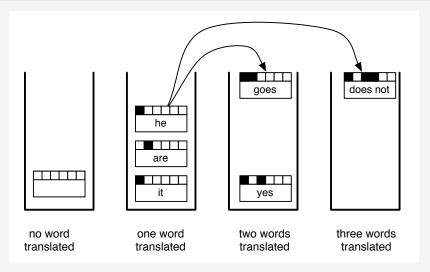
translation model: phrase translation independent from each other

 \Rightarrow no restriction to hypothesis recombination

Ianguage model: last n-1 words used as history in n-gram LM

 \Rightarrow recombined hypotheses must match in their last n-1 words

 reordering model: Distance-based reordering model based on distance to end position of previous input phrase


 \Rightarrow recombined hypotheses must have that same end position

other feature function may introduce additional restrictions

recombination reduces search space, but not enough

(still an NP complete problem)

- pruning: remove bad hypotheses early
 - put comparable hypothesis into stacks (hypotheses that have translated same number of input words)
 - ➡ limit number of hypotheses in each stack

hypothesis expansion in a stack decoder

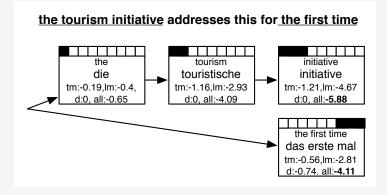
- translation option is applied to hypothesis
- new hypothesis is dropped into a stack further down

- 1: place empty hypothesis into stack 0
- 2: for all stacks 0...n 1 do
- 3: for all hypotheses in stack do
- 4: for all translation options do
- 5: **if** applicable **then**
- 6: create new hypothesis
- 7: place in stack
- 8: recombine with existing hypothesis **if** possible
- 9: prune stack **if** too big
- 10: end if
- 11: end for
- 12: end for
- 13: end for

- pruning strategies
 - \Rightarrow histogram pruning: keep at most k hypotheses in each stack
 - ➡ stack pruning: keep hypothesis with score $\alpha \times$ best score ($\alpha < 1$)
- decoding complexity with histogram pruning

 $O(\max \text{ stack size } \times - \text{translation options} - \times \text{ sentence length})$

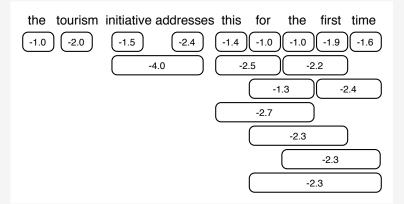
—translation options— is linear with sentence length, so


 $O(\max \text{ stack size} \times \text{ sentence } \text{length}^2)$

polynomial!

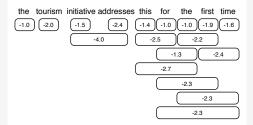
- limiting reordering to maximum reordering distance
- typical reordering distance 5–8 words
 - ➡ depending on language pair
 - larger reordering limit hurts translation quality
- reduces complexity to linear (hiding ≃constant # of translations options into *O*-symbol)

 $O(\max \text{ stack size} \times \text{ sentence length})$

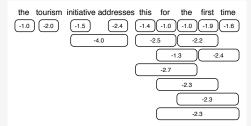

speed / quality trade-off by setting maximum stack size

both hypotheses translate 3 words worse hypothesis has better score

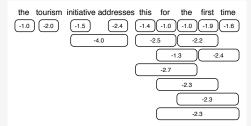
- future cost estimate: how expensive is translation of rest of sentence?
- optimistic: choose cheapest translation options
- cost for each translation option
 - translation model: cost known
 - ➡ language model: output words known, but not context → estimate without context
 - ➡ reordering model: unknown, ignored for future cost estimation


Cost Estimates from Translation Options

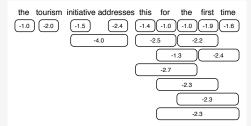
cost of cheapest translation options for each input span (log-probabilities)


- function words cheaper (the: -1.0) than content words (tourism -2.0)
- common phrases cheaper (for the first time: -2.3) than unusual ones (initiative addresses: -4.0)

fill the table with initial probabilites



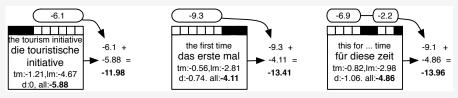
first	futu	future cost estimate for n words (from first)								
word	1	2	3	4	5	6	7	8	9	
the	-1.0									
tourism	-2.0									
initiative	-1.5	-4.0								
addresses	-2.4									
this	-1.4	-2.5	-2.7							
for	-1.0	-1.3	-2.3	-2.3						
the	-1.0	-2.2	-2.3							
first	-1.9	-2.4								
time	-1.6									


```
for length = 1 \dots n do
1:
2:
      for start = 1...n+1-length do
3:
         end = start + length
4:
         cost(start,end) = infinity
5:
         cost(start, end) = translation option cost estimate if exists
6:
         for i=start..end-1 do
7:
           if cost(start, i) + cost(i+1, end) < cost(start, end) then
8:
              update cost(start, end)
9:
           end if
10:
         end for
11:
      end for
12: end for
```


first	futu	future cost estimate for n words (from first)								
word	1	2	3	4	5	6	7	8	9	
the	-1.0									
tourism	-2.0									
initiative	-1.5	-4.0								
addresses	-2.4									
this	-1.4	-2.5	-2.7							
for	-1.0	-1.3	-2.3	-2.3		·				
the	-1.0	-2.2	-2.3							
first	-1.9	-2.4		·						
time	-1.6									

first	futu	future cost estimate for n words (from first)								
word	1	2	3	4	5	6	7	8	9	
the	-1.0	-3.0								
tourism	-2.0									
initiative	-1.5	-4.0								
addresses	-2.4									
this	-1.4	-2.5	-2.7							
for	-1.0	-1.3	-2.3	-2.3		·				
the	-1.0	-2.2	-2.3							
first	-1.9	-2.4		·						
time	-1.6									

first	futu	future cost estimate for n words (from first)								
word	1	2	3	4	5	6	7	8	9	
the	-1.0	-3.0	-4.5							
tourism	-2.0									
initiative	-1.5	-4.0								
addresses	-2.4									
this	-1.4	-2.5	-2.7							
for	-1.0	-1.3	-2.3	-2.3						
the	-1.0	-2.2	-2.3							
first	-1.9	-2.4								
time	-1.6									


first	futu	future cost estimate for n words (from first)									
word	1	2	3	4	5	6	7	8	9		
the	-1.0	-3.0	-4.5								
tourism	-2.0										
initiative	-1.5	-3.9									
addresses	-2.4										
this	-1.4	-2.5	-2.7								
for	-1.0	-1.3	-2.3	-2.3		·					
the	-1.0	-2.2	-2.3								
first	-1.9	-2.4		·							
time	-1.6										

first	futu	future cost estimate for n words (from first)								
word	1	2	3	4	5	6	7	8	9	
the	-1.0	-3.0	-4.5							
tourism	-2.0									
initiative	-1.5	-3.9								
addresses	-2.4									
this	-1.4	-2.4	-2.7							
for	-1.0	-1.3	-2.3	-2.3		·				
the	-1.0	-2.2	-2.3							
first	-1.9	-2.4								
time	-1.6									

first	t	future cost estimate for n words (from first)									
word	1	2	3	4	5	6	7	8	9		
the	-1.0	-3.0	-4.5	-6.9	-8.3	-9.3	-9.6	-10.6	-10.6		
tourism	-2.0	-3.5	-5.9	-7.3	-8.3	-8.6	-9.6	-9.6			
initiative	-1.5	-3.9	-5.3	-6.3	-6.6	-7.6	-7.6		,		
addresses	-2.4	-3.8	-4.8	-5.1	-6.1	-6.1					
this	-1.4	-2.4	-2.7	-3.7	-3.7						
for	-1.0	-1.3	-2.3	-2.3							
the	-1.0	-2.2	-2.3								
first	-1.9	-2.4									
time	-1.6		, 								

- Function words cheaper (the: -1.0) than content words (tourism -2.0)
- Common phrases cheaper (for the first time: -2.3) than unusual ones (tourism initiative addresses: -5.9)

Hypothesis score and future cost estimate are combined for pruning

- → left hypothesis starts with hard part: the tourism initiative score: -5.88, future cost: -6.1 \rightarrow total cost -11.98
- middle hypothesis starts with easiest part: the first time score: -4.11, future cost: -9.3 → total cost -13.41
- right hypothesis picks easy parts: this for ... time score: -4.86, future cost: -9.1 → total cost -13.96