Statistical Machine Translation

-tree-based models-

Artem Sokolov

Computerlinguistik Universität Heidelberg Sommersemester 2015

material from P. Koehn, S. Riezler

- Traditional statistical models operate on sequences of words
- Linguistic theories tell us that a deeper structure exists
- Many translation problems can be best explained by pointing to syntax
 - ➡ reordering, e.g., verb movement in German–English translation
 - ➡ long distance agreement (e.g., subject-verb) in output
- \Rightarrow Translation models based on tree representation of language
 - ➡ significant ongoing research
 - state-of-the art for some language pairs
 - trend: as technology matures even more pairs are better handled by tree-based SMT

Idea: word groups should correspond to constituents of certain roles and functions

- Phrase structure
 - ➡ noun phrases: the big man, a house, ...
 - ➡ prepositional phrases: at 5 o'clock, in Edinburgh, ...
 - ➡ verb phrases: going out of business, eat chicken, ...
 - ➡ adjective phrases, angry with the high prices, faster than you, ...
 - Weighted Context-free Grammars (CFG)

$$\implies G = < N, T, (P, \pi), (S, \sigma) >$$

- \Rightarrow non-terminal symbols N: phrase structure labels, part-of-speech tags
- ➡ terminal symbols T: words
- ➡ production rules $P: N \to (N \cup T)^*$
- weights of production rules: $\pi : P \to K$ (K is a semiring)
- \blacksquare start symbol S
- weights of start states: $\sigma: S \to K$ (K is a semiring) example: NP \to DET NN

example: NP \rightarrow DET house

Weighted Synchronous Context-free Grammars (SCFG)

- $\ \ \, {\bf G} = < N, T^1, T^2, (P, \pi), (S, \sigma) >$
- \blacksquare non-terminal symbols N
- source and target terminal symbols T^1, T^2
- production rules $P: N \to (N \cup T^1)^* \times (\{1, 2, \dots\} \cup T^2)^*$
- weights of production rules: $\pi : P \to K$ (K is a semiring)
- start symbol S
- weights of start states: $\sigma: S \to K$ (K is a semiring)

Nonterminal rules

 $NP \rightarrow DET_1 NN_2 JJ_3 \mid DET_1 JJ_3 NN_2$

Terminal rules

 $\label{eq:NP} \begin{array}{ll} {\rm N} \to {\rm maison} & | \ {\rm house} \\ {\rm NP} \to {\rm Ia} \ {\rm maison} \ {\rm bleue} & | \ {\rm the} \ {\rm blue} \ {\rm house} \end{array}$

Mixed rules

 $NP \rightarrow la maison JJ_1 \mid the JJ_1 house$

Translation by parsing

- synchronous grammar has to parse entire input sentence
- output tree is generated at the same time
- process is broken up into a number of rule applications
- Each rule is weighted (definition)
- Total translation probability

$$\text{SCORE}(\text{TREE}, \text{E}, \text{F}) = \prod_{i} \text{RULE}_{i}$$

Many ways to assign probabilities to rules (as there are many parses possible)

$$\Sigma = \{a, b, c\}$$
 $\Delta = \{x, y, z\}$ $V = \{A, B, C\}$ $S = \{C\}$ $\sigma(C) = 1.0$

$$R = \{ A \xrightarrow{0.5} \langle A a B, [2] \downarrow x \rangle, \\ A \xrightarrow{0.5} \langle b C, y \downarrow \rangle, \\ B \xrightarrow{0.6} \langle a b c, z z \rangle, \\ B \xrightarrow{0.4} \langle a b c, x y z \rangle, \\ C \xrightarrow{0.8} \langle A A, [1] \rangle, \\ C \xrightarrow{0.2} \langle c, z \rangle$$

Figure 2.4: Example of a weighted synchronous context-free grammar (WSCFG). Note that C is the start symbol.

}

Yield	$lpha ightarrow \langle eta, \gamma angle$	Weight
$\langle \mathbf{C}, 1 \rangle \Rightarrow$	$\mathrm{C} ightarrow \langle \mathrm{A} \mathrm{A}, \ 1 \ 2 ight angle$	1.0 imes 0.8
$\langle A A, 1 \rangle \Rightarrow$	$\mathbf{A} \rightarrow \langle \mathbf{A} \ a \ \mathbf{B}, \ 2 \ 1 \ x \rangle$	$\times 0.5$
$\langle A a B A, 2 1 x 3 \rangle \Rightarrow$	$A \rightarrow \langle b C, y 1 \rangle$	$\times 0.5$
$\langle b C a B A, 2 y 1 x \rangle \Rightarrow$	$\mathbf{C} \rightarrow \langle c, z \rangle$	$\times 0.2$
$\langle b c a B A, 1 y z x 2 \rangle \Rightarrow$	$\mathbf{B} \rightarrow \langle a \ b \ c, \ x \ y \ z \rangle$	$\times 0.4$
$\langle b c a a b c A, x y z y z x 1 \rangle \Rightarrow$	$A \rightarrow \langle b C, y 1 \rangle$	$\times 0.5$
$\langle b c a a b c b C, x y z y z x y \overline{1} \rangle \Rightarrow$	$\mathbf{C} \rightarrow \langle c, z \rangle$	$\times 0.2$
$\langle b c a a b c b c, x y z y \overline{z x y z} \rangle$		= 0.0016

Figure 2.5: Example synchronous derivation using the WSCFG shown in Figure 2.4.

- so far assumed no particular syntax theory
- can use real syntactic annotation
- will need to store internal structure in the rule

Benefits:

- input language syntax puts some constrains on the extracted rules
- output language can have a better-formed (syntactically) structure

Synchronous Tree-Substitution Grammars

Phrase structure grammar trees with word alignment (German–English sentence pair.)

Synchronous grammar rule

 $VP \rightarrow PPER_1 NP_2$ aushändigen | passing on $PP_1 NP_2$

 \leftrightarrow

- Note:
 - one word aushändigen mapped to two words passing on
 - effortless capture of reordering
 - but: fully non-terminal rule not possible (one-to-one mapping constraint for nonterminals)

- Synchronous grammar rule (stripping out English internal structure) $PRO/PP \rightarrow Ihnen | to you$
- Rule with internal structure

$$\frac{PRO}{PP} \rightarrow \frac{Ihnen}{|}$$

Translation of German werde to English shall be

• Translation rule needs to include mapping of $\rm VP$ \Rightarrow Complex rule

Stripping out internal structure

```
VP \rightarrow werde VP_1 \mid shall be VP_1
```

 \Rightarrow synchronous context free grammar

Maintaining internal structure

 \Rightarrow synchronous tree substitution grammar

- Extracting rules from a word-aligned parallel corpus
- First: Hierarchical phrase-based model
 - ightarrow only **one** non-terminal symbol x
 - ➡ no linguistic syntax, just a formally syntactic model
- Then: Synchronous phrase structure model
 - ➡ non-terminals for words and phrases: NP, VP, PP, ADJ, ...
 - corpus must be parsed with syntactic parser

- Suppose we want to learn a rule for werde ... aushändigen
- phrase-based SMT will probably fail here
 - ➡ the gap is too large, likely inconsistent
 - ➡ if extracted will contain all words in between (rarely applicable)

Recall: consistent phrase pairs

$$(\bar{e}, \bar{f})$$
 consistent with $A \Leftrightarrow$
 $\forall e_i \in \bar{e} : (e_i, f_j) \in A \rightarrow f_j \in \bar{f}$
AND $\forall f_j \in \bar{f} : (e_i, f_j) \in A \rightarrow e_i \in \bar{e}$
AND $\exists e_i \in \bar{e}, f_j \in \bar{f} : (e_i, f_j) \in A$

• Let P be the set of all extracted phrase pairs (\bar{e}, \bar{f})

Extend recursively:

$$\begin{split} \text{if} & (\bar{e}, \bar{f}) \in P \text{ and } (\bar{e}_{\text{sub}}, \bar{f}_{\text{sub}}) \in P \\ & \text{and } \bar{e} = \bar{e}_{\text{pre}} + \bar{e}_{\text{sub}} + \bar{e}_{\text{post}} \\ & \text{and } \bar{f} = \bar{f}_{\text{pre}} + \bar{f}_{\text{sub}} + \bar{f}_{\text{post}} \\ & \text{and } \bar{e} \neq \bar{e}_{\text{sub}} \text{ and } \bar{f} \neq \bar{f}_{\text{sub}} \\ \end{split}$$

(note: any of $e_{\rm PRE}$, $e_{\rm POST}$, $f_{\rm PRE}$, or $f_{\rm POST}$ may be empty)

 Set of hierarchical phrase pairs is the closure under this extension mechanism Removal of multiple sub-phrases leads to rules with multiple non-terminals, such as:

$$\mathbf{Y} \to \mathbf{X}_1 \ \mathbf{X}_2 \ | \ \mathbf{X}_2 \ of \ \mathbf{X}_1$$

- Typical restrictions to limit complexity [Chiang, 2005], to avoid exponential explosion
 - ➡ at most 2 nonterminal symbols
 - ➡ at least 1 but at most 5 words per language
 - ➡ span at most 15 words (counting gaps)
 - ➡ no 2 non-terminals are next to each other in both languages

Even without syntax tree-based models often gain about 1-2 BLEU points over phrase-based systems.

Learning Syntactic Translation Rules

- Hierarchical: rule can cover any span
 ⇔ syntactic rules must cover constituents in the tree ⇒ 1 node on top
- Hierarchical: gaps may cover any span ⇔ gaps must cover constituents in the tree
- Moving up the tree introduces non-terminals
- Much less rules are extracted (all things being equal)

English span not a constituent no rule extracted

Rule with this phrase pair requires syntactic context

- Extract all rules from corpus
- Score based on counts
 - → joint rule probability: $p(LHS, RHS_f, RHS_e)$
 - → rule application probability: $p(\text{RHS}_f, \text{RHS}_e | \text{LHS})$
 - → direct translation probability: $p(\text{RHS}_e | \text{RHS}_f, \text{LHS})$
 - → noisy channel translation probability: $p(\text{RHS}_f | \text{RHS}_e, \text{LHS})$
 - → lexical translation probability: $\prod_{e_i \in \text{RHS}_e} p(e_i | \text{RHS}_f, a)$

Inspired by monolingual syntactic chart parsing:

During decoding of the source sentence, a chart with translations for the ${\cal O}(n^2)$ spans has to be filled

note: constrains limit the branching factor

Purely lexical rule: filling a span with a translation (a constituent in the chart)

Purely lexical rule: filling a span with a translation (a constituent in the chart)

Purely lexical rule: filling a span with a translation (a constituent in the chart)

Complex rule: matching underlying constituent spans, and covering words

Complex rule with reordering

- Chart consists of cells that cover contiguous spans over the input sentence
- Each cell contains a set of hypotheses
- Hypothesis = translation of span with target-side constituent

- For each span, a stack of (partial) translations is maintained
- Bottom-up: a higher stack is filled, once underlying stacks are complete

Input: Foreign sentence $\mathbf{f} = f_1, \dots f_{l_f}$, with syntax tree **Output:** English translation **e**

- 1: for all spans [start,end] (bottom up) do
- 2: for all sequences s of hypotheses and words in span [start,end] do
- 3: for all rules r do
- 4: **if** rule r applies to chart sequence s **then**
- 5: create new hypothesis c
- 6: add hypothesis c to chart
- 7: end if
- 8: end for
- 9: end for
- 10: **end for**
- 11: return English translation e from best hypothesis in span $[0, l_f]$

Applying rule creates new hypothesis

Another hypothesis

Hypotheses have to match in

- span of input words covered
- output constituent label
- first *n*−1 output words (not properly scored, since they lack context)
- last n-1 output words (still affect scoring of subsequently added words, just like in phrase-based decoding)

(n is the order of the n-gram language model)

When merging hypotheses, internal language model contexts are absorbed

Recombinable?

NP: a cup of	coffee
--------------	--------

NP: a cup of coffee

NP: a mug of coffee

Recombinable?

Yes, iff max. 2-gram language model is used