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3 Noisy Channel model

We observe a distorted message R (foreign string f). We have a model on
how the message is distorted (translation model t(f |e)) and also a model on
which original messages are probable (language model p(e)).
Our object is to recover the original message S (English string e).

Derivation of ”noisy channel model” in a probabilistic framework
using the Bayes rule

ê = arg max
e
p(e|f) (1)

= arg max
e

p(f |e)p(e)
p(f)

= arg max
e

p(f |e)︸ ︷︷ ︸
translation model

· p(e)︸︷︷︸
language model

Advantages of generative SMT models:
The translation problem can be broken up into simpler problems: transla-
tion model and language model. Like that, simpler problems can be solved
separately and estimation and model definitions are independent.

Note: “Source” in the noise channel model should be read as “original”. In
terms of generative SMT we called the “original” the “target”.
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4 Phrase-based SMT

• Foreign input is segmented into phrases.

• Phrases are translated into English.

• Phrases are reordered.

This works already better then word-based translation models (which are
still used in alignment).

Phrase-based SMT as generative model:

ê = arg max
e
p(e|f) (2)

= arg max
e

p(f |e)︸ ︷︷ ︸
translation model

· p(e)︸︷︷︸
language model

4.1 Reordering model in Phrase-based SMT

p(f̄ I1 |ēI1) =
I∏
i=1

φ(f̄i|ēi)︸ ︷︷ ︸
phrase translation probability

· d(starti − endi−1 − 1)︸ ︷︷ ︸
(phrase) distortion probability

(3)

d is called ”distortion probability”, ”reordering probability” or rather ”dis-
tortion cost”. It describes the number of words skipped to the right (+) or
left (-) when taking foreign words out of sequence.

starti is the position of the first word of a foreign phrase corresponding
to the ith English phrase (in the figure above, start4 = 4).

endi−1 is the position of the last word of a foreign phrase corresponding
to the previous English phrase (in the figure above, end3 = 2).
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phrase translates movement distance calculation
1 1–3 start at beginning 0 1-0-1=0
2 6 skip over 4–5 +2 6-3-1=2
3 4–5 move back over 4–6 -3 4-6-1=-3
4 7 skip over 6 +1 7-5-1=+1

Example (phrase 2):
d(starti − endi−1 − 1) = d(start2 − end1 − 1) = d(6− 3− 1) = 2

Example (phrase 3):
d(starti − endi−1 − 1) = d(start3 − end2 − 1) = d(4− 6− 1) = −3

Scoring function: d(x) = α|x|

4.2 Weighted models in SMT

With th knowledge we have we can build the ”standard” generative model
consisting of 3 submodels / modules:

• phrase translation model φ(f̄ |ē)

• distortion model d

• language model pLM(e)

The generative model defines joint probability by assuming the independence
of modules ⇒ product model.

The standard model was derived (inspired) more or less from a well-defined
optimization task (max. likelihood). Quite expected, likelihood is not what
people report when asked to evaluate a translation – we have a model-task
discrepancy. More complex objectives usually require more flexible models.
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From an engineering perspective, the developer may notice that the trans-
lations need to be more fluent and that increasing a language model’s im-
portance is necessary. This is not possible within the noisy channel model
(violates the Bayes rule). Moreover, he may argue that combining several
language models might be beneficial.

To summarize, reasons for a move from the product model to more general
log-linear models:

• including more features,

• tuning the relative importance of features.

While we violate the assumptions of the initial model we still want to land
on some known model

4.2.1 Weighted models

Add weight to modules:

ê = arg max
e

I∏
i

φ(f̄i|ēi)
λφ

(4)

· d(starti − endi−1 − 1)λd

·
|e|∏
j=1

pLM(ej|e1, . . . , ej−1)λLM

Now we work with different, more expressive probability models
⇒ log-linear model.

4.2.2 log-linear model

p(x) = exp
n∑
i=1

λihi(x) (5)

λi = parameter

hi = features

SMT as log-linear model:
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• feature-function h1 = log φ⇒ φ = eh1

• feature-function h2 = log d⇒ d = eh2

• feature-function h3 = log pLM ⇒ pLM = eh3

φλφdλdpλLM
LM = eh1λ1eh2λ2eh3λ3 (6)

=
3∏
i=1

ehiλi

= e
∑3

i=1 hiλi

ê = arg max
e

exp(λφ

I∑
i

log φ(f̄i|ēi) (7)

+ λd

I∑
i

log d(starti − endi−1 − 1)

+ λLM

|e|∑
j=1

log pLM(ej|e1, . . . , ej−1))

Although we obtained log-linear models as a generalization of a product
model, it turns out that the following formulations are dual:

• MaxEnt + moment conservation

• ML + Gibbs

4.2.3 Advantages of log-linear model

• Standard modules can be weighted.

• Additional feature functions can be added easily.

• 3 standard features: φ, d, pLM
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Additional features: With the help of feature we can now easily inject do-
main knowledge into the model. The final answer whether these new feature
are useful will be always given by experiment, but having some intuition is
necessary to design them.

• Word count:

wc(e) = log |e|ω, ω<1 prefers fewer words
ω>1 prefers more words

The wc feature corrects the bias of the language model towards short
translations.

• Phrase count:

pc(e) = log |I|ρ,
I=number of phrases

ρ<1 prefers fewer phrases, i.e., longer phrase
ρ>1 prefers shorter phrases, i.e., more phrases

The pc feature fine-tunes fine or coarse phrase segmentation. Trade-off:
longer phrases are more grammatical but less statistically reliable; com-
binations of shorter phrases are more often disfluent but their statistics
can be estimated on smaller corpora. The task of this feature is to
automatically resolve this trade-off for your particular case (data).

In contrast, choosing more linguistically motivated boundaries was not
shown to be especially helpful.

• Multiple language models

• Multiple translation models:
e.g., src-trg and trg-src translation models

• Bidirectional alignment probabilities

Example: very long English phrase ē is extracted along with a for-
eign phrase f̄ . In results, φ(f̄ |ē) is high, LM will like it as well – will
be often used. Add the reverse direction φ(ē|f̄) (small) to prevent this
from happening, and weight the relative importance of both model.

• Lexically weighted phrase translation probabilities:

Lexical weighting of phrases with word translation probabilities for rare
phrases with unreliable phrase translation probabilities. We would like
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to back-off to the word level to compensate for the missing information:

lex(ē|f̄ , a) =

|ē|∏
i=1

1

|{j|(i, j) ∈ a}|
∑
∀(i,j)∈a

w(ei|fj)

Each English word ei in a phrase ē is generated independently by
an aligned foreign word fj in f̄ with the word translation probabili-
ty w(ei|fj) or average if multiple alignment is possible.

Again, we can use both lex(ē|f̄) and lex(f̄ |ē).

does

ge
ht

ni
ch

t

da
vo

n

not

assume

au
s

N
U

LL

Example: lex(ē|f̄ , a) = w(does|NULL)

· w(not|nicht)

· 1

3
(w(assume|geht) + w(assume|davon)

+ w(assume|aus))

4.3 Lexicalized Reordering

Reordering based on distance in words is not expressive enough. We want to
be able to distinguish the reordering cost for different lexical phrases.
Lexical reordering learns 3 types of reordering for each lexical phrase:

orientation ∈ {monotone, swap, discontinuous}

Learning orientation preference

p(orientation|f̄ , ē) is the lexical reordering probability distribution.

During phrase extraction from alignment, check:
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• if a word alignment point to the top left exists
⇒ monotone (m)

• elsif a word alignment point to the top right exists
⇒ swap (s)

• else
⇒ discontinuous (d)

Estimation of lexical reordering probability:

unsmoothed estimate:

p̂(orientation|ē, f̄) =
count(orientation, ē, f̄)∑
o count(orientation, ē, f̄)

smoothed estimate:

p̂(orientation|ē, f̄) =
λp(orientation) + count(orientation, ē, f̄)

λ · 1 +
∑

o count(orientation, ē, f̄)

where p(orientation) =

∑
f̄

∑
ē count(orientation, ē, f̄)∑

o

∑
f̄

∑
ē count(orientation, ē, f̄)

⇒ linear interpolation with unlexicalized orientation model.

4.4 Direct training of phrases

Why not try to directly learn phrase-alignment with EM?

Goal: Directly learn phrases using EM without heuristic extraction from
word alignments.

29



Statistical Machine Translation
Artem Sokolov

SS 2015
Lecture 4

1. Initialize: Start with uniform φ(ē, f̄) phrase pair probabilities.

2. E-Step: Assign phrase alignment probabilities to all phrases in all sen-
tence pairs.

3. M-Step: Collect counts for phrase pairs (ē, f̄), weighted by the phrase
alignment probability.

4. Update phrase translation probabilities φ(ē, f̄).

Problems:

• Method overfits easily: Long phrase pairs, often spanning entire sen-
tences, are preferred.

• Inefficient, because of large space of alignments.

Solutions:

• Restrict the phrase length; disallow phrases or phrase pairs that occur
only once.

• Use old-style heuristics: Word alignments restricts possible phrases.

• New-style Bayesian approach: Define prior that imposes a bias towards
shorter phrases.
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