
Statistical Machine Translation
Artem Sokolov

SS 2015
Lecture 5

1 Language Models

With a language model, we can estimate how likely a string is English (or
how likely that an English speaker would have uttered the string). Naturally,
we want an SMT system not only to contain precise translations but also
combine them into fluent English.

Language models in general are functions, that take a string and return
an estimate of how likely is that string is a proper English phrase.

LMs help us with reordering, for example:

pLM(the house is small) > pLM(small the is house)

Also, they help with the choice of the right word:

pLM(I am going home) > pLM(I am going house)

As a rule, the functions are estimated on large monolingual (much more
abundant than parallel) corpora of target text.

p(wk
1) = p(w1, w2, . . . , wk)

= p(w1)p(w2|w1)p(w3|w1, w2) . . . p(wk|w1, . . . wk−1)

It is natural to further assume, that only the previous history of n− 1 words
(for some n) matters for predicting the next word. We are going to use
maximum likelihood estimation, so another reason for limiting history is that
sufficiently long phrases don’t appear in any fixed-size corpus, therefore we
must break the computation of the language model into smaller steps.

p(wk
1) = p(w1, w2, . . . , wk)

= p(w1)p(w2|w1)p(w3|w1, w2) . . . p(wi|wi−n+1, . . . wi−1) . . . p(wk|wk−n+1, . . . wk−1)

This is an application of the chain rule for conditional probabilities:

p(x|y) =
p(x, y)

p(y)

p(y)p(x|y) = p(x, y)

1

Statistical Machine Translation
Artem Sokolov

SS 2015
Lecture 5

1.1 n-gram Language Models

1.1.1 Definition of n-gram

The Markov assumption tells us, that only n− 1 words in history matter.

p(w1,wk) '
k∏

i=1

p(wi|wi−1
i−n+1) (1)

bigram: n = 2 ⇒ First order Markov model
Example: p(w1, . . . , wk) ' p(w1)p(w2|w1) . . . p(wk|wk−1)

trigram: n = 3 ⇒ Second order Markov model
Example: p(w1, . . . , wk) ' p(w1)p(w2|w1)p(w3|w1, w2) . . . p(wk|wk−2, wk−1)

1.2 Estimating n-gram probabilities

p(wi|wi−1
i−n+1) =

count(wi
i−n+1)

count(wi−1
i−n+1)

Maximum likelihood estimation:

p(w2|w1) =
count(w1, w2)

count(w1)
(2)

p(wk|wk−1, wk−2) =
count(wk−2, wk−1, wk)

count(wk−2, wk−1)

Example from a 3-gram LM trained on the European Parliament proceedings:

1.3 Fit quality: Perplexity

Problem: How well does a language model perform/fit the data? (e.g., what
order is enough? which smoothing technique is better?)

2

Statistical Machine Translation
Artem Sokolov

SS 2015
Lecture 5

One possible measure is Perplexity, which is defined based on cross-entropy:
Entropy & perplexity:

H(p(x)) =− Ep(x) log2 p(x)

=−
∑
x

p(x) log2 p(x)

PP (p(x)) =2H(p(x))

Now, entropy of a language is defined as a limit of per-word entropy:

H(L, p(x)) =− lim
n→∞

1

n

∑
∀wn

1

p(wn
1) log p(wn

1),

where wn
1 is a n-word sequence from the language L.

Shannon-McMillan-Breimann Theorem:

H(L, p(x)) ' − 1

n
log p(wn

1), for large n

Thus, a sufficiently long single sequence is representative for the whole lan-
guage. We can now compute the perplexity of model using a (large) corpus.

In our case the independent events are the observed n-grams, wi
i−n+1, from

sentence s. Therefore, the expectation is taken over the emprical distribution:

H(pLM(s)) =− 1

|s| − n+ 1
log2 pLM(s)

=− 1

|s| − n+ 1

|s|−n+1∑
i

log2 p(wi|wi−1
i−n+1).

PP =2H(pLM (s))

The idea is that a model with smaller Perplexity on unseen data is better
(model is “less surprised” to see this new data).

Example (for the sentence “I would like to commend the rapporteur on this
work”):

3

Statistical Machine Translation
Artem Sokolov

SS 2015
Lecture 5

Example (comparison of different n-gram models):

1.4 Smoothing

High-order n-grams are not very frequent in corpora. Zero probabilities of
n-grams destroy our computation of sentence probabilities, since it will be
floored to zero.
Smoothing attempts to fill in missing statistics in order to avoid zero prob-
abilities (any product of the form (1) is zero if at least one factor is zero).

1.4.1 Laplace smoothing

”Add-one”-smoothing

unsmoothed: p =
c

n
, c=number of n-gram in corpus

n=count of history (3)

”Add-one”-smoothing: p =
c+ 1

n+ v
, v = size of vocabulary (4)

4

Statistical Machine Translation
Artem Sokolov

SS 2015
Lecture 5

”Add α”-smoothing

p =
c+ α

n+ αv
, α < 1, α optimized on held-out set (5)

Example: 2-grams in Europarl

Count Adjusted count Test count
c “add 1” “add α tc
0 0.00378 0.00016 0.00016
1 0.00755 0.95725 0.46235
2 0.01133 1.91433 1.39946
3 0.01511 2.87141 2.34307
4 0.01888 3.82850 3.35202
5 0.02266 4.78558 4.35234
6 0.02644 5.74266 5.33762
8 0.03399 7.65683 7.15074
10 0.04155 9.57100 9.11927
20 0.07931 19.14183 18.95948

α = 0.00017
tc = average count of n-gram in test set that occured c times in training
corpus

1.4.2 ”Deleted estimate”-smoothing

Nr is the count of n-grams with training count r,
Tr is the count in test data of n-grams with training count r.
We also have an estimate r∗ = Tr

Nr
.

Then we switch train and test and combine the results:

r∗ =
T 1
r + T 2

r

N1
r +N2

r

(6)

This is similar to 2-fold cross validation.

5

Statistical Machine Translation
Artem Sokolov

SS 2015
Lecture 5

1.4.3 “Good-Turing”-smoothing

Derivation Question: what is the probability of observing n-gram “in the
wild” (i.e. in some test test), given that we saw the n-gram with some fre-
quency in the training set?

Assume we have a sample S of size |S| drawn from the true probability n-
gram distribution p(w). Define c(w) to be the number of times n-gram w
occurs in S. For integer r ≥ 0 let Sr = {w : c(w) = r}. For example, S0 is
the set of n-grams not seen in S.

Define a random variable Mr (depending on S) to be the probability of draw-
ing an n-gram in the set Sr, that is Mr =

∑
w∈Sr

p(w). For example, M0 is
the “missing mass” – total probability of words not occuring in the sample S.

Had we known Mr, the true probability P (w|w ∈ Sr) of drawing again some
word w ∈ Sr would be

Mr

|Sr|
, (7)

i.e., total mass divided by total number of distinct elements.

Example: To see the need for a smoothing, imagine we have sampled a large
S where each n-gram occurs exactly once (quite unlikely event). The naive
way of estimating M1 would be

of times w occurs in S × # of different words we are ok with

total size of S

=
k × |S1|
|S|

=
1× |S|
|S|

= 1.

However, for any reasonable distribution p(w) the probability M1, given such
an unlikely sample S, should be close to 0 .

6

Statistical Machine Translation
Artem Sokolov

SS 2015
Lecture 5

Let us find the expectation of Mr:

E[Mr] =
∑
w

p(w)P [w ∈ Sr]

=
∑
w

p(w)

(
|S|
r

)
pr(w)(1− p(w))|S|−r

=
∑
w

(
|S|
r

)
pr+1(w)(1− p(w))|S|−(r+1)(1− p(w))

r + 1

r + 1

=
∑
w

(
|S|
r + 1

)
pr+1(w)(1− p(w))|S|−(r+1)(1− p(w))

r + 1

|S| − r

=
∑
w

P [w ∈ Sr+1](1− p(w))
r + 1

|S| − r

=
r + 1

|S| − r
∑
w

P [w ∈ Sr+1]−
r + 1

|S| − r
∑
w

p(w)P [w ∈ Sr+1]

=
r + 1

|S| − r
∑
w

p(w)|Sr+1| −
r + 1

|S| − r
E[Mr+1]

=
r + 1

|S| − r
E[|Sr+1|]−

r + 1

|S| − r
E[Mr+1]

As 0 ≤ Mr+1 ≤ 1, if k � |S| the last term is close to zero. Therefore for
k � |S| an almost unbiased estimate of Mr is

r + 1

|S| − r
E[|Sr+1|] '

r + 1

|S|
|Sr+1|,

where we assume that means of (large) |Sr+1| can be estimated reliably just
by |Sr+1|.

Final formula Using formula (7) we adjust the actual counts r to expected
counts r∗ with this formula:

r∗ = (r + 1)
Nr+1

Nr

(8)

where Nr = |Sr| is the number of n-grams that occur exactly r times in our
corpus and N0 is the total number of n-grams not occuring in the corpus.
In practice, although very well justified, the GT estimate is not alone for
n-gram smooothing, because the formula may give very noisy estimates for
large r, where the nr+1 statistics not reliable or absent (= 0), resulting in
suboptimal performance.

7

Statistical Machine Translation
Artem Sokolov

SS 2015
Lecture 5

1.5 Back-Off and Interpolation

Back-Off:

In a given corpus, we may never observe a collocation like ”Scottish beer
drinkers” or ”Scottish beer eaters”, because they both have a count of 0.
Therefore our smoothing methods will assign them the same probability.

A better idea: back-off to bigrams, like ”beer drinkers” and ”beer eaters”.

Interpolation:

Higher and lower order n-gram models have different strengths and weak-
nesses:

• high-order n-grams are sensitive to more context, but have sparse counts

• low-order n-grams consider only very limited context, but have robust
counts

Combine them:

pI(w3|w1, w2) = λ1 p1(w3)

+ λ2 p2(w3|w2)

+ λ3 p3(w3|w1, w2)

With a lot of training data, we can trust the higher order language models
more and assign them higher weights. We require that:

∀λn : 0 ≤ λn ≤ 1∑
n

λn = 1

8

Statistical Machine Translation
Artem Sokolov

SS 2015
Lecture 5

Recursive Interpolation (Jelinek-Mercer smoothing)

Recursive definition of interpolation:

pIn(wi|wi−n+1, ..., wi−1) = λwi−n+1,...,wi−1
pn(wi|wi−n+1, ..., wi−1)

+ (1− λwi−n+1,...,wi−1
) pIn−1(wi|wi−n+2, ..., wi−1)

Training λwi−n+1,...,wi−1
can be done with the EM algorithm, however, parti-

tioning them into buckets according to c(wi−1
i−n+1) and using the same λ for

all counts in the same buckets has a good balance of quality and eficiency.

Recursive Back-Off (Katz smoothing)

To fix the GT smoothing we would trust the highest order language model
that contains an n-gram:

pBO
n (wi|wi−n+1, ..., wi−1) =

dn(wi−n+1, ..., wi−1) pn(wi|wi−n+1, ..., wi−1)

if countn(wi−n+1, ..., wi) > k

αn(wi|wi−n+1, ..., wi−1) p
BO
n−1(wi|wi−n+2, ..., wi−1)

otherwise

The constant k is usually set to be a small integer, often zero or found em-
prically by cross-validation.

First note that for GT smoothing the total probability of lost probability
mass due to smoothing and that is distributed among unseen n-grams is
equal to n1/N , where N =

∑
r>0 rnr, with the contribution of each n-gram

with count r to be equal to (1− dr) r
N

.

Consider two cases:

1. k = 0

• as the GT estimation reduces counts (and estimated probabilites)
we can just use the discount values GT smoothing gives as a dis-
counting function dn(w1, ..., wn−1).

• coefficients αn(wi|wi−n+1, ..., wi−1) then just collect all the missing
probability mass:

β(wi−n+1, ..., wi−1) ≡ 1−
∑

countn(wi−n+1,...,wi)>k

dn(wi−n+1, ..., wi−1) pn(wi|wi−n+1, ..., wi−1)

αn(wi|wi−n+1, ..., wi−1) =
β(wi−n+1, ..., wi−1)∑

countn(wi−n+1,...,wi)≤k p
BO
n−1(wi|wi−n+2, ..., wi−1)

9

Statistical Machine Translation
Artem Sokolov

SS 2015
Lecture 5

2. k > 0

• set dr for all n-grams occuring more than k times to be equal to
1 (i.e., considered to be a reliable estimate)

• otherwise require that contributions dr of seen n-grams are propo-
tional to the GT contributions

1− dr = µ(1− r∗/r)

• still the total distributed mass as dictated by GT smoothing should
be left unchanged ∑

r>0

nr(1− dr)
r

N
=
n1

N

• can be shown that the solution is

dr =
r∗

r
− (k+1)nk+1

n1

1− (k+1)nk+1

n1

Recursion grounding

• 1-order model: ML (or some smoothed) unigram model

• 0-order model: uniform model p(wi) = 1/|V |

10

