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1 Recap from previous lecture

• task: how to induce alignments that are not given in parallel data?

• concave (but not strictly concave) log-likelihood for IBM Model 1

log `(D; t) = log
∏
e,f∈D

p(e|f) =
∑
e,f∈D

le∑
j=1

log

lf∑
i=0

t(ej|fi) + const

• note the marginalization
∑

i over (unknown) alignments

EM (Expectation-Maximization) in a nutshell:
1. Initialize model parameters, e.g., uniform.
2. Assign probabilities to missing data. E-step
3. Estimate model parameters from manufactured/expected data. M-step
4. Iterate step 2 - 3 until convergence.

2 Expectation-Maximization

A general-purpose algorithm for unsupervised learning, not only for concave
likelihoods or machine translation.

Oscillates between building a lower-bound to a function (E-step) and
optimizing this lower-bound (M-step):
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2.1 General Formulation

We have data D = {xi, i = 1 . . .m}, with unobserved (latent) variables
zi ∈ Z and want to optimize log-likelihood

`(D; θ) =
m∑
i=1

log
∑
z∈Z

p(xi, z; θ)

Let’s assume we have some probability distributions qi(zi). Using Jensen
inequality and log concavity:

`(D; θ) =
m∑
i=1

log
∑
z∈Z

p(xi, zi; θ)

=
m∑
i=1

log
∑
z∈Z

qi(zi)
p(xi, zi; θ)

qi(zi)

≥
m∑
i=1

∑
z∈Z

qi(zi) log
p(xi, zi; θ)

qi(zi)
.

Equality is achieved (see exercise in the previous homework) when p(xi,zi;θ)
qi(zi)

are

constant. To achieve this set qi(zi) proportional to p(xi, zi; θ) and normalize
to make a valid probability distribution:

qi(zi) =
p(xi, zi; θ)∑
z∈Z p(xi, zi; θ)

E-step

The above lower bound is true for all θ. To make the tighter, we maximize
over θ, considering qi(zi) fixed:

θ = arg max
θ

m∑
i=1

∑
z∈Z

qi(zi) log
p(xi, z; θ)

qi(zi)
M-step

Now alternate between E-step and M-step.

Why do we optimize log-likelihood in the process?

`(θt+1) ≥
m∑
i=1

∑
z∈Z

qti(zi) log
p(xi, z; θt+1)

qti(zi)
Jensen’s inequality

≥
m∑
i=1

∑
z∈Z

qti(zi) log
p(xi, z; θt)

qti(zi)
because θt+1 is arg max

θ

= `(θt) because we chose qi(zi) to deliver equality
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Note:

• in general parameters θ can be anything (e.g., a graph) so difficult to
speak about convergence in parameters.

• in practice we stop when log-likelihood stops improving enough between
iterations

• random initialization and other heuristic are useful (if your function is
not concave)

3 IBM Model 1 and EM

3.1 Mapping general EM to SMT

xi → (e, f)

zi → a

qi(zi) = p(a|e, f)

p(xi, zi; θ) = p(a, e|f ; θ)

m∑
i=1

∑
z∈Z

qti(zi) log
p(xi, z; θt+1)

qti(zi)∑
(e,f)∈D

∑
a

pt(a|e, f) log
p(a, e|f ; θ)

pt(a|e, f)

3.2 E(xpectation)-Step

Now we need to compute p(a|e, f), the probability of an alignment given the
English and foreign sentences:

p(a|e, f) =
p(a, e, f)

p(e, f)
=
p(e, a|f) · p(f)

p(e|f) · p(f)
=
p(e, a|f)

p(e|f)
(1)

We are able to get p(e, a|f) from our IBM Model 1 equation, but we still
need to compute p(e|f), the probability of translating the foreign sentence f
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into the English sentence e with any alignment.

p(e|f) =
∑
a

p(e, a|f) (2)

(all alignment positions) =

lf∑
a(1)=0

. . .

lf∑
a(le)=0

p(e, a|f) (3)

(IBM Model) =

lf∑
a(1)=0

. . .

lf∑
a(le)=0

ε

(lf + 1)le

le∏
j=1

t(ej|fa(j)) (4)

(”The Trick”) =
ε

(lf + 1)le

le∏
j=1

lf∑
i=0

t(ej|fi) (5)

The trick in line (5) removes the need for an exponential number of products,
which reduces the computational complexity significantly.

”The Trick”:
Instead of summing over all possible alignments, we look at the English word
positions and ask which foreign words could have generated them.

Example: le = lf = 2

2∑
a(1)=0

2∑
a(2)=0

ε

32

2∏
j=1

t(ej|fa(j)) (6)

=
ε

32
(t(e1|f0)t(e2|f0) + t(e1|f0)t(e2|f1) + t(e1|f0)t(e2|f2)

+ t(e1|f1)t(e2|f0) + t(e1|f1)t(e2|f1) + t(e1|f1)t(e2|f2)
+ t(e1|f2)t(e2|f0) + t(e1|f2)t(e2|f1) + t(e1|f2)t(e2|f2))

=
ε

32
(t(e1|f0)(t(e2|f0) + t(e2|f1) + t(e2|f2))

+ t(e1|f1)(t(e2|f0) + t(e2|f1) + t(e2|f2))
+ t(e1|f2)(t(e2|f0) + t(e2|f1) + t(e2|f2)))

=
ε

32
(t(e1|f0) + t(e1|f1) + t(e1|f2))(t(e2|f0) + t(e2|f1) + t(e2|f2))

=
ε

32

2∏
j=1

2∑
i=0

t(ej|fi)
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(”The Trick”) p(e|f) =
ε

(lf + 1)le

le∏
j=1

lf∑
i=0

t(ej|fi) (7)

Note: Doing the “trick” can be avoided by remembering that the generative
story of the IBM Model 1 assumes independent word generation process:

p(e|f) =
le∏
i=1

p(ei|f). (8)

Combine what we have:
We know p(e, a|f) from the IBM Model 1 equation (Lecture 1) and p(e|f)
from the simplified equation in line (7).

p(a|e, f) =
p(e, a|f)

p(e|f)
(9)

=

ε
(lf+1)le

∏le
j=1 t(ej|fa(j))

ε
(lf+1)le

∏le
j=1

∑lf
i=0 t(ej|fi)

=
le∏
j=1

t(ej|fa(j))∑lf
i=0 t(ej|fi)

3.3 M(aximization)-Step

Now we need to maximize the lower-bound:

arg max
θ

∑
(e,f)∈D

∑
a

pt(a|e, f) log
p(a, e|f ; θ)

pt(a|e, f)
,

where pt(a|e, f) are fixed by the preceding E-step. Substituting the expression
for p(e, a|f ; θ) from the IBM Model 1 and dropping constant (with respect
to θ) terms we get a maximization problem:

arg max
θ

∑
e,f∈D

le∑
j=1

(∑
a

pt(a|e, f) log t(ej|fa(j))
)

= arg max
θ

∑
e,f∈D

le∑
j=1

( lf∑
i=1

pt(a|e, f) log t(ej|fi)
)

(10)
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The optimal t(e|f) can be found by exactly the same method of La-
grangian multipliers from Lecture 1 (with probability constraint on t(e|f)).
In the following we state only the result of the calculation.

Define a count function c, that collects evidence from a sentence pair e, f
that word e is translation of word f :

c(e|f ; e, f) =
∑
a

p(a|e, f)
le∑
j=1

δ(e, ej)δ(f, fa(j)) (11)

where δ(x, x′) = 1 if x = x′, 0 else

The Trick:
With the same simplification as before:

c(e|f ; e, f) =
t(e|f)∑lf
i=0 t(e|fi)

le∑
j=1

δ(e, ej)

lf∑
i=0

δ(f, fi) (12)

In result, we obtain the relative frequencies (the Maximum Likelihood Esti-
mates) from the alignments weighted by p(a|e, f) from the E-Step.

Final estimate:

t(e|f) =

∑
(e,f) c(e|f ; e, f)∑

e

∑
(e,f) c(e|f ; e, f)

(13)

3.3.1 Pseudocode

Require: set of sentence pairs (e, f)
Ensure: translation prob. t(e|f)
1: initialize t(e|f) uniformly
2: while not converged do
3: {initialize}
4: count(e|f) = 0 for all e, f
5: total(f) = 0 for all f
6: for all sentence pairs (e,f) do
7: {compute normalization}
8: for all words e in e do
9: s-total(e) = 0
10: for all words f in f do
11: s-total(e) += t(e|f)
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12: end for
13: end for
14: {collect counts}
15: for all words e in e do
16: for all words f in f do
17: count(e|f) += t(e|f)

s-total(e)

18: total(f) += t(e|f)
s-total(e)

19: end for
20: end for
21: end for
22: {estimate probabilities}
23: for all foreign words f do
24: for all English words e do
25: t(e|f) = count(e|f)

total(f)

26: end for
27: end for
28: end while

3.4 IBM Model 2

Higher IBM Models

IBM Model 1: lexical translation, all reorderings / alignments
are equally likely

IBM Model 2: adds explicit reordering / alignment model
IBM Model 3: adds fertility model
IBM Model 4: adds improved reordering model
IBM Model 5: fixes deficiency

IBM Model 2 is a two-step model: The lexical translation model is simi-
lar to IBM Model 1, but it is also adding an explicit alignment probability
distribution a(i|j, le, lf ), which predicts a foreign input at position i given
an English output at position j. (N.B. alignment probability distribution is
defined in same direction as alignment function.)
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natürlich ist haus klein

of course is the house small

das
1 2 4 53

of course the house is small
1 2 3 4 5 6

lexical translation step

alignment step

IBM Model 2:

p(e, a|f) = ε
le∏
j=1

t(ej|fa(j))a(i|j, le, lf ) (14)

The estimation of probabilities for IBM Model 2 uses formulae similar to
IBM Model 1.

3.5 IBM Model 3

IBM Model 3 adds a model of fertility:
Fertility describes the number of English words generated by foreign words,
modelled by the probability distribution n(φ|f) for φ = 0, 1, 2, . . .
Example:

n(0|ja) ' 1

n(2|zum) ' 1

n(1|Haus) ' 1

Instead of the alignment model, we now use a distortion model:
d(j|a(j), le, lf ) predicts an output position j given an input position a(j).

NULL token insertion:
Instead of modelling the fertility of the NULL token in the same way as for
all the other words, we model it as a special step: after the fertility step, we
insert a NULL token after each word with probability p1 or no NULL token
with probability 1 − p1. (N.B. distortion is set up in translation direction,
not alignment direction.)
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3.5.1 Estimation of parameters for model 3

”The Trick” does not work in complex models like IBM Model 3.

Solution 1: EM algorithm for exponentially many possibilities.

Solution 2: Sampling most probable solutions by hill-climbing:

1. Start with initial alignment.

2. Change alignments by moving or swapping one word.

3. Keep change if it has higher probability.

4. Continue until convergence.

3.6 IBM Model 4

IBM Model 4 adds a relative reordering model:
The idea is, that words do not move independently, but in groups. We place
the English translation of a foreign input word relative to the translation of
the previously translated input word.

Relative reordering is defined with respect to cepts:
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Cepts are formed by foreign words with non-zero fertility. The center �i
of a cept πi is the ceiling of avg(j). πi,k is the position of the kth word in the
ith cept.

cept πi π1 π2 π3 π4 π5
foreign position [i] 1 2 4 5 6
foreign word f[i] ich gehe nicht zum haus

English words {ej} I go not to,the house
English positions {j} 1 4 3 5,6 7

center of cept �i 1 4 3 6 7

j 1 2 3 4 5 6 7
ej I do not go to the house

in cept πi,k π1,0 π0,0 π3,0 π2,0 π4,0 π4,1 π5,0
�i−1 0 - 4 1 3 - 6

j −�i−1 +1 - −1 +3 +2 - +1
distortion d1(+1) 1 d1(−1) d1(+3) d1(+2) d>1(+1) d1(+1)

3 cases of relative distortion:

1. Uniform for all NULL generated words.

2. First word of a cept: d1(j −�i−1) is the distortion of an English word
position j relative to the center of the preceding cept �i−1.

Example:
not: d1 = −1
d1(j −�i−1) = d1(j −�2) = d1(3− 4) = −1

3. Next words in a cept: d>1(j − πi,k−1) is the distortion of an English
position j relative to the previous word in the cept.

Example:
the: d>1(j − πi,k−1) = d>1(6− π4,0) = d>1(6− 5) = 1
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Training for IBM Model 4: some hill-climbing heuristic as for Model 3.

3.7 IBM Model 5

IBM Model 5 fixes the deficiency in IBM Models. In IBM Models 3 and 4,
multiple outcome words can be placed in the same position, thus there is loss
of probability mass and the probability model is deficient.

3.8 Efficient reparametrization of IBM Model 1 & 2
(fast align)

• IBM Model 1 is too simplistic (all alignment are equally likely)

• IBM Model 2 is over parameterized (a separate alignment probability
a(j|i) for every combination of input-output position)

• both, however, support inference in roughly quadratic time in the length
of the sentence

Observe (e, f) if lengths m and n. Introduce a distance function between
source and target word positions: h(i, j) = −

∣∣ i
m
− j

n

∣∣.
fast align follows a similar generative story as IBM Model 1:

1. for each i = 1, . . . , le decide if it is a NULL word with probability p0

2. if not, chose a value for ai from j = 0, . . . , n according to log-linear
distribution eλh(i,j)

Zλ(i)

3. for each j = 1, . . . , le choose a output word ej according to t(ej|fa(j))

Compared to IBM Model 1, fast align has two additional parameters
to learn, p0 and λ, used in the probability of source position j being aligned
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with target position i:

a(j|i) =


p0, j = 0

(1− p0)× eλh(i,j)

Zλ(i)
, 0 < j ≤ n

0, otherwise

In the limiting case λ→ 0 the distribution approaches the uniform distribu-
tion of Model 1. For other of values the probability assigns higher probability
mass to alignments close to diagonal.

Zλ calculation:

Zλ =
n∑
j=1

exp(λh(i, j))

Denote the closest cell on or above diagonal as j↑, and the next cell down
as j↓:

j↑ = bi× n
m
c j↓ = j↑ + 1

Starting at j↑ and moving up the alignment column, as well as starting at
j↓ and moving down, the unnormalized probabilities decrease by a factor of
r = exp(−λn) per step.

Therefore, denoting the sum of geometric progression with multiplier r
and starting element g as σ(g, r) we get:

Zλ = σj↑(exp(λh(i, j↑)), r) + σn−j↓(exp(λh(i, j↓)), r)

The probabilities needed for the E-step:

p(e|f) =
m∏
i=1

p(ei|f) =
m∏
i=1

n∑
j=0

a(j|i)t(ei|fj), p(a|e, f) =
p(a, e, f)

p(e, f)
.
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M-step requires, again, aggregating and counting counts as in (13). Dur-
ing the M-step, the λ parameter must also be updated to make the E-step
posterior distribution over alignment points maximally probable under a(j|i).
This maximizing value cannot be computed analytically, but a gradient-based
optimization can be used. (exercise to derive a gradient).

3.9 Conclusion

The IBM Models are still in use for word alignment in state-of-the-art SMT.
Efficient reparametrization is often helpful in practice.

Important concepts:
- alignment
- EM training
- reordering models
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