6 Tree-Based SMT

- Traditional statistical models operate on sequences of words
- Many translation problems can be best explained by pointing to syntax
 - reordering, e.g., verb movement in German–English translation
 - long distance agreement (e.g., subject-verb) in output
- \Rightarrow Translation models based on tree representation of language
 - significant ongoing research
 - state-of-the art for some language pairs

6.1 Synchronous Phrase Structure Grammar

• English rule

 $\rm NP$ \rightarrow Det JJ nn

• French rule

 $\rm NP$ \rightarrow Det nn Jj

• Synchronous rule (indices indicate alignment):

 $NP \rightarrow DET_1 NN_2 JJ_3 \mid DET_1 JJ_3 NN_2$

Synchronous Grammar Rules

• Nonterminal rules

 $\mathrm{NP} \rightarrow \mathrm{DET}_1 \ \mathrm{NN}_2 \ \mathrm{JJ}_3 \ \big| \ \mathrm{DET}_1 \ \mathrm{JJ}_3 \ \mathrm{NN}_2$

• Terminal rules

 $N \rightarrow maison \mid house$

 $NP \rightarrow la maison bleue |$ the blue house

• Mixed rules

 $NP \rightarrow la \text{ maison } JJ_1 \mid \text{ the } JJ_1 \text{ house}$

Synchronous Grammar-Based Translation Model

- Translation by parsing
 - synchronous grammar has to parse entire input sentence
 - output tree is generated at the same time
 - process is broken up into a number of rule applications
- Translation probability

$$\text{SCORE}(\text{TREE}, \text{E}, \text{F}) = \prod_{i} \text{RULE}_{i}$$

• Many ways to assign probabilities to rules

6.2 Synchronous Tree-Substitution Grammars Aligned Tree Pair

Phrase structure grammar trees with word alignment (German–English sentence pair.)

Statistical Machine Translation	SS 2015
Artem Sokolov	Lecture 9

Reordering Rule

• Subtree alignment

• Synchronous grammar rule

 $VP \rightarrow PPER_1 NP_2$ aushändigen | passing on $PP_1 NP_2$

Another Rule

• Subtree alignment

• Synchronous grammar rule (stripping out English internal structure)

 $PRO/PP \rightarrow Ihnen \mid to you$

• Rule with internal structure

PRO/PP	\rightarrow	Ihnen	TO	PRP
			to	you

Another Rule

• Translation of German werde to English shall be

- Translation rule needs to include mapping of VP
- \Rightarrow Complex rule

	VAFIN VP ₁	\mathbf{MD}	VP
$VP \rightarrow$	werde	shall	VB VP1
			be

Internal Structure

• Stripping out internal structure

 $VP \rightarrow werde VP_1 \mid shall be VP_1$

 \Rightarrow synchronous context free grammar

• Maintaining internal structure

$VP \rightarrow$	$\begin{array}{c c} \text{VAFIN} & \text{VP}_1 \\ \\ \text{werde} \end{array}$	MD shall	VP VB VP ₁
→ synchronous	troo substitution grammar		be

 \Rightarrow synchronous tree substitution grammar

Learning Synchronous Grammars 6.3

- Extracting rules from a word-aligned parallel corpus
- First: Hierarchical phrase-based model
 - only one non-terminal symbol x
 - no linguistic syntax, just a formally syntactic model
- Then: Synchronous phrase structure model
 - non-terminals for words and phrases: NP, VP, PP, ADJ, ...
 - corpus must also be parsed with syntactic parser

Extracting Phrase Translation Rules

Formal Definition

• Recall: consistent phrase pairs

 (\bar{e}, \bar{f}) consistent with $A \Leftrightarrow$ $\forall e_i \in \bar{e} : (e_i, f_j) \in A \rightarrow f_j \in \bar{f}$ AND $\forall f_j \in \bar{f} : (e_i, f_j) \in A \rightarrow e_i \in \bar{e}$ AND $\exists e_i \in \bar{e}, f_j \in \bar{f} : (e_i, f_j) \in A$

- Let P be the set of all extracted phrase pairs (\bar{e}, \bar{f})
- Extend recursively:

if
$$(\bar{e}, \bar{f}) \in P$$
 and $(\bar{e}_{SUB}, \bar{f}_{SUB}) \in P$
AND $\bar{e} = \bar{e}_{PRE} + \bar{e}_{SUB} + \bar{e}_{POST}$
AND $\bar{f} = \bar{f}_{PRE} + \bar{f}_{SUB} + \bar{f}_{POST}$
AND $\bar{e} \neq \bar{e}_{SUB}$ and $\bar{f} \neq \bar{f}_{SUB}$
add $(e_{PRE} + X + e_{POST}, f_{PRE} + X + f_{POST})$ to P

(note: any of e_{PRE} , e_{POST} , f_{PRE} , or f_{POST} may be empty)

• Set of hierarchical phrase pairs is the closure under this extension mechanism

Comments

• Removal of multiple sub-phrases leads to rules with multiple non-terminals, such as:

$$\mathbf{Y} \to \mathbf{X}_1 \ \mathbf{X}_2 \ | \ \mathbf{X}_2 \ of \mathbf{X}_1$$

- Typical restrictions to limit complexity [Chiang, 2005]
 - at most 2 nonterminal symbols
 - at least 1 but at most 5 words per language
 - span at most 15 words (counting gaps)

Learning Syntactic Translation Rules

Constraints on Syntactic Rules

- Same word alignment constraints as hierarchical models
- Hierarchical: rule can cover any span
 ⇔ syntactic rules must cover constituents in the tree
- Hierarchical: gaps may cover any span
 ⇔ gaps must cover constituents in the tree
- Much less rules are extracted (all things being equal)

Impossible Rules

English span not a constituent no rule extracted

6.4 Scoring Translation Rules

- Extract all rules from corpus
- Score based on counts
 - joint rule probability: $p(LHS, RHS_f, RHS_e)$
 - rule application probability: $p(\text{RHS}_f, \text{RHS}_e | \text{LHS})$
 - direct translation probability: $p(\text{RHS}_e|\text{RHS}_f, \text{LHS})$
 - noisy channel translation probability: $p(\text{RHS}_f | \text{RHS}_e, \text{LHS})$
 - lexical translation probability: $\prod_{e_i \in \text{RHS}_e} p(e_i | \text{RHS}_f, a)$

6.5 Syntactic Decoding

Inspired by monolingual syntactic chart parsing:

During decoding of the source sentence, a chart with translations for the $O(n^2)$ spans has to be filled

Syntax Decoding

Bottom-Up Decoding

- For each span, a stack of (partial) translations is maintained
- Bottom-up: a higher stack is filled, once underlying stacks are complete

Naive Algorithm

Input: Foreign sentence $\mathbf{f} = f_1, \dots f_{l_f}$, with syntax tree **Output:** English translation \mathbf{e}

- 1: for all spans [start,end] (bottom up) do
- 2: for all sequences s of hypotheses and words in span [start,end] do
- 3: for all rules r do
- 4: **if** rule r applies to chart sequence s **then**
- 5: create new hypothesis c
- 6: add hypothesis c to chart
- 7: end if
- 8: end for
- 9: end for
- 10: **end for**

11: **return** English translation **e** from best hypothesis in span $[0, l_f]$

Chart Organization

- Chart consists of cells that cover contiguous spans over the input sentence
- Each cell contains a set of hypotheses
- Hypothesis = translation of span with target-side constituent

Dynamic Programming

Applying rule creates new hypothesis

Both hypotheses are indistiguishable in future search \rightarrow can be recombined

Recombinable States

Yes, iff max. 2-gram language model is used

Hypotheses have to match in

- span of input words covered
- output constituent label
- first n-1 output words
- last n-1 output words

When merging hypotheses, internal language model contexts are absorbed

Stack Pruning

- Number of hypotheses in each chart cell explodes
- \Rightarrow need to discard bad hypotheses e.g., keep 100 best only

Naive Algorithm: Blow-ups

• Many subspan sequences

for all sequences s of hypotheses and words in span [start,end]

• Many rules

for all rules r

• Checking if a rule applies not trivial

rule r applies to chart sequence s

 \Rightarrow Unworkable

Solution

- Prefix tree data structure for rules
- Dotted rules
- Cube pruning