
Statistical Machine Translation
Artem Sokolov

SS 2015
Lecture 6

1 Recap

• the simplest way to estimate LMs, MLE, is problematic on sparse data

– problem with zero counts⇒ zero probabilities for unseen n-grams

– high perplexity on test, low performance of the model as a whole

• smoothing and back-off to address to problems

– add-α (Laplace estimation)

p(wi|wi−1
i−n+1) =

α + c(wi
i−n+1)

α|V |+
∑

wi
c(wi

i−n+1)

– deleted estimation

– Good-Turing estimation

r∗ = (r + 1)
Nr+1

Nr

p(wi
i−n+1) = r∗/

∞∑
r=0

Nrr
∗

– interpolation/back-off with lower-order models (Jelinek-Mercer smooth-
ing and Katz estimation)

2 ”Witten-Bell”-smoothing

Previously, we computed n-gram probabilities based on relative frequency:

p(w2|w1) =
count(w1, w2)

count(w1)

”Good Turing”-smoothing adjusts counts c to expected counts c∗:

count∗(w1, w2) ≤ count(w1, w2)

We use these expected counts for the prediction model (but 0∗ remains 0):

α2(w2|w1) =
count∗(w1, w2)

count(w1)

This leaves probability mass for the discounting function:

d2(w1) = 1−
∑
w2

α2(w2|w1) (1)

1

Statistical Machine Translation
Artem Sokolov

SS 2015
Lecture 6

Example: Diversity of Predicted Words Consider the bigram histories
”spite” and ”constant”. They both occur 993 times in the Europarl corpus,
but:

• only 9 different words follow ”spite”, which is almost always followed
by ”of” (979 times), due to the expression ”in spite of”

• a total of 415 different words follow ”constant”, where the most fre-
quent word is ”and” (42 times), followed by ”concern” (27 times) and
”pressure” (26 times). Also, there’s a huge tail of singletons (268 dif-
ferent words).

This means it is much more likely to see a new bigram that starts with ”con-
stant” than with ”spite”. ”Witten-Bell”-smoothing considers the diversity of
predicted words.

2.1 Idea:

”Witten-Bell”-smoothing is an instance of the recursive interpolation method
(Jelinek-Mercer smoothing)

pWB(wi|wi−1
i−n+1) = λwi−1

i−n+1
pML(wi|wi−1

i−n+1) + (1− λwi−1
i−n+1

)pWB(wi|wi−1
i−n+2)

• we should use higher-order model if n-gram wi
i−n+1 was seen in the

training data, and back off to lower-order model otherwise.

• interpret (1−λwi−1
i−n+1

) as the probability of recurring to the lower-order

model, i.e. that a word not seen after wi−1
i−n+1 in training data occurs

after that history in test data.

• replace this by the number of unique words that follow the history
wi−1

i−n+1 in the training data (i.e., how we would be surprised to see a
new word following our n-gram).

2.2 The method

Let us define the number of possible extensions of a history w1, ..., wn−1 in
training data as:

N1+(w1, ..., wn−1, •) = |{wn : c(w1, ..., wn−1, wn) > 0}| (2)

2

Statistical Machine Translation
Artem Sokolov

SS 2015
Lecture 6

Based on this, we define the lambda parameters as:

1− λw1,...,wn−1 =
N1+(w1, ..., wn−1, •)

N1+(w1, ..., wn−1, •) +
∑

wn
c(w1, ..., wn−1, wn)

Let us apply this to our two examples:

1− λspite =
N1+(spite, •)

N1+(spite, •) +
∑

wn
c(spite, wn)

=
9

9 + 993
= 0.00898

1− λconstant =
N1+(constant, •)

N1+(constant, •) +
∑

wn
c(constant, wn)

=
415

415 + 993
= 0.29474

3 Absolute discounting

Remember that the idea of smoothing is to redistribute some probability
mass by taking from the non-zero counts. Practitioners have noticed that
the discount value 1 − dr in the GT smoothing can often be approximated
by an “almost constant” value for large r.

Idea: use the Jelinek-Mercer interpolation as before but set λwi−1
i−n+1

to
max{c(wi

i−n+1)−D,0}∑
wi

c(wi
i−n+1)

.

Then

1− λwi−1
i−n+1

=
D∑

wi
c(wi

i−n+1)
N1+(wi−1

i−n+1•), (3)

where D can be estimated using deleted estimation.

4 ”Kneser-Ney”-smoothing

Previously we always modified the higher-order part of the interpolation
(Katz, Witten-Bell); the lower-order part is just as important and should
be optimized.

Example: Diversity of Histories Consider the word ”York”. It is a fairly
frequent word in the Europarl corpus, occurring 477 times. This is as frequent
as the words ”foods”, ”indicates” or ”providers”. In a unigram language
model, this is a respectable probability. However, it almost always directly

3

Statistical Machine Translation
Artem Sokolov

SS 2015
Lecture 6

follows ”New” (473 times). Recall: The unigram model is only used, if the
bigram model is inconclusive. ”York” is very unlikely to be the second word
in an unseen bigram in a back-off unigram model, therefore ”York” should
have a low probability. ”Kneser-Ney”-smoothing is an interpolation method
with absolute discounting and modified counts.

4.1 Idea

Assume for simplicity a two-bigram model. The idea is to set the unigram
probability to the number of different words that it follows instead of sim-
ply number of occurrences. To formalize this, we constrain the smoothed
distribution to have unigram marginals matching the empirical unigram dis-
tribution.

c(wi)∑
wi
c(wi)

=
∑
wi−1

p̂(wi−1wi) =
∑
wi−1

p̂(wi|wi−1)p(wi−1) =
∑
wi−1

p̂(wi|wi−1)
c(wi−1)∑

wi−1
c(wi−1)

,

where in the last step we assumed that unigram distribution is the empirical
one.
From (3) we have

p̂(wi|wi−1
i−n+1) =

max(c(wi
i−n+1)−D, 0)

c(wi
i−n+1)

+
DN1+(wi−1

i−n+1•)∑
wi
c(wi

i−n+1)
p̂(wi|wi−1

i−n+2)

Substituting into constrain and simplifying:

c(wi) = c(wi)−N1+(•wi)D +Dp̂(wi)N1+(••),
where

N1+(•wi) = |{wi−1 : c(wi−1wi) > 0}|,
N1+(••) = |{(wi−1, wi) : c(wi−1wi) > 0}|.

Solving for p̂(wi) we obtain

p̂(wi) =
N1+(•wi)

N1+(••)
.

For the general case of higher-order models:

p̂(wi|wi−1
i−n+2) =

N1+(•wi
i−n+2)

N1+(•wi−1
i−n+2•)

.

where

N1+(•wi
i−n+2) = |{wi−n+1 : c(wi

i−n+1) > 0}|,

N1+(•wi−1
i−n+2•) = |{(wi−n+1, wi) : c(wi

i−n+1) > 0}| =
∑
wi

N1+(•wi
i−n+2).

4

Statistical Machine Translation
Artem Sokolov

SS 2015
Lecture 6

5 Modified ”Kneser-Ney”-smoothing

The most used smoothing for n-gram models in practice .

p̂(wi|wi−1
i−n+1) =

c(wi
i−n+1)−D(c(wi

i−n+1))

c(wi
i−n+1)

+ γ(wi−1
i−n+1)p̂(wi|wi−1

i−n+2)

Idea Use 3 discount factors D1, D2, D3+ respectively for uni-, bi-grams and
tri(-and-higher)-grams, so that

D = D(c) = D11[c = 1] +D21[c = 2] +D3+1[c > 2].

5.0.1 Evaluation of Smoothing Methods

Perplexity for language models trained on the Europarl corpus:

Smoothing method bigram trigram 4-gram
Good-Turing 96.2 62.9 59.9
Witten-Bell 97.1 63.8 60.4
Modified Kneser-Ney 95.4 61.6 58.6
Interpolated Modified Kneser-Ney 94.5 59.3 54.0

5

Statistical Machine Translation
Artem Sokolov

SS 2015
Lecture 6

5.1 Managing the size of the model

Problem: Millions to billions of words are easy to get (trillions of English
words available on the web), but huge language models do not fit into RAM.

5.1.1 Estimation on Disk

Maximum likelihood estimation:

p(wn|w1, ..., wn−1) =
count(w1, ..., wn)

count(w1, ..., wn−1)
(4)

This can be done separately for each history w1, ..., wn−1.
We extract all n-grams into files on-disk and sort by them history on our disk
and only keep n-grams with shared history in RAM.
Smoothing techniques may require additional statistics.

5.1.2 Efficient Data Structures

We need to store large language models both memory-efficiently and in a way
that allows us to retrieve probabilities in a time-efficient manner. Typically,
this is done using a data structure known as a trie.
Imagine we need to store the probabilities for ”the very large majority” and
”the very large number”. Both share the same history ”the very large”.
With this, there is no need to store their history twice.

6

Statistical Machine Translation
Artem Sokolov

SS 2015
Lecture 6

verythe large
boff:-0.385

majority p:-1.147
number p:-0.275

important
boff:-0.231

and p:-1.430
areas p:-1.728

challenge p:-2.171
debate p:-1.837

discussion p:-2.145
fact p:-2.128

international p:-1.866
issue p:-1.157

...

best
boff:-0.302

serious
boff:-0.146

very

very large
boff:-0.106

amount p:-2.510
amounts p:-1.633

and p:-1.449
area p:-2.658

companies p:-1.536
cuts p:-2.225

degree p:-2.933
extent p:-2.208

financial p:-2.383
foreign p:-3.428

...

important
boff:-0.250

best
boff:-0.082

serious
boff:-0.176

4-gram

3-gram backoff

large
boff:-0.470

accept p:-3.791
acceptable p:-3.778
accession p:-3.762
accidents p:-3.806

accountancy p:-3.416
accumulated p:-3.885
accumulation p:-3.895

action p:-3.510
additional p:-3.334

administration p:-3.729
...

2-gram backoff
aa-afns p:-6.154
aachen p:-5.734
aaiun p:-6.154

aalborg p:-6.154
aarhus p:-5.734
aaron p:-6.154

aartsen p:-6.154
ab p:-5.734

abacha p:-5.156
aback p:-5.876

...

1-gram backoff

Language model probabilities stored in a trie.
Backoff from 4-gram to 3-gram:

pLM(amount|the very large) =backoff(the very large) (5)

·p3(amount|very large)

= exp(−0.385 +−2.510)

Backoff from 4-gram to 2-gram:

pLM(action|the very large) =backoff(the very large) (6)

·backoff(very large)

·p2(action|large)

= exp(−0.385 +−0.106 +−3.510)

7

Statistical Machine Translation
Artem Sokolov

SS 2015
Lecture 6

5.1.3 Fewer Bits to store Probabilities

Index for words
Two bytes allow a vocabulary of 216 = 65, 536 words, but typically more bytes
are needed. We can be even more efficient by employing Huffman coding to
use fewer bits for frequent words.
Probabilities
Typically probabilities are stored in log format as floats (4 or 8 bytes). Quan-
tization of probabilities allows us to use even less memory, maybe just 4-8
bits.

5.1.4 Reducing Vocabulary Size

Each number is treated as a separate token and there are theoretically in-
finitely many of them. Since different numbers do not behave that differently
from each other, we replace them with a number token: num
But we want our language model to prefer:

plm(I pay 950.00 in May 2007) > plm(I pay 2007 in May 950.00)

This is not possible with the number token:

plm(I pay num in May num) = plm(I pay num in May num)

Therefore we replace each digit with a unique symbol, e.g., @ or 5, to retain
some distinctions:

plm(I pay 555.55 in May 5555) > plm(I pay 5555 in May 555.55)

5.1.5 Filtering irrelevant N-Grams

We use the language model in decoding. We only produce English words
in the translation options and filter the language model down to n-grams
containing only those words.

8

Statistical Machine Translation
Artem Sokolov

SS 2015
Lecture 6

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 20 40 60 80 100 120

ra
tio

 o
f 5

-g
ra

m
s

re
qu

ire
d

(b
ag

-o
f-

w
or

ds
)

sentence length

Ratio of 5-grams needed to all 5-grams in language model (by sentence
length).

5.2 Summary

Language models:
How likely is a string of English words good English?
- N-gram models (Markov assumption)
- Perplexity
Count smoothing
- add-one, add-α
- deleted estimation
Interpolation and back-off
- Good Turing
- Witten-Bell
- Kneser-Ney
Managing the size of the model

9

Statistical Machine Translation
Artem Sokolov

SS 2015
Lecture 6

Abbildung 1: From Chen&Goodman’99

10

