Storing Rules

- First concern: do they apply to span?
 → have to match available hypotheses and input words
- Example rule

$$NP \rightarrow NP_1 \text{ des } NN_2 \mid NP_1 \text{ of the } NN_2$$

- Check for applicability
 - is there an initial sub-span that matches a hypothesis with constituent label NP?
 - is it followed by a sub-span over the word des?
 - is it followed by a final sub-span with a hypothesis with label NN?
- Sequence of relevant information

$$NP \bullet des \bullet NN \bullet NP_1 of the NN_2$$

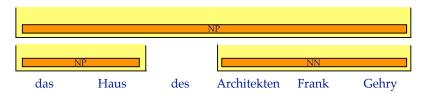
Check Applicability of Rule to Span

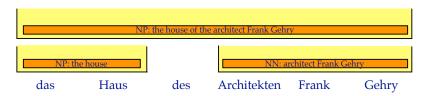
1. Trying to cover a span of six words with given rule NP • des • NN \rightarrow NP: NP of the NN

das Haus des Architekten Frank Gehry

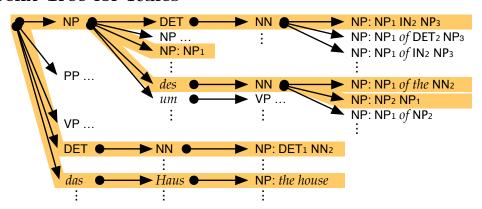
2. Check for hypotheses with output constituent label NP NP • des • NN \rightarrow NP: NP of the NN


3. Found NP hypothesis in cell, matched first symbol of rule NP • des • NN \rightarrow NP: NP of the NN


4. Matched word des, matched second symbol of rule NP • des • NN \rightarrow NP: NP of the NN


5. Found a NN hypothesis in cell, matched last symbol of rule NP • des • NN \rightarrow NP: NP of the NN

6. Matched entire rule \rightarrow apply to create a NP hypothesis NP • des • NN \rightarrow NP: NP of the NN

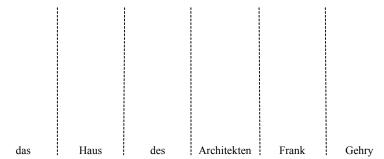

7. Look up output words to create new hypothesis (note: there may be many matching underlying NP and NN hypotheses) NP • des • NN \rightarrow NP: NP of the NN

Checking Rules vs. Finding Rules

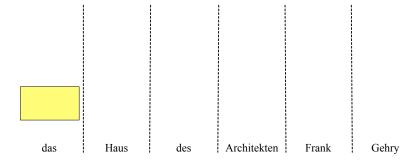
- What we showed:
 - given a rule, check if and how it can be applied
- But there are too many rules (millions) to check them all
- Instead:
 - given the underlying chart cells and input words, find which rules apply

Prefix Tree for Rules

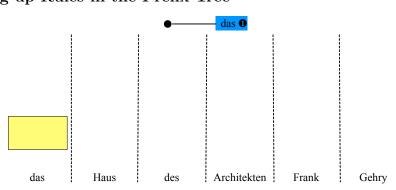
Highlighted Rules

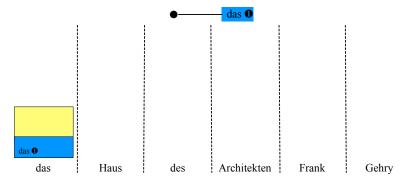

$$NP \rightarrow NP_1 DET_2 NN_3 \mid NP_1 IN_2 NN_3$$
 $NP \rightarrow NP_1 \mid NP_1$
 $NP \rightarrow NP_1 des NN_2 \mid NP_1 of the NN_2$
 $NP \rightarrow NP_1 des NN_2 \mid NP_2 NP_1$
 $NP \rightarrow DET_1 NN_2 \mid DET_1 NN_2$
 $NP \rightarrow das Haus \mid the house$

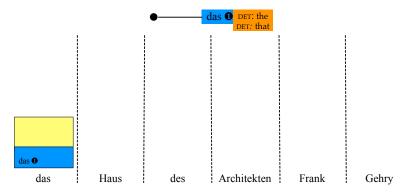
Dotted Rules: Key Insight

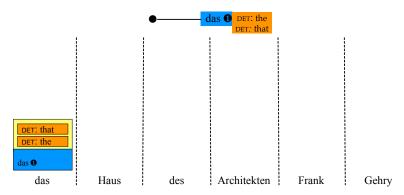

- Then we could have applied a rule like $q \to A B \mid y$ to a sub-span with the same starting word
- \Rightarrow We can re-use rule lookup by storing A B (dotted rule)

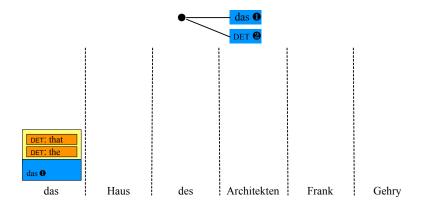
Finding Applicable Rules in Prefix Tree

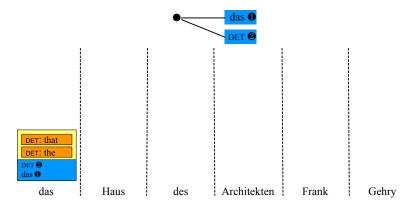

Input Sentence

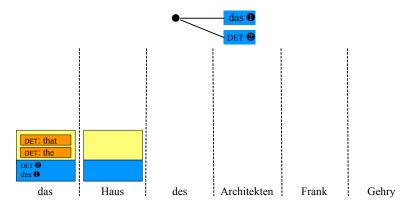

Covering the First Cell

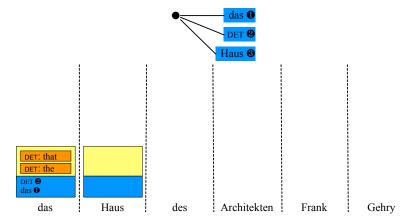

Looking up Rules in the Prefix Tree

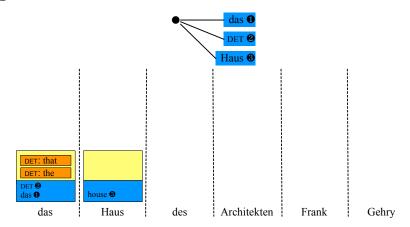

Taking Note of the Dotted Rule

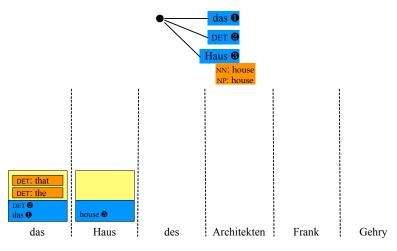

Checking if Dotted Rule has Translations

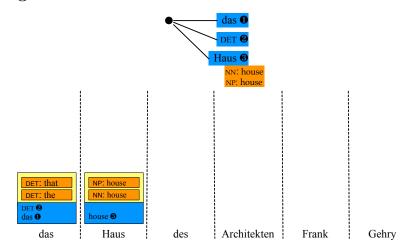

Applying the Translation Rules

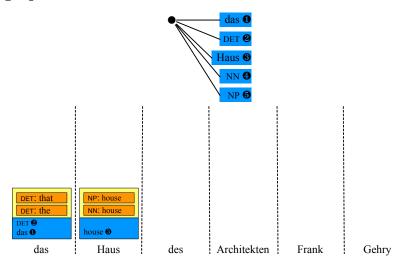

Looking up Constituent Label in Prefix Tree


Add to Span's List of Dotted Rules

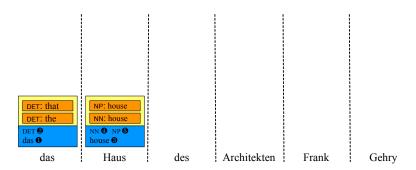

Moving on to the Next Cell

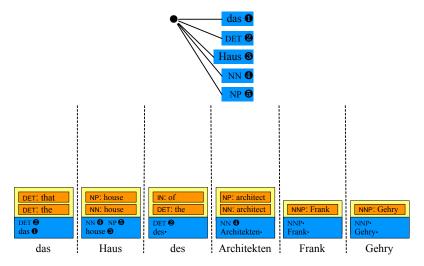

Looking up Rules in the Prefix Tree

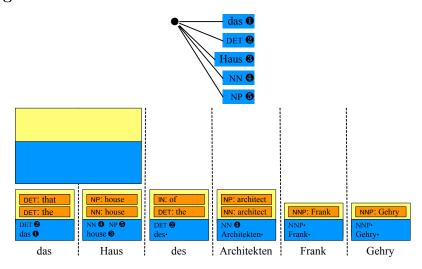

Taking Note of the Dotted Rule


Checking if Dotted Rule has Translations

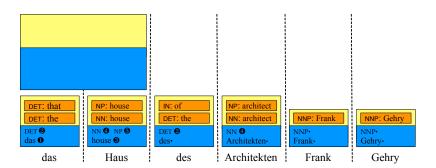
Applying the Translation Rules


Looking up Constituent Label in Prefix Tree


Add to Span's List of Dotted Rules

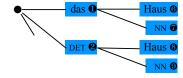

Artem Sokolov

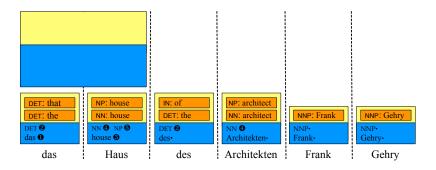
More of the Same



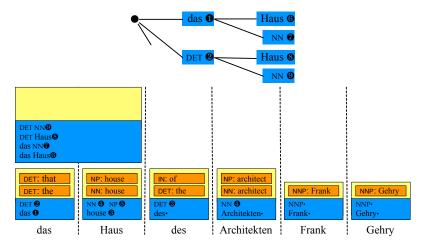
Moving on to the Next Cell

Covering a Longer Span

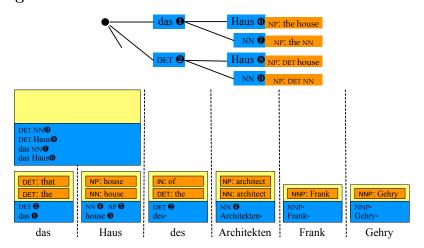

Cannot consume multiple words at once
All rules are extensions of existing dotted rules
Here: only extensions of span over das possible

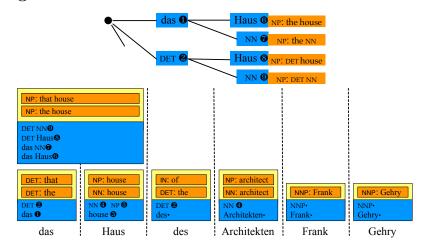


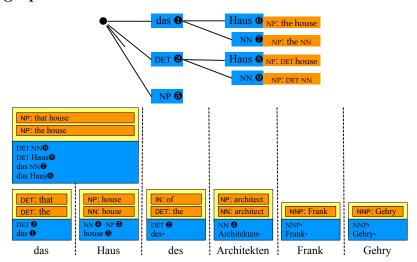
Extensions of Span over das

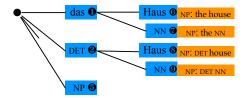


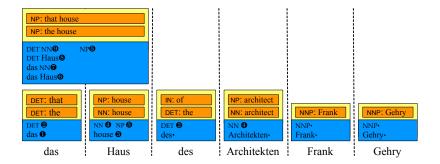
Looking up Rules in the Prefix Tree




Taking Note of the Dotted Rule


Checking if Dotted Rules have Translations


Applying the Translation Rules



Looking up Constituent Label in Prefix Tree

Add to Span's List of Dotted Rules

Reflections

- Complexity $O(rn^3)$ with sentence length n and number dotted rules r
 - may introduce maximum size for spans that do not start at beginning
 - may limit size of dotted rule list (very arbitrary)
- Does the list of dotted rules explode?
- Yes, if there are many rules with neighboring target-side non-terminals
 - such rules apply in many places
 - rules with words are much more restricted

Difficult Rules

- Some rules may apply in too many ways
- Neighboring input non-terminals

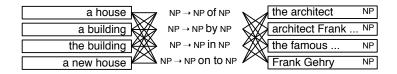
$$VP \rightarrow gibt X_1 X_2 \mid gives NP_2 to NP_1$$

- non-terminals may match many different pairs of spans
- especially a problem for hierarchical models (no constituent label restrictions)
- may be okay for syntax-models
- Three neighboring input non-terminals

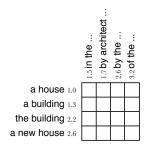
$$VP \rightarrow trifft X_1 X_2 X_3 heute \mid meets NP_1 today PP_2 PP_3$$

- will get out of hand even for syntax models
- \rightarrow number choices exponential with number of non-terminals

Rules with One Non-Terminal


Found applicable rules $PP \to \text{des } X \mid ... NP ...$

- Non-terminal will be filled any of h underlying matching hypotheses
- Choice of t lexical translations
- \Rightarrow Complexity O(ht)


Rules with Two Non-Terminals

Found applicable rule NP \rightarrow X₁ des X₂ | NP₁ ... NP₂

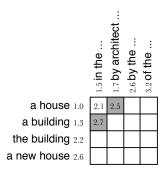
- \bullet Two non-terminal will be filled any of h underlying matching hypotheses each
- Choice of t lexical translations
- \Rightarrow Complexity $O(h^2t)$ a three-dimensional "cube" of choices

Cube Pruning

Arrange all the choices in a "cube" (here: a square, generally a orthotope, also called a hyperrectangle)

Create the First Hypothesis

	1.5 in the	1.7 by architect	2.6 by the	3.2 of the
a house 1.0	2.1			
a building 1.3				
the building 2.2				
a new house 2.6				


• Hypotheses created in cube: (0,0)

Add ("Pop") Hypothesis to Chart Cell

	1.5 in the	1.7 by architect	2.6 by the	3.2 of the
a house 1.0	2.1			
a building 1.3				
the building 2.2				
a new house 2.6				

- Hypotheses created in cube: ϵ
- Hypotheses in chart cell stack: (0,0)

Create Neighboring Hypotheses

- Hypotheses created in cube: (0,1), (1,0)
- Hypotheses in chart cell stack: (0,0)

Pop Best Hypothesis to Chart Cell

	1.5 in the	1.7 by architect	2.6 by the	3.2 of the
a house 1.0	2.1	2.5		
a building 1.3	2.7			
the building 2.2				
a new house 2.6				

 \bullet Hypotheses created in cube: (0,1)

• Hypotheses in chart cell stack: (0,0), (1,0)

Create Neighboring Hypotheses

	1.5 in the	1.7 by architect	2.6 by the	3.2 of the
a house 1.0	2.1	2.5	3.1	
a building 1.3	2.7	2.4		
the building 2.2				
a new house 2.6				

• Hypotheses created in cube: (0,1), (1,1), (2,0)

• Hypotheses in chart cell stack: (0,0), (1,0)

More of the Same

• Hypotheses created in cube: (0,1), (1,2), (2,1), (2,0)

• Hypotheses in chart cell stack: (0,0), (1,0), (1,1)

Queue of Cubes

- Several groups of rules will apply to a given span
- Each of them will have a cube
- We can create a queue of cubes
- \Rightarrow Always pop off the most promising hypothesis, regardless of cube
 - May have separate queues for different target constituent labels

Bottom-Up Chart Decoding Algorithm

- 1: for all spans (bottom up) do
- 2: extend dotted rules
- 3: **for all** dotted rules **do**
- 4: find group of applicable rules
- 5: create a cube for it
- 6: create first hypothesis in cube
- 7: place cube in queue
- 8: end for
- 9: **for** specified number of pops **do**
- 10: pop off best hypothesis of any cube in queue
- 11: add it to the chart cell
- 12: create its neighbors
- 13: end for
- 14: extend dotted rules over constituent labels
- 15: end for